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Summary

This thesis investigates probabilistic questions concerning ¢-adic trace
functions over finite fields and sums thereof, under the framework of Deligne,
Katz and others. These functions notably include characters of finite fields,
hyper-Kloosterman sums, general exponential sums, and functions counting
points on families of curves. Additionally, we consider these functions re-
duced modulo a prime ideal of the cyclotomic integers in which they lie.

To do so, a probabilistic model based on random walks in monodromy
groups is introduced, inspired by Deligne’s equidistribution theorem and re-
cent works of Lamzouri for Dirichlet characters. Under rather generic condi-
tions on the trace functions, we show that this model is accurate by applying
Deligne’s generalization of the Riemann hypothesis over finite fields.

Using the works of Katz, in particular computations of monodromy
groups, it is shown that these generic conditions hold for the examples men-
tioned above. To compute the finite monodromy groups of hyper-Kloosterman
sheaves, we extend Katz’s arguments by using the theory of finite groups of
Lie type, improving a result of Gabber and Nori.

Through this model, we show that short sums of trace functions over
finite fields follow asymptotically a normal distribution with mean 0 when
the origin varies, generalizing results of Erdés-Davenport, Mak-Zaharescu
and Lamzouri. By computing and bounding moments of traces of random
matrices in monodromy groups, a quantitative version can be given.

Concerning trace functions reduced modulo prime ideals in cyclotomic
fields, we give an equidistribution result for values and/or shifted sums, a
generalization of a result of Lamzouri-Zaharescu concerning the distribution
of families of reduced sums of the Legendre symbol, and zero-density esti-
mates for arguments where trace functions take values in certain algebraic
subsets.



Résumé

Cette thése investigue des questions probabilistes concernant les fonc-
tions trace f-adiques sur les corps finis et les sommes de celles-ci, dans le
cadre des travaux de Deligne, Katz et autres. Ces fonctions incluent notam-
ment les caractéres des corps finis, les sommes de Kloosterman généralisées,
des sommes exponentielles générales, et des fonctions comptant le nombre de
points sur des familles de courbes. De plus, nous considérons ces fonctions
réduites modulo un idéal premier des entiers cyclotomiques dans lesquels
elles prennent valeurs.

Pour ce faire, un modéle probabiliste basé sur des marches aléatoires
dans les groupes de monodromie est introduit, inspiré par le théoréme d’équi-
distribution de Deligne et des travaux récents de Lamzouri pour les caractéres
de Dirichlet. Sous des conditions assez génériques sur les fonctions traces,
nous montrons que ce modéle est précis en appliquant la généralisation par
Deligne de I’hypothése de Riemann sur les corps finis.

En utilisant les travaux de Katz, en particulier les calculs de groupes
de monodromie, nous montrons que ces conditions génériques sont vérifiées
pour les exemples mentionnés ci-dessus. Pour calculer les groupes finis de
monodromie des faisceaux de Kloosterman généralisés, nous étendons les ar-
guments de Katz par la théorie des groupes finis de type Lie, améliorant un
résultat de Gabber et Nori.

Au travers de ce modéle, nous montrons que les sommes courtes de fonc-
tions traces sur les corps finis suivent asymptotiquement une distribution
normale avec espérance nulle quand l’origine varie, généralisant des résultats
d’Erdss-Davenport, Mak-Zaharescu et Lamzouri. En calculant et bornant les
moments des traces de matrices aléatoires dans les groupes de monodromie,
une version quantitative peut étre donnée.

Concernant les fonctions trace réduites modulo des idéaux premiers dans
des entiers cyclotomiques, nous donnons un résultat d’équidistribution pour
les valeurs et /ou sommes décalées, une généralisation d’un résultat de Lamzouri-
Zaharescu concernant la distribution de sommes réduites du symbole de Leg-
endre, et des estimations de zéro-densité pour les arguments ou des fonctions
trace prennent valeurs dans certains sous-ensembles algébriques.
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Notations

Unless otherwise stated, the letters p and ¢ will denote distinct prime numbers and
the letter g a power of p. Similarly, the letter A will stand for an ¢-adic valuation on a
number field, while ) will denote a finite field of characteristic £.

