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Abstract. We study the joint distribution of the solutions to the equa-

tion gh “ x in GpFpq as p Ñ 8, for any fixed x P GpZq, where G “ GLn,

SLn, Sp
2n or SO˘

n . In the special linear case, this answers in particular

a question raised by S. Hu and Y. Li, and improves their error terms.

Similar results are derived in certain subgroups, and when the entries

of g, h lie in fixed intervals. The latter shows for example the existence

of g P GLnpFpq such that g, g´1 have all entries in r0, cnp
1´1{p2n2`2q`εs

for some absolute constant cn ą 0. The key for these results is to use

Deligne’s extension of the Weil conjectures on a sheaf on G, along with

the stratification theorem of Fouvry, Katz and Laumon, instead of re-

ducing to bounds on classical Kloosterman sums.

1. Introduction

Throughout, we let n ě 1 be an integer, unless specified otherwise.

1.1. The cases of pZ{nqˆ and GLnpFpq. Following several similar results
for the group pZ{nqˆ (see [Shp12] for a survey), Su Hu and Yan Li [HL13]
have shown that for the matrix group G “ GLnpFpq and any fixed x P G,
the solutions to the equation

gh “ x pg, h P Gq

are uniformly distributed in r0, 1sn2 ˆ r0, 1sn2

as p Ñ 8, with respect to the
embedding

η :MnpFpq Ñ r0, 1sn2

(1)

g “ pgi,jqi,j ÞÑ ptgi,j{puq
i,j,

where t¨u denotes the fractional part. In particular, the entries of a nonsin-
gular matrix and its inverse are jointly uniformly distributed. More precisely,
they obtain a bound for the discrepancy.

Their main tools are bounds for matrix analogues of Kloosterman sums
obtained in [FHL`10] by reducing to classical Kloosterman sums.

1.2. Special linear groups. At the end of their paper, Hu and Li note
that this does not hold for G “ SL2pFpq, but conjecture that there should
be joint uniform distribution whenever n ě 3. We positively answer this by
showing:
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2 Joint distribution of inverses in matrix groups

Theorem 1.1. Let G be

GLn pfor n ě 2q or SLn pfor n ě 3q, (2)

and let x P GpZq. As p Ñ 8, the elements

Axpgq “
`
g, g´1x

˘
P MnpFpq ˆMnpFpq pg P GpFpqq

are uniformly distributed in Ω “ r0, 1sn2 ˆ r0, 1sn2

with respect to the embed-
ding η in (1). More precisely, for every product of intervals R in Ω,

|tg P GpFpq : ηpAxpgqq P Ru|
|GpFpq| “ measpRq `

$
’’&
’’%

On

ˆ
plog pqn2`1

?
p

˙
: G “ GLn

On

ˆ
plog pqn2`2

?
p

˙
: G “ SLn

as p Ñ 8, where meas denotes the Lebesgue measure. The implied constants
depend only on n. This also holds with R Ă Ω an arbitrary convex set if the
errors are replaced by their 1{p2n2qth powers.

Remark 1.2. This improves the error terms of [HL13], which are for ex-

ample p´1{p2p2n2`1qq when G “ GLn. The bulk of the improvement comes
from bounding nontrivially the 1{rphq factors appearing in the Erdős–Turán–
Koksma, which had been overlooked, as suggested by an anonymous referee.

Notation 1.3. We recall that for two complex-valued functions f, g, we
write f “ Onpgq or f !n g if there exists a constant Cn ą 0, depending only
on the variable n, such that |f | ď Cng.

1.2.1. Generalization to certain subgroups. The following variant shows that
equidistribution of Axpgq still holds in certain subgroups of GLn.

Theorem 1.4. Let us consider the setting of Theorem 1.1 for G “ GLn. For
f P FprGsˆ a nonvanishing nonconstant function and U ď Fˆ

p a subgroup,
let

H “ f´1pUq “ tg P GpFpq : fpgq P Uu.
For every product of intervals R Ă Ω, we have

|tg P H : ηpAxpgqq P Ru|
|H| “ measpRq `On

˜?
p

|U |

ˆ
log

|U |?
p

˙n2`1
¸

as p Ñ 8. The set R can be replaced by an arbitrary convex set if the error
term is replaced by its 1{p2n2qth power.

Example 1.5. One may take H “ tg P GLnpFpq : detpgq P Fˆr
p u with r “

op?
pq, where Fˆr

p denotes the set of r-powers in Fˆ
p .

Remarks 1.6. (1) It is a theorem of Rosenlicht (see e.g. [Bro83]) that ifG
is a connected affine algebraic group, then f{fp1q P FprGsˆ must be
a one-dimensional character (i.e. a character of the abelianization);
in particular, the set H in Theorem 1.4 is a normal subgroup.
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(2) In particular, we cannot get a nontrivial version of Theorem 1.4
for SLnpFpq: since the latter is perfect for p ą 3, f must be con-
stant. The classification of maximal subgroups of SLnpFpq [Asc84]
also shows that the restriction on the index is too stringent.

(3) Using the same techniques, it should be possible to obtain Theorem
1.4 also when H ď GLnpFpq is any normal subgroup of index ă ?

p.
However, this requires additional technicalities that we do not wish
to pursue here (see Remark 2.8 for further comments).

1.3. Other classical groups.

1.3.1. Symplectic groups. On the other hand, it is clear that Theorem 1.1
does not hold for G “ Spn (n ě 2 even). Indeed, if

g “
ˆ
g1 g2
g3 g4

˙
P Sp2npFpq, then g´1 “

ˆ
gt4 ´gt2

´gt3 gt1

˙

(with respect to the standard symplectic form, where gi P M2npFpq). Hence,
the obstruction for SL2 can be viewed as coming from the fact that SL2pFpq “
Sp2pFpq.

1.3.2. Special orthogonal groups. Let Φ P GLnpFpq be in one of the two
equivalence classes of nonsingular symmetric bilinear forms on Fnp . Since

g´1 “ ΦgtΦ´1 for g P GOpΦq, Theorem 1.1 does not hold either in this
case. Actually, when n “ 2, the elements of the special orthogonal group
corresponding to the form diagpα, 1q (α P Fˆ

p ) are themselves not uniformly

distributed in r0, 1s4 with respect to the embedding (1), since they are of the
form p a ´αc

c a q.

1.4. Distribution of elements. Nonetheless, the elements themselves are
still uniformly distributed in all cases except SO˘

2 , as in [HL13, Theorems
1.5–1.6] for GLn and SLn.

Theorem 1.7. For n ě 1, let G be1

GLn, SLn, Spn pn evenq, or SOn,In pn ě 3q.

As p Ñ 8, the elements g P GpFpq are uniformly distributed in Ω “ r0, 1sn2

with respect to the embedding (1). More precisely, for every product of inter-
vals R in Ω,

|tg P GpFpq : ηpgq P Ru|
|GpFpq| “ measpRq `On

˜
plog pqn2´dimG`1

?
p

¸

as p Ñ 8. This also holds with R Ă Ω an arbitrary convex set if error term
is replaced by its 1{p2n2qth power.

1In what follows, we let SOn,In be the special orthogonal group corresponding to the

form given by the identity matrix In: in other words, SOn,InpFpq is the special orthogonal

group with square determinant, i.e. SOnpFpq if n is odd, and if n is even, SO˘
n pFpq if

p ” ˘1 pmod 4q respectively.
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Remark 1.8. Note that the exponent of the logarithms in the error term is
2, 3, pn2 ` 1q{2 if G “ GLn, SLn or Spn respectively. Theorem 1.7 improves
the errors terms:

– in [HL13], handling GLn and SLn using [HL12], which are p´n{pn2`1q.
– in Theorem 1.1 for the joint distribution.

In the same vein as Theorem 1.4, we get the following generalization:

Theorem 1.9. Under the assumptions of Theorem 1.7, let H be as in The-
orem 1.4. Then, for any product of intervals R Ă Ω,

|tg P H : ηpgq P Ru|
|H| “ measpRq `On

˜?
p

|U |

ˆ
log

|U |?
p

˙n2´dimG`1
¸
.

1.5. Distribution with entries in intervals. A related question in G “
pZ{nqˆ is the distribution of the solutions to gh “ x, for some fixed x P G,
when 1 ď g, h ď p´1 lie in fixed intervals. It is a conjecture (see [Shp12, Sec-
tion 3.1]) that for any ε ą 0 and p large enough, there exist integers g, h such

that gh “ 1 pmod pq with |g|, |h| ď p1{2`ε. The best current result seems

to be |g|, |h| ! p3{4, due to Garaev (note the absence of a logarithmic factor).

In matrix groups, we can similarly fix the entries of the matrices in inter-
vals, yielding the following:

Theorem 1.10. Let G be as in Theorem 1.1. For p a prime, let E,F Ă
r0, p´1sn2

be products of intervals. Then, for any x P GpZq, viewing MnpFpq
embedded in r0, p´ 1sn2

, the density

|tg P GpFpq : g P E and g´1x P F u|
|GpFpq| (3)

is given by

measpE ˆ F q
p2n

2
`On

˜
plog pq2n2

pdimG{2

˜
1 `

ˆř
1ďk,lďnmeaspEklq?

p

˙dimG´1
¸¸

,

if E “ ś
1ďk,lďnEkl.

Corollary 1.11. Let G be as in Theorem 1.1 and let p be a prime. For any
ε ą 0 and x P GpZq, there exist g, h P GpFpq such that gh “ x and whose
entries, seen in r0, p´ 1s, are all

!n,ε

$
&
%
p
1´ 1

2pn2`1q
`ε

: G “ GLn

p
1´ 1

2pn2`2q
`ε

: G “ SLn .