In the table below, we give the notations that are not recalled in the text.

[a...b] The integer interval [a,b] N Z
e(x) exp(2miz), for z € C
ch(K) Characteristic of a field
K#ep A separable closure of a field
Cn» o (K) A primitive nth root of unity, resp. the group of nth roots of unity
in a field K
Finite fields
F, A finite field with ¢ elements
tr The trace map tr: F, — F,
Frob, The geometric Frobenius in Gal(F,/F,), i.e. the inverse of the
arithmetic Frobenius a — a?
P Unless otherwise mentioned, the standard character ¢ : F; — C
defined by ¥ (z) = e(tr(z)/p)
Asymptotic notations
f=0(g), f «g There exists an implicit constant C' > 0 such that |f(x)| < Cl|g(z)|
for all = (or eventually asymptotically). If C' depends on some
parameter «, we may also write f = O,(g) and f <, g
f=06(9) f=0(g) and g = O(f)
f=ol9), f~g [f/lg—0,resp. f/g—1
Probability theory
P Probability of an event in a probability space
P(p(z)) The probability P({z : ¢(z)}) if ¢(x) is a formula with one free
variable
(f(2))zex The random variable  — f(x) on the probability space X
E, Var Expected value (resp. variance) of a random variable
Group theory/Representation theory
A.B A group such that there is a short exact sequence 1 — A —
AB—>B-—1
S, Alt(n) The symmetric (resp. alternating) group on n elements
Aut, Out, Inn ~ Automorphism group. Outer (resp. inner) automorphism group
Stab Stabilizer
G* Set of conjugacy classes
Z(@), G Center, derived subgroup
G° Connected component of the identity of a topological group
G Set of characters of irreducible representations
D(") Dual of a representation
Std Standard representation of a subgroup of GL,,
multy Multiplicity of the trivial representation in a group representation






CHAPTER 1

Introduction

We start by reviewing the importance of sums over finite fields in analytic
number theory and the questions related to them, in particular of probabilistic
flavour. We then present the relevant concept of trace functions over finite fields
that arose from Deligne’s proof of the Weil conjectures. Finally, we introduce the
problems that are treated in this thesis.

1.1. SUMS OVER FINITE FIELDS

By definition, analytic number theory uses continuous methods to study vari-
ous discrete objects arising in number theory, with the recurring objective to count
them precisely. It is then natural that sums of the form

S(,E) = ) f(@), (1.1)

el

for E a finite set and f : £ — C an “arithmetic” function, are a fundamental tool
and a matter of great interest.

1.1.1. Examples. To give only a few examples:

(1) By the orthogonality relations, sums of additive or multiplicative characters
of FF,, can be used to detect congruence classes modulo p.

(2) The quadratic reciprocity law can be proved via the Gauss sums ZzeF; Y(z)x(z),

where ¢ : ), » C* and x : Fj — C* are characters.

(3) Sums of Dirichlet characters modulo p over small subsets of F,, provide in-
formation about the least quadratic nonresidue modulo p and subconvexity
bounds for Dirichlet L-functions.

(4) The Weyl equidistribution criterion asserts (in particular) that a sequence
(az)zer, in a compact group K, indexed by the elements of a finite field,
becomes equidistributed with respect to the Haar measure as ¢ — +oo if
and only if erFq Xx(az) = o(q) for every nontrivial irreducible character
x: K —C.

(5) The sum

-3 ()

€l

of the Legendre symbol composed with a cubic polynomial is related to the
number of Fy-points of the elliptic curve E : y? = 23 + az + b, for a,b € F,.
Indeed, we have a,(E) = p+ 1 — |E(F,)|.

1
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(6) Hyper-Kloosterman sums

(—1)nt tr(zy + -+ ap)

Kln’q<a) = W Z e (CL € IF;) (12)
q x p

Z1,..,Tn€Fg

T1..Tp=a

were used by Kloosterman when n = 2 to study the number of represen-
tations of an integer by an integral positive-definite quarternary quadratic
form, and admit deep links with the spectral theory of automorphic forms.

As is apparent in these examples, the set of summation FE is often a subset of
the points of a variety over a finite field, either because finite fields are naturally
part of the question (as in Example (5)), or because the problem can be reduced
to the consideration of congruences modulo p, and Z/p = F,, (as for Kloosterman’s
work' in Example (6)). As we will see, this allows the use of powerful techniques
from algebraic geometry, and this is the setting we are going to consider from now
on.

1.1.2. Bounds. Sums of the form (I.1) often exhibit cancellation due to oscilla-
tions, and as a general phenomenon we can expect square-root cancellation with
respect to the size of the summation set, i.e.

> F) < BV (1.3)
zeF

As is the case for the last four examples above, a major goal is often to find sharp
asymptotic bounds.

Ezxamples. For example, we have the famous Weil bound

| Klop(a)| <2¢p  (a€TFy) (1.4)
for Kloosterman sums and the Hasse bound
lap(E)| < 24/p (1.5)

for the number of F,-points of an elliptic curve E over the finite field F,. The
weaker bound |Klg,(a)] < 2p** led Kloosterman to his result on quarternary
quadratic forms, while the Hasse bound provides an asymptotic expression for the
number of rational points of F.

The Weil conjectures. The two estimates above follow from the Riemann hypoth-
esis for curves over finite fields, conjectured by Artin and solved by Weil. This is
a special case of the Weil conjectures.

Complete and incomplete sums. As we have seen in the examples above, we are
often interested in “incomplete” sums, namely sums over (small) subsets of a va-
riety over a finite field. Since techniques from algebraic geometry only allow to
estimate “complete” sums (i.e. over the whole variety), the estimate of the former
is often reduced to that of the latter by techniques such as completion (as in the
Polya-Vinogradov inequality).

"More precisely, Kloosterman needs to bound sums of the form Dize(zmyx e((@ + x™ ) /n).
This can be reduced to the case of n being a prime power, and explicit evaluations are available
when n is a nonprime prime power.
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Kly (1)

(a) The Weil bound (b) The Hasse bound

FIGURE 1.1: Bounds on exponential sums: the Weil bound for the (real-valued)
Kloosterman sum Kl (1) and the Hasse bound for the elliptic curve E : y? =
23+ 2+ 1 over Fp, forp <5- 103. In bold, the graph of y = 2,/p-

1.1.3. Distribution of families. More generally than bounding them, we may
want to understand the distribution of the values of sums of the form (1.1) in
families.

When f or the sum itself is bounded, we may normalize and study the distri-
bution in a compact set.

Angles of exponential sums. For families of complete sums, this question was stud-
ied by authors such as Kummer, Hasse, Heath-Brown and Patterson (cubic Gauss
sums), Deligne (Gauss sums), Katz (Kloosterman sums) or Duke, Friedlander and
Iwaniec (Salié sums).

For example, by the Weil bound (1.4) and the Hasse bound (1.5), there exist
angles 6,.p, 0 p € [0, 7] such that

Kl ,(a) 2\/pcosby, (acl,)
p+1—|EE,) = 2/pcoslpy,

and the study of the distribution of
{61, : p prime} or {6, :ac€Fp}, resp. {0, : p prime}

in [0, 7] is the Sato-Tate conjecture for Kloosterman sums, respectively for the
elliptic curve F.

Distribution of short sums. Let xp : F; — C* be a multiplicative character and
for integers z, H € [0...p), consider the sum

SO, H) = > xp(y)

r<y<ax+H

of length H starting at x.
When y,, is the Legendre symbol, Davenport and Erdés | | showed that
the normalized real-valued random variable

(S(xps 2, H)/\/ﬁ)xeﬁfp
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) ;;’:\_ 775' \

/1

(a) Kloosterman sum (b) Elliptic curve

FIGURE 1.2: Distribution of exponential sums: histograms of the angles (6. p)zer,
of the Kloosterman sums Kls ;, for p = 104743, and of the angles (6,),<5000 of the
elliptic curve E : y? = 2% + = + 1, against the Sato-Tate distribution in bold.