We also refer the reader to [AS07] for related questions concerning matri-
ces, and to [Fou00], [FK01, Corollary 1.5] for general results about points on
varieties in hypercubes.
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1.6. Higher-dimensional variant. Using the same techniques, we can get
an analogue of Theorem 1.1 for the uniform distribution of solutions to

g1 . . . gr “ x pgi P GpFpqq
for any r ě 2 and x fixed:

Theorem 1.12. Let G and x be as in Theorem 1.1, and let r ě 2 be an
integer. As p Ñ 8, the elements

Axpgq “
`
g1, . . . , gr´1, pg1 . . . gr´1q´1x

˘
P MnpFpqr pg P GpFpqr´1q

are uniformly distributed in Ω “ r0, 1srn2

with respect to the embedding (1).
More precisely, for every product of intervals R in Ω,

|tg P GpFpqr´1 : ηpAxpgqq P Ru|
|GpFpq|r´1

“ measpRq`

$
’’&
’’%

On,r

ˆ
plog pqn2`1

?
p

˙
: G “ GLn

On,r

ˆ
plog pqn2`2

?
p

˙
: G “ SLn

as p Ñ 8. This also holds with R Ă Ω an arbitrary convex set if the error
terms are replaced by their 1{p2n2qth powers.

For the sake of clarity, we focus on proving the two-dimensional versions,
and indicate the changes necessary for Theorem 1.12 at the end.

Acknowledgements. The author thanks Lucile Devin, his colleagues in
Montréal, and anonymous referees for useful feedback on this work, as well
as Yan Li for suggesting a modification of the proof of Proposition 3.1 that
makes it shorter and able to handle characteristic 2. This work was partially
supported by Koukoulopoulos’ Discovery Grant 435272-2013 of the Natural
Sciences and Engineering Research Council of Canada, and by Radziwiłł’s
NSERC DG grant and the CRC program.

2. Tools

2.1. Equidistribution and discrepancy. For the following results, we re-
fer the reader to [DT97, Chapter 1]. Throughout, we let Ω “ r0, 1sk for some
integer k ě 1.

Definition 2.1. The discrepancy of a sequence pxnqně1 in Ω is

DN pxnq “ sup
IĂΩ

ˇ̌
ˇ̌ |tn ď N : xn P Iu|

N
´ measpIq

ˇ̌
ˇ̌ ,

where I runs over all products of intervals in Ω.

Proposition 2.2. A sequence pxnqně1 in Ω is uniformly distributed if and
only if DN pxnq “ op1q, and we have the Erdős–Turán–Koksma inequality:
for any integer T ě 1

DN pxnq ď
ˆ
3

2

˙k

¨
˚̊
˝

2

T ` 1
`

ÿ

hPZk

0ă||h||8ďT

1

rphq

ˇ̌
ˇ̌
ˇ
1

N

ÿ

nďN
eph ¨ xnq

ˇ̌
ˇ̌
ˇ

˛
‹‹‚,
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where rphq “ śk
i“1maxp1, |hi|q, epzq “ expp2πizq.

Proof. See [DT97, Theorem 1.6, Theorem 1.21] respectively. �

Remark 2.3. If the sets I in Definition 2.1 are replaced by arbitrary con-
vex subsets, this yields the isotropic discrepancy JN pxnq, which satisfies

JN pxnq !k DN pxnq1{k (see [DT97, Theorem 1.12]).

By Weyl’s criterion, pxnqně1 is equidistributed in Ω if and only if
ÿ

nďN
eph ¨ xnq “ opNq

for every nonzero h P Zk, so the Erdős–Turán–Koksma inequality quantifies
the equidistribution from the rate of decay of these exponential sums.

2.2. Exponential sums on matrix groups. The bounds of [FHL`10]
used in [HL13] proceed by reducing to classical Kloosterman sums on Fp,
through averaging and interchanging summations. Instead, we use Deligne’s
extension of his proof of the Weil conjectures [Del80] to work directly with
the sums over the matrix groups. This allows a precise control of when the
sums exhibit cancellation.

Proposition 2.4. Let G be as in Theorem 1.7, let f P FppGq be a rational
function on G, let ψ : Fp Ñ Cˆ be a nontrivial character, let χ : Fˆ

p Ñ
Cˆ be a multiplicative character, and let f1 P FprGsˆ be a nonvanishing
nonconstant function. Then

1

|GpFpq|
ÿ

gPGpFpq
fpgq‰8

ψpfpgqqχpf1pgqq “ δ `O
´
p´1{2

¯
(4)

with δ “ 1 if f and χ ˝ f1 are constant on tg P GpFpq : fpgq ‰ 8u, δ “ 0

otherwise. The implied constant depends only on n, degpfq and degpf1q.