(with respect to the uniform measure on F),) converges in law to a normal distri-
bution with mean 0 and unit variance when

p, H — oo with log H = o(logp). (1.6)

This was generalized by Mak-Zaharescu | | and Lamzouri | | to all
Dirichlet characters: if x, is a non-real Dirichlet character, the random variable
(S(Xpsz, H)/A/H /2)zeF, converges in law to a normal distribution in C with mean

0 and covariance matrix 3 (§9) when p, H — o under the same condition (1.6).

These interesting results belong to the realm of probabilistic number theory.
In particular, Lamzouri uses a probabilistic model where the values of a multiplica-
tive character of order d are modeled as independent random variables uniformly
distributed on the unit circle or in the set of dth roots of unity. This model is
shown to be accurate (in the sense of convergence in law) by bounding an expo-
nential sum through the use of Weil’s Riemann hypothesis for curves over finite
fields.

1.2. TRACE FUNCTIONS OVER FINITE FIELDS

1.2.1. Deligne’s proof of the Weil conjectures. Using the machinery of ¢-
adic cohomology developed by Grothendieck, Deligne | | proved the general
WEeil conjectures for smooth projective algebraic varieties over a finite field, allow-
ing to estimate the number of rational points on the latter (see | , Section
8]).

As a (nontrivial) application | |, he notably obtained the Ramanujan-
Petersson conjecture for holomorphic modular forms of weight > 2.

1.2.2. Generalization and applications to sums of trace functions. The
subsequent paper | | gives a deep generalization of the Weil conjectures, pro-
viding in particular a way to estimate sums of the form (1.1) when F is an algebraic
variety over F, and f : £ — C is the trace function of a “normalized” {-adic sheaf
on E (this appears in | , Exposé 6]).

We will define precisely the latter in the next chapter, but we mention for now
that they notably cover:
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(1) Additive and multiplicative characters of a finite field.

(2) The sum, product and complex conjugate of other trace functions.

(3) The sum of a trace function over the solutions of a polynomial equation.
(4) The polynomial change of variable of a trace function.

(5) Most interestingly, the Fourier transform of another trace function (under
some technical conditions), by deep works of Grothendieck, Deligne and
Laumon.

In particular, this includes all the examples of the first section.

Sums of trace functions. If f is a trace function on E associated to a geometrically
irreducible normalized sheaf, Deligne’s work shows that the sum (1.1) is

S(.E) = Cq" + 0 (¢712),

where d = dim(E), and C' = 1 if the sheaf is geometrically trivial (in which case f
is constant), C' = 0 otherwise. The implicit constant in the error term is a sum of
Betti numbers for the corresponding étale cohomology groups, which often does
not depend on ¢ in applications.

In this case, square-root cancellation (1.3) amounts to C' = 0 and the vanishing
of the cohomology groups for ¢ > d.

When F is a projective curve, which is the setting we will mainly consider, the
above becomes

S(f, E) = Cq+ O(a),

and the implicit constant is bounded by the “conductor” of the sheaf, which again
often does not depend on g. Square-root cancellation then amounts to C' = 0.

1.2.3. Applications to analytic number theory. The above “/-adic formal-

ism” provides a very general and flexible setting to control exponential sums over
finite fields.

Deligne’s applications. For example, Deligne obtained the bound

Kl 4(a) « nq%1 (aeFy)

for hyper-Kloosterman sums (1.2), generalizing the Weil bound (1.5), after realiz-
ing the former as trace functions by means of a powerful £-adic Fourier transform.
By the Weyl criterion, this implies that the angles of Gauss sums of primitive
characters modulo p are equidistributed in [0, 7] as p — 40 (see | , Theorem
21.6]).
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Distribution and monodromy groups. By computing the monodromy groups of
Kloosterman sheaves, Katz | | proved the wvertical Sato-Tate law for Kloost-
erman sums, i.e. that the set of angles {0y, : a € F),} becomes equidistributed in
[0, 7] according to the Sato-Tate measure 2 sin® 6df as p — +o0.