Proof. The result is obvious if f and χ ˝ f1 are constant on GpFpq, so we
may assume it is not the case and prove (4) with δ “ 0. Let ℓ ‰ p be an
auxiliary prime. Following [Del77, Exposé 6], let L0 :“ f˚Lψ “ Lψpfq (resp.
L1 :“ f˚

1 Lχ “ Lχpf1q) be the restriction to G of the Artin–Schreier (resp.

Kummer) sheaf on An
2

Fp
corresponding to ψ ˝ f (resp. χ ˝ f1), and let L “

L0 bL1 be the middle tensor product. These can be seen as representations

ρ0, ρ1, ρ “ ρ0 b ρ1 : GalpFppGqsep{FppGqq Ñ Q
ˆ
ℓ ,

such that at every point g P GpFpq Ă Fn
2

p with f1pgq ‰ 8, there is a
Frobenius element Frobg with

ιρ0pFrobgq “ ψpfpgqq, ιρ1pFrobgq “ χpf1pgqq, ιρpFrobgq “ ψpfpgqqχpf1pgqq
for an embedding ι : Qℓ Ñ C. Hence, the left-hand side of (4) is

1

|GpFpq|
ÿ

gPGpFpq
fpgq‰8

ιρpFrobgq.
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By the Grothendieck–Lefschetz trace formula [Del77, Exposé 6, (1.1.1)],
this is

1

|GpFpq|
2 dimGÿ

i“0

p´1qiι trpFrobp | H i
cpU ˆ Fp,Lqq,

for U the open in An
2

Fp
where L0 is lisse (i.e. the complement of the zero set

of f).
By Deligne’s extension of the Riemann hypothesis over finite fields [Del80,

Théorème 2] (see also [Del77, Théorème 1.17]), the eigenvalues of the Frobe-
nius acting on H i

cpU ˆ Fp,Lq are p-Weil numbers of weight at most i. If the
one-dimensional sheaf L is not geometrically trivial, the coinvariant formula
implies that H2 dimG

c pU ˆ Fp,Lq “ 0, so that the left-hand side of (4)

! p´1{2
2 dimG´1ÿ

i“0

dimH i
cpU ˆ Fp,Lq. (5)

By [Kat01, Theorem 12], the sum of Betti numbers in the error term is
bounded by a quantity depending only on n, degpfq and degpf1q, for example

3 p2 ` maxpdegpfq, n` 2q ` degpf1qq3n2

. (6)

Thus, it suffices to show that L is not geometrically trivial to conclude.
If it is not the case, since L1 is tame everywhere and L0 is not unless it
is geometrically trivial, we then have that both L1 and L0 are geometri-
cally trivial. Since π1pU, ηq{π1pU, ηq – GalpFq{Fqq, it follows as in [FKM15,
Proposition 8.5] that ψ ˝ f and χ ˝ f1 are constant on UpFpq. The former
implies that f is of the form f

p
2 ´ f2 ` c for some c P Fˆ

p and f2 P FppGq,
whence f is constant on UpFpq as well. �

Remark 2.5. The function f “ detp ´ det is not a counterexample to the
theorem since, while not constant on GLnpFpq, it is constant on GLnpFpq.
Alternatively, note that the implied constant in (4) depends on degpfq “ p.
In the following, we will always consider cases where degpfq, degpf1q are

independent from p. Similarly, f1 “ detordχ is not a counterexample since
χ ˝ f1 is constant on GpFpq.

2.2.1. Improved error terms via stratification. The anonymous referee of Hu
and Li’s paper indicated (see [HL13, Section 4]) that the stratification results
of Laumon, Katz and Fouvry may be employed to answer the conjecture
for SLn (n ě 3; see Section 1.2). This is not necessary to obtain uniform
distribution (Proposition 2.4 suffices), but we can indeed use the powerful
results of Fouvry–Katz [FK01] to improve the error terms.

Definition 2.6. We consider the inner product on MnpFpq given by

g1 ¨ g2 :“ trpgt1g2q “
ÿ

1ďi,jďn
pg1qi,jpg2qi,j pg1, g2 P MnpFpqq.

The following provides a better bound on average over shifts. We will
see in Section 3 that these types of sums precisely arise when bounding
discrepancies of the sequences we consider.
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Proposition 2.7. Under the hypotheses and notations of Proposition 2.4,
assume that f is obtained by reduction of a morphism of Z-schemes f̂ : G Ñ
A1
Z. If δ “ 0, then, for every integer 2 ď T ă p,

ÿ

hPMnpZq
||h||8ďT

1

rphq

ˇ̌
ˇ̌
ˇ̌

1

|GpFpq|
ÿ

gPGpFpq
ψpfpgq ` h ¨ gqχpf1pgqq

ˇ̌
ˇ̌
ˇ̌ ! plog T qn2´dimG`1

p1{2 ,

where the implied constant depends only on n and degpf̂q.