We will soon see that monodromy groups of ¢-adic sheaves are a fundamental
tool to understand the distribution of the values of trace functions. In particular,
Deligne’s equidistribution theorem states that a “natural” family of ¢-adic sheaves
on a variety always satisfies an equidistribution result with respect to the Haar
measure of a maximal compact subgroup of the monodromy group.

Bounds on exponential sums. The papers of Friedlander-Iwaniec | | and Conrey-
Iwaniec | | show the strength of these techniques to handle complex exponen-
tial sums appearing in analytic number theory. In particular, the second one treats
exponential sums over a variety of dimension 2.

Katz, Laumon and Fouvry have also obtained very general results about the
size of “generic” exponential sums over algebraic varieties (see | 1)-

More generally, we refer to | , Chapter 11| for a survey of applications of
Deligne’s work in analytic number theory.

The works of Fouvry-Kowalski-Michel and others. New applications in number
theory have recently been developed by Fouvry, Kowalski, Michel and collabora-
tors, and some of them are surveyed in | |.

For example, the results of | | allow to estimate “correlation sums”
which appeared in works of Friedlander-Iwaniec, Iwaniec, Pitt and Munshi.
Most recently, Polymath8 | | showed how to use Deligne’s formalism to

significantly improve Type III estimates in Zhang’s work on bounded gaps between
primes, in connection with the work of Friedlander-Iwaniec mentioned above.

A new feature of these is the full use of the f-adic formalism, with the authors
not settling for merely using the examples of applications from algebraic geometers.

1.2.4. Probabilistic questions for families of trace functions. In this the-
sis, we will be interested in probabilistic aspects of (short) sums of trace functions
over finite fields in “coherent families”. In particular, we will develop and use a
probabilistic model inspired by Deligne’s equidistribution theorem and the articles
| I, | | mentioned above.

We will make the notion of “coherent families” precise in due time. Mostly,
they are families indexed by finite fields F, such that:

(1) The “conductor”, measuring the complexity of the underlying sheaf, is bounded
independently from gq.

(2) The arithmetic and geometric monodromy groups coincide, have fixed type
(e.g. in the sense of the classification of semisimple Lie groups/algebras),
and are “large”.

(3) There is a property of independence of additive shifts.

These conditions are rather generic (but the determination of the monodromy
groups may be difficult). These families include for example:
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(1) Dirichlet characters composed with the reduction of rational polynomials.
(2) Hyper-Kloosterman sums (!1.2) and hypergeometric sums of fixed rank.

(3) General exponential sums of the form

-1y, (tr(xf(y) + h(y))

- ! >X(9(y)) (z e Fy),
yely

for f, g, h € Q(X) rational functions and x a multiplicative character on Fy,
such as Birch sums or sums considered by Fouvry-Michel.

(4) Functions counting points on families of curves over F, parametrized by
varieties over [F,.

To show that our model is accurate (in the sense of convergence in law), we
will use techniques similar to those surveyed in | | to estimate sums of
products of trace functions.

In the next two sections, we survey our results.

1.3. DISTRIBUTION OF SUMS OF TRACE FUNCTIONS
The first part of this thesis generalizes to trace functions the results of Erd&s-
Davenport, Mak-Zaharescu and Lamzouri presented above. More precisely, we

show:

Theorem. Let (t; : F; — C)q4 be a coherent family of trace functions and for
I,cFy, xelFy, let

S(t(hxa‘[q) = S(t(b‘[q + .'13‘)7

where I, + x = {y + x : y € Fy} is the translate of I, by x. If Fy is I,-compatible

for all q, the random variable
<S(tq7 T, Iq))
V |I!I| :EEIFq

(with respect to the uniform measure on Fq) converges in law to a normal distri-
bution in C =~ R?, with mean 0 and covariance matriz

1 0\ . 1/1 0 .
<0 0) if tq has real values, 2<0 1) otherwise,

when ¢, |1, — 400 with log |I,;| = o(log q).