Proof. By [FK01, Theorem 1.1, Section 3], there exist closed subschemes

Xj Ă An
2

Z (0 ď j ď n2) of relative dimension ď n2 ´ j, depending on GZ

and f̂ , such that

Xn2 Ă Xn2´1 Ă ¨ ¨ ¨ Ă X1 Ă X0 :“ An
2

Z

and

1

|GpFpq|
ÿ

gPGpFpq
ψpfpgq ` h ¨ gqχpf1pgqq ! p

j´1

2

|GpFpq|1{2 (7)

if h P MnpFpqzXjpFpq, identifying MnpFpq with Fn
2

p (in the case of G “ GLn,

the ambient space is An
2`1

Z , with an additional coordinate for 1{det, and one
replaces the Xj , 0 ď j ď n2 ` 1, given by ibid. with their projections to the
first n2 coordinates).

According to the second-to-last line of the proof of [FK01, Theorem 3.1]
(from which Theorem 1.1 in ibid. follows), the implied constant in (7) is
bounded by the sum of Betti numbers appearing in (5) above, bounded by

(6), which only depends on n and on the degree of f̂ (alternatively, one may

also see [KL85, (3.1.2), (3.4.2)], which controls the dependency on f̂ of the
implied constant in [FK01, Theorem 3.1, Theorem 2.1]).

If δ “ 0, we get by Proposition 2.4 and (7) that

ÿ

hP MnpZq
||h||8ďT

1

rphq

ˇ̌
ˇ̌
ˇ̌

1

|GpFpq|
ÿ

gPGpFpq
ψpfpgq ` h ¨ gqχpf1pgqq

ˇ̌
ˇ̌
ˇ̌ (8)

!
d´1ÿ

j“0

p
j

2

|GpFpq|1{2

ÿ

hPMnpZq
||h||8ďT

δhPXjpFpqzXj`1pFpq
rphq ` 1

p1{2

ÿ

hPMnpZq
||h||8ďT

δhPXdpFpq
rphq ,

where d “ dimG. By induction as in [FK01, Lemma 9.5] and [Xu18, Lemma
1.7], we get that

ÿ

hPMnpZq
||h||8ďT

δh pmod pqPXjpFpq
rphq ! plog T qdimXj .
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Therefore, (8) is

!
d´1ÿ

j“0

p
j

2

|GpFpq|1{2 plog T qn2´j ` 1

p1{2 plog T qn2´d

“ plog T qn2

˜
1

|GpFpq|1{2

d´1ÿ

j“0

ˆ ?
p

log T

˙j

` 1

p1{2plog T qd

¸
,

where the implied constants depend only on n and degpf̂q. �

Remark 2.8. To handle normal subgroups H ď GpFpq as suggested in Re-
mark 1.6, we would need to replace χ ˝ f1 by a character χ of GpFpq (or of
GpFpq{H). To do so, one would consider the Lang torsor L1 corresponding
to χ as in [Del77, 1.22-25]. Since all centralizers in GLn are connected, ibi-
dem shows that the trace function associated to L1 yields the character χ.
One could then proceed as in the proofs of [FK01, Corollary 3.2, Theorem
1.1].

Remark 2.9. Under the non-vanishing of an “A-number”, [FK01, Theorem
1.2] shows that the exponent in (7) can be improved to maxp0, j{2 ´ 1q,
giving a nontrivial bound whenever j ă d ` 2. This would be nontrivial for
all j with G “ SLn as well. However, we cannot use [FK01, Theorem 8.1]
to show the non-vanishing, since |GpFpq| ” 0 pmod pq (see [Wil09, Chapter
3]).

3. Proofs of Theorems 1.1, 1.4, 1.7 and 1.9

3.1. Setup of the exponential sums. To obtain the theorems from Propo-
sition 2.2, we need to bound sums of the form

1

|H|
ÿ

gPH
ψ

`
h1 ¨ g ` h2 ¨ pg´1xq

˘
(9)

for H E GpFpq, x P GpZq and h1, h2 P MnpFpq, where ψpxq “ epx{pq. Note
that in Theorems 1.1 and 1.7, we simply have H “ GpFpq.