Note that we do not require that I, is an interval, but it can rather be any
small subset.
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(a) H =3 (b) H = 50 () H = 1000

FIGURE 1.3: Distribution of sums of trace functions for a Dirichlet character
modulo p = 7927 of order p — 1.

1
/ \ 1L
/ H
/
(a) H = 100 (b) H = 1300

FIGURE 1.4: Distribution of sums of trace functions for the (real-valued) Kloost-
erman sum Kly modulo p = 7927. In bold, the density function of a standard
normal random variable.

1.3.1. Probabilistic model. To prove this theorem, we extend and adapt the
method of | |. The values of the trace functions are modeled by independent
random variables distributed like traces of random matrices uniform in maximal
compact subgroups of the monodromy groups (as in Deligne’s equidistribution
theorem), and the short sums by random walks.

The /-adic formalism and Deligne’s analogue of the Riemann hypothesis over
finite fields applied to sum of products are used to show that this model is accurate,
through the method of moments.

The conclusion then follows from the central limit theorem.

We mention that similar ideas are also used in | | to study the paths
obtained by joining partial Kloosterman and Birch sums, as stochastic processes.

1.3.2. Examples. By the examples of coherent families above, this holds in
particular for multiplicative characters (the classical case), hyper-Kloosterman
and hypergeometric sums, rather general exponential sums, and functions counting
points on families of curves.

1.3.3. Quantitative version. Actually, Lamzouri used more precise informa-
tion than the central limit theorem: the first moments of the model correspond to
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those of a Gaussian, and are more generally bounded by them. This allows him to
approximate the characteristic function of (S(xp,z, H ))erFp asymptotically, and
in turn, this gives a bound on the error term for the joint distribution function
(what we will call a quantitative version of the convergence in law result) by using
an identity of Selberg.

We also get a quantitative version for trace functions by using the fact that
the moments of traces of random matrices in classical groups are also Gaussian
as the rank tends to infinity, as already remarked and exploited for example by
Larsen | | and Diaconis-Shahshahani | |. More precisely, we moreover
need bounds on high order moments with respect to the rank. We also improve
the method of Lamzouri, which is necessary in the non-real-valued case, by using
a generalization of the Berry-Esseen inequality from | |.

Theorem. Under the notations and hypotheses of the above theorem, for any
e € (0,1/2) and for any closed rectangle A = C =~ R? with sides parallel to the
coordinate azes and Lebesque measure u(A), the probability

(S(tq,x,l) . A) _ {w e Fy: S(tg, @, 1)/|1]42 € A}

A q

is given by

1 0 2/5
P(N e 4) + 0. (mA) (q—ﬁe ; (llfg’; ') N ﬁ))

when q, |I| — o with under the range log|I| = o(logq) if tq is real-valued and

lI| = o ((log q)ﬁ) otherwise, where N is a normal random variable in C with
mean 0 and covariance matriz as in the previous theorem. As the rank of the
monodromy group grows (or in the real-valued case), the exponents 2/5 and 3/2
can be replaced by 1/2 and 1.

1.4. TRACE FUNCTIONS WITH VALUES IN THE CYCLOTOMIC INTEGERS

In the second part of this thesis, we operate a shift in paradigm in the way
we consider trace functions, which opens new questions about the distribution of
their values, from infinite compact groups to finite groups.

1.4.1. Trace functions in cyclotomic fields, integers, and residue fields.

Cyclotomic fields. Until that point, we will have considered trace functions f :
E — C as functions with values in the complex numbers, arising from ¢-adic
sheaves of Q,-modules on curves over a finite field (recall that Q, =~ C as fields).

However, exponential sums actually take values in cyclotomic fields. For ex-
ample, a multiplicative character of I, of order d has image in Q((q) < Q({p—1)
for {4 € C* a primitive dth root of unity, while an additive character has image
in Q(¢p)-

More generally, the functions we can form from additive and multiplicative
characters of a finite field F, of characteristic p by taking sums, products, and
Fourier transforms, will take values in

Q((p)@(gp—l) = Q(Cp(pfl))‘
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Correspondingly, most of the trace functions that we can naturally form with the
corresponding operations on the level of sheaves take values in cyclotomic fields.