By the orthogonality relations, (9) can be written as

1

|GpFpq{H|
ÿ

χP {GpFpq{H

χpgq

¨
˝ 1

|H|
ÿ

gPGpFpq
ψ ph1 ¨ g ` h2 ¨ fpgqqχpgq

˛
‚

!
ÿ

χP {GpFpq{H

ˇ̌
ˇ̌
ˇ̌

1

|GpFpq|
ÿ

gPGpFpq
ψ ph1 ¨ g ` h2 ¨ fpgqqχpgq

ˇ̌
ˇ̌
ˇ̌ , (10)

with fpgq “ g´1x.
Under the assumptions of the theorems, GpFpq{H is either trivial or iso-

morphic to a quotient Fˆ
p {U for a subgroup U ď Fˆ

p (since H “ kerpG f1ÝÑ
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Fˆ
p Ñ Fˆ

p {Uq), setting U “ Fˆ
p if H “ GpFpq. Hence, (10) is

ÿ

χP x
F

ˆ
p

χ|U“1

ˇ̌
ˇ̌
ˇ̌

1

|GpFpq|
ÿ

gPGpFpq
ψ ph1 ¨ g ` h2 ¨ fpgqqχpf1pgqq

ˇ̌
ˇ̌
ˇ̌ . (11)

By Proposition 2.4, the inner sum is small whenever the rational function
on G appearing in ψ is nonconstant. We determine when this is the case in
the next section.

3.2. Constant functions on G.

3.2.1. The case of GLn (n ě 2) and SLn (n ě 3).

Proposition 3.1. Let G be as in (2), let x P GpFpq, and let h1, h2 P MnpFpq.
We assume that p ě 3 if n “ 2. If

`
g P GpFpq

˘
ÞÑ h1 ¨ g ` h2 ¨ pg´1xq

is constant, then h1 “ h2 “ 0.

Proof. Since h2 ¨ pg´1xq “ ph2xtq ¨ g´1, it suffices to prove the result when
x “ 1.

With the identity matrix and the elementary matrices g “ I ` ei,j P
SLnpFpq for 1 ď i, j ď n distinct, we get that ph1qi,j “ ph2qi,j .

When G “ GL2 and p ‰ 2, the matrices g “
`
λ 0
0 1

˘
P GL2pFpq with λ P Fˆ

p

show that
pλ P Fˆ

p q ÞÑ λph1q1,1 ` λ´1ph2q1,1,
is constant, so that ph1q1,1 “ ph2q1,1 “ 0 and the diagonals of h1 and h2 are
zero by symmetry. Similarly, the matrices g “ λ

`
0 1

˘1 0

˘
with λ P Fˆ

p show
that ph1q1,2 “ ¯ph1q2,1 and ph2q1,2 “ ˘ph2q2,1, whence h1 “ h2 “ 0. Thus,
we may now suppose that n ě 3.

For 1 ď i, j, k ď n distinct, the matrix g “ I ´ ei,j ´ ej,k P SLnpFpq, with
inverse g´1 “ I ` ei,j ` ej,k ` ei,k, gives

trph1 ` h2q “ h1 ¨ g ` h2 ¨ g´1 “ trph1 ` h2q ` ph2qi,k,
so that ph2qi,k “ 0 and h2 is diagonal. By symmetry, the same holds for h1.

Using the matrices

g “

¨
˚̊
˚̊
˚̋

p´1qn`1

1 λ

1 0

. . .
...

1 0

˛
‹‹‹‹‹‚
, g´1 “

¨
˚̊
˚̊
˚̋

p´1qnλ 1

0 1
...

. . .

0 1

p´1qn`1

˛
‹‹‹‹‹‚

in SLnpFpq, for λ P Fp, we get that pλ P Fpq ÞÑ p´1qnλph2q1,1 is constant, so
that ph2q1,1 “ 0. By symmetry, ph1q1,1 “ 0 as well.

Finally, if x P GLnpFpq, we note that

h1 ¨ px´1gxq ` h2 ¨ px´1g´1xq “ px´th1x
tq ¨ g ` px´th2x

tq ¨ g´1,

which shows that we may permute the diagonal elements of h1 and h2. By
the previous steps, h1 “ h2 “ 0. �
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Remark 3.2. By the affine linear sieve of Bourgain, Gamburd and Sarnak
[BGS10] and the work of Salehi-Golsefidy–Varjú and others, this implies the
following: Let n ě 3, S be a finite symmetric generating set for SLnpZq and
pγN qNě0 be a random walk on the Cayley graph of SLnpZq with respect to
S, starting at 1, i.e.

γN`1 “ ξN`1γN for N ě 0, with ξN`1 uniform in S.

Then, for any h1, h2 P MnpZq that are not both zero, there exists M ě 1

such that

P
´
h1 ¨ γN ` h2 ¨ γ´1

N has ď M prime factors
¯

— 1{N

as N Ñ `8.

3.2.2. Symplectic groups.

Proposition 3.3. Let n ě 2, G “ Sp2n, x P GpFpq, and h1, h2 P M2npFpq.
Then `

g P GpFpq
˘

ÞÑ h1 ¨ g ` h2 ¨ g´1x

is constant if and only if

h1 “
ˆ
h11 h12
h13 h14

˙
, h2 “

ˆ
´ht14 ht12
ht13 ´ht11

˙
x´t, (12)

where h1i P MnpFpq p1 ď i ď 4q.

Proof. Again, it suffices to consider the case x “ 1. With respect to the
standard form,

g “
ˆ
A 0

0 A´t

˙
,

ˆ
0 A

´At 0

˙
P Sp2npFpq

for any A P GLnpFpq. The result then follows from applying Proposition
3.1. �

3.2.3. Special orthogonal groups.

Proposition 3.4. For n ě 3, let G “ SOn,In . Then, for p ě 3 and h P
MnpFpq, `

g P GpFpq
˘

ÞÑ h ¨ g
is constant if and only if h “ 0.

Proof. Any permutation matrix gσ P SLnpFpq with σ P An belongs to2 GpFpq.
If σ “ pi j kq P An is a cycle of length 3, the matrices gσpI´2ej´2ekq and gσ
show that h is diagonal. For 1 ď i, j ď n distinct, the matrices I ´ 2ei ´ 2ej
show that the diagonal of h is zero. �

2If G corresponded instead to the form diagpα, 1, . . . , 1q, α ‰ 1, this would be true only

for the permutations fixing 1.
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3.3. Proof of Theorems 1.1 and 1.4. By Proposition 2.2, for any integer
1 ď T ă p, the discrepancy DN pAxpgqq is

! 1

T
`

ÿ

hPMnpZq2
0ă||h||8ďT

1

rphq

ˇ̌
ˇ̌
ˇ
1

|H|
ÿ

gPH
ψ ph1 ¨ g ` h2 ¨ fpgqq

ˇ̌
ˇ̌
ˇ .

By (11), the second summand is

! plog T qn2

max
h2PMnpZq
||h2||8ďT

ÿ

h1PMnpZq
||ph1,h2q||8ďT

ph1,h2q‰0

1

rph1q

ÿ

χP x
F

ˆ
p

χ|U“1

ˇ̌
ˇ̌
ˇ̌

1

|GpFpq|
ÿ

gPGpFpq
ψ ph1 ¨ g ` h2 ¨ fpgqqχpf1pgqq

ˇ̌
ˇ̌
ˇ̌ .

By Proposition 2.7 and Proposition 3.1, we get

DN pAxpgqq ! 1

T
` |GpFpq|

|H|
plog T q2n2´dimG`1

?
p

! |GpFpq{H|?
p

log

ˆ ?
p

|GpFpq{H|

˙2n2´dimG`1

,

taking T “
X?
p{|GpFpq{H|

\
.

The last statements in Theorems 1.1 and 1.4 follow from Remark 2.3.

Remark 3.5. Using Proposition 2.4 only instead of Proposition 2.7 would
have given an exponent of the logarithm equal to 2n2.

3.4. Proof of Theorems 1.7 and 1.9. Similarly, by Propositions 2.2, 2.7
and (11), for 1 ď T ă p, the discrepancy DN pηpgqq is

! 1

T
`

ÿ

hPZn2

0ă||h||8ďT

1

rphq

ˇ̌
ˇ̌
ˇ
ÿ

gPH

1

|H|ψph ¨ gq
ˇ̌
ˇ̌
ˇ

! 1

T
`

ÿ

χP {GpFpq{H

ÿ

hPMnpZq
0ă||h||8ďT

1

rphq

ˇ̌
ˇ̌
ˇ̌

1

|GpFpq|
ÿ

gPGpFpq
ψ ph ¨ gqχpgq

ˇ̌
ˇ̌
ˇ̌

! 1

T
` |GpFpq|

|H|
plog T qn2´dimG`1

p1{2 ! |GpFpq{H|?
p

log

ˆ ?
p

|GpFpq{H|

˙n2´dimG`1

Remark 3.6. As above, using Proposition 2.4 instead of Proposition 2.7
would have given an exponent of the logarithm equal to n2. Note that
these exponents in the case of GLn or SLn do not depend on n.
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3.5. Higher-dimensional variant. To obtain Theorem 1.12, we need to
control sums of the form

ÿ

gPGr´1pFpq
ψ

˜
r´1ÿ

i“1

hi ¨ gi ` hrpg1 . . . gr´1q´1x

¸
(13)

for h “ ph1, . . . , hrq P MnpFpqr. To do so, it suffices to replace G by Gr´1

and MnpFpq2 by MnpFpqr in the arguments above. In the first bound, there
is no dependency with r in the exponent since we average over all but one
hi, and we can use Proposition 2.7. From Proposition 3.1, we see that the
rational function in (13) is constant if and only if h “ 0.