Fisher | | extended Katz’s vertical Sato-Tate law for Kloosterman sums
(see above) to this point of view by studying their distribution as elements of
K = Q(¢p) via the Minkowski embedding Q(¢,) — RP~!, with the hope of get-
ting results on their distinctness. His equidistribution result with respect to the
product of the Sato-Tate measure amounts to showing that it is possible to (ex-
plicitly) construct for every o € Gal(K/Q) an f-adic sheaf whose trace function
corresponds to the o-conjugate of the Kloosterman sum.

Cyclotomic integers and residue fields. A step further is to consider exponential
sums/trace functions as having values in cyclotomic integers, say O = Z[(4] for
some d = 1. This is clearly the case for all the examples we have mentioned so
far, up to the normalization. Wan | | took such a point of view and studied
the minimal polynomial of Kloosterman sums, improving some of Fisher’s results.

By reducing modulo a prime ideal ¢ < O, we can study the distribution of
their values in the finite residue field O/q.

1.4.2. Translation in the /-adic formalism. We will be able to continue using
the techniques of Deligne and Katz to handle this setting because the sheaves
considered happen to be themselves definable as sheaves of Ox-modules, where A
is the f-adic valuation corresponding to a prime ideal g < O above £. Indeed, this
is the case for additive and multiplicative characters, and sums, products, and even
Fourier transforms can be defined on the level of Oy-modules. The reduction of
the trace function modulo q then corresponds to the trace function of the reduced
sheaf of 0,/qO0, = Fy-modules.

For simplicity, we will focus in this introduction on multiplicative characters
and Kloosterman sums, but the same results will hold for all coherent families of
sheaves of Fy-modules.

1.4.3. Probabilistic model. As in the first part, we can set up a probabilistic
model for the values of reduced trace functions ¢ : F;, — IF) as independent random
variables distributed like traces of random matrices in monodromy groups, which
are now subgroups of GLy,(Fy).

Using Deligne’s analogue of the Riemann hypothesis over finite fields, we can
again show that this model is accurate (in terms in convergence in law), with an
explicit error term for the densities.

Determinations of monodromy groups. As a preliminary step, we determine the
Fy-monodromy groups of Kloosterman sheaves for £ large enough depending only
on the rank:

Theorem. Letn > 2 be an integer coprime with p. If ¢ >, 1 with { =1 (mod 4)
and X is an (-adic valuation on~ O = Z[(4p| with (n,[Fy : Fe]) = 1, then the

2We consider normalized Kloosterman sheaves, so we must ensure that ¢™1)/2 belongs to
the ring of definition. By the evaluation of quadratic Gauss sums, Z[(p, /P] < Z[(ap].
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monodromy of the Kloosterman sheaf Kl,, of Ox-modules is

SL,(Oy) :n odd

Goeom (Klp) = Garitn (K1) =
geom (Kln) n(Kln) {Spn((’),\) :n even.

In particular, the result holds for a set of valuations A of density 1 depending only
on n.

This was already known by results of Gabber, Larsen and Nori, but for Fy = [F,
with ¢ large enough depending on ¢ and with an ineffective constant, which would
have been unusable for our applications.

To prove this theorem, we use the theory of finite groups of Lie type to extend
Katz’s proof for the continuous monodromy. Specifically, we appeal to the classi-
fication of maximal subgroups of finite classical groups, a theorem on Larsen-Pink
on finite subgroups of algebraic groups, and results on representations of finite
groups of Lie type in various characteristics. This allows to reduce to the descent
of a classification of subgroups of classical groups over algebraically closed fields
containing regular unipotent elements. Actually, we will see that Katz’s theorem
can also be deduced from the latter.

Computations in the model. The next task is to study random walks in the mon-
odromy groups we consider, which we do by using results of D.S. Kim (for classical
groups) and of Heath-Brown, Konyagin, Bourgain and others about sums of ad-
ditive characters over multiplicative subgroups of finite fields.