4. Proof of Theorem 1.10 and Corollary 1.11

4.1. Proof of Theorem 1.10. By orthogonality, we can write the density
(3) as

1

|GpFpq|
ÿ

gPGpFpq

ÿ

ePEp

fPFp

1

p2n
2

ÿ

u,vPMnpFpq
ψ

`
u ¨ pg ´ eq ` v ¨ pg´1x´ fq

˘

“ 1

p2n
2

ÿ

u,vPMnpFpq

ÿ

ePEp

ψpu ¨ eq
ÿ

fPFp

ψpv ¨ fqSpu, vq (14)

“ |Ep||Fp|
p2n

2
`O

¨
˚̊
˝

1

p2n
2

ÿ

u,vPMnpFpq
pu,vq‰0

ˇ̌
ˇ̌
ˇ̌

ÿ

ePEp

ψpu ¨ eq

ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌

ÿ

fPFp

ψpv ¨ fq

ˇ̌
ˇ̌
ˇ̌ |Spu, vq|

˛
‹‹‚,

where Ep “ E pmod pq, Fp “ F pmod pq Ă Fp and

Spu, vq “ 1

|GpFpq|
ÿ

gPGpFpq
ψ

`
u ¨ g ` v ¨ pg´1xq

˘
.

Since E “ ś
1ďk,lďnEkl is a product of intervals, Weyl’s bound gives

ÿ

ePEp

ψpu ¨ eq “
ź

1ďk,lďn

ÿ

eklPEkl

ψpukleklq

!
ź

1ďk,lďn
min

`
|Ekl|, ||ukl{p||´1

˘
,

and similarly for F , with || ¨ || denoting the distance to the nearest integer
and |Ekl| :“ measpEklq. Hence, the error term in (14) is

! 1

pn
2

ÿ

vPMnpFpq

ź

1ďk,lďn
min

`
|Fkl|, ||vkl{p||´1

˘

ˆ 1

pn
2

ÿ

uPMnpFpq
pu,vq‰0

|Spu, vq|
ź

1ďk,lďn
min

`
|Ekl|, ||ukl{p||´1

˘
.
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To bound the sum over u, we proceed as in Proposition 2.7, using [FK01].
With d “ dimG,

1

pn
2

ÿ

uPMnpFpq
pu,vq‰0

|Spu, vq|
ź

1ďk,lďn
min

`
|Ekl|, ||ukl{p||´1

˘
(15)

!

¨
˝ 1

pd{2

d´1ÿ

j“0

pj{2 `
n2ÿ

j“d
p´1{2

˛
‚ 1

pn
2

ÿ

uPXjpFpq

ź

1ďk,lďn
min

`
|Ekl|, ||ukl{p||´1

˘
.

By [FK01, Lemma 9.5] (or [Fou00, (2.6)]), ifX Ă An
2

has dimension ď n2´j,
ÿ

uPXpFpq

ź

1ďk,lďn
min

`
|Ekl|, ||ukl{p||´1

˘
! pp log pqn2´jM j

E ,

where ME “ maxk,l |Ekl|. Proceeding by induction as in op. cit., we get the
more precise bound

ÿ

uPXpFpq

ź

1ďk,lďn
min

`
|Ekl|, ||ukl{p||´1

˘
! pp log pqn2´jejp|Ekl|q (16)

when the |Ekl| may not be all equal, where ej is the jth elementary symmetric
polynomial in n2 variables.

Thus, (15) is

!

¨
˝ 1

pd{2

d´1ÿ

j“0

pj{2 `
n2ÿ

j“d
p´1{2

˛
‚plog pqn2

ejp|Ekl|qp´j

! plog pqn2

¨
˝ 1

pd{2

d´1ÿ

j“0

ej

ˆ |Ekl|?
p

˙
` 1?

p

n2ÿ

j“d
ej

ˆ |Ekl|
p

˙˛
‚

! plog pqn2

˜
1

pd{2

d´1ÿ

j“0

ej

ˆ |Ekl|?
p

˙
` 1?

p
ed

ˆ |Ekl|
p

˙¸
.

By Maclaurin’s inequality [Ste04, (12.3)], letting LE “ e1p|Ekl|q, this is

! plog pqn2

˜
1

pd{2

d´1ÿ

j“0

pLE{?
pqj ` pLE{pqd?

p

¸

! plog pqn2

ˆ
1

pd{2 max
´
1, pLE{?

pqd´1
¯

` pLE{pqd?
p

˙

! plog pqn2

pd{2 max
´
1, pLE{?

pqd´1
¯
.

Using (16) again, we find that the total error in (14) is

! plog pq2n2

pd{2 max
´
1, pLE{?

pqd´1
¯
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4.1.1. Proof of Corollary 1.11. Finally, if E and F are the products of inter-
vals of the same integral length x, then the density (3) is

ˆ
x

p

˙2n2

`On

˜
plog pq2n2

pd{2 max

˜
1,

ˆ
x?
p

˙d´1
¸¸

.

The main term dominates if and only if

x "n,ε p
1´ 1

2p2n2´dimG`1q
`ε

for any ε ą 0, which yields the corollary.
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