1.4.4. Equidistribution of values of trace functions and shifted short
sums thereof. The first outcome is an equidistribution result for (in particu-
lar) Kloosterman sums reduced modulo an ideal of Z[(4p] and shifted sums of
multiplicative characters of order d reduced modulo an ideal of Z[(4].

Proposition (Kloosterman sums). Forn > 2, and q < Z[(4p] a prime ideal above
a prime £ >y 1 distinct from p with £ =1 (mod 4), let

Kl : Fg = Z[Caplq — Z[Caplg/a = Fa

be the reduction modulo q of the (normalized) Kloosterman sum over Fy. For any
I c F, of size L, the probability

P(S(Klyg, 1 +2) = a)

s given by
_Ln2_1 Ln2+n—2+n(n_1)_1 _1 .
1 On | |Fy 2 + |Fyl" 2 q 2 if n odd
— +
n(n+2) n(n+2) | n?— .
1Y O, [ |Fy|71 s |F\|F s +22q_§> if n even
uniformly for all a € Fy. In particular, for L = 1, this gives an asymptotic

expression (under appropriate ranges) for the probability P (K1, 4(z) = a).
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Proposition (Multiplicative characters). Let d = 2 be an integer, q < Z[(4] be a
prime ideal,

X Fg — Z[C] — Z[Cal/a = Fy

be the reduction modulo q of a multiplicative character of order d, and f € Q(X)
whose poles and zeros have order not divisible by d. Let § € (0,1) be such that
d

T = B

(d, [F>])
for every subfield F € Ty with log, |F| | log, [F|.

LetI c Fy. If f # X, we assume moreover that |I| =1 orI < [1...p/deg(f))¢ <

Iy = F,. Then there evists a = a(d) > 0 such that

1 1 LdL+1
P(S(X of, I+ :U) = CL) = @ + Of (|F/\|La + q1/2|F)\|min(La,l)>

uniformly for all a € Fy. In particular,

1 d?
P(X(f(x)) = a) SRR <1 + q1/2> :
If 6 > 1/2, we can choose a(0) =6 — 1/2. If Fy = Fy, we can choose

Bl e (1/3,1/2]
a(0) =< B2 if§e (1/2,2/3]
§—2 ifde(2/3,1].

The choice of the various parameters will be carefully studied in due time.
The condition on I if f # X is for example satisfied if I = {1,...,L} with
L < p/ deg(f).

Moreover, this also applies to point-counting functions on families of hyperel-
liptic curves.

1.4.5. Distribution of families of reduced short sums. In | |, Lamzouri
and Zaharescu studied the distribution of a family of short sums of the Legendre
symbol x, : F, — {£1} = Z[(2] reduced modulo an integer ¢ > 2. Specifically,
they show that

{1<k<p:SO[l...k))=a (mod ()} 1+O<( ¢ ))

P y4

¢ logp

uniformly with respect to a € Z/¢. As in | |, a probabilistic model is used
(with sums of independent random variables uniformly distributed in {+1}), whose
accuracy is proved through a bound derived from the Riemann hypothesis for
curves over finite fields.

We generalize this result to the distribution of short families of multiplicative
characters of any order and of Kloosterman sums, reduced modulo a prime ideal
as above.

The first example concerns shifts of small subsets as in the complex-valued
case. The Gaussian distribution becomes uniform in Fy:

3If Fa = IFy, if d is prime, or if § > 1/2, the condition is simply d > |F»|°.
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Proposition (Shifts of small subsets). Let € € (0,1/4) and let t : F; — Fy be
either:

-t =Kl, 4 the Kloosterman sum of rank n = 2 reduced modulo a prime ideal
of Z[(ap| above a prime € », 1 with £ =1 (mod 4).

—t=xof as in the previous proposition.

Let E < Fy be a “small”™ subset. Then

{zeF,:S(tE+z)=a)| 1 log q

q N [Bllog ) 2
A 1 Ellogd\ 2
O€7f <q1/4€ + ( log q ) >

for Kloosterman sums, respectively multiplicative characters, uniformly for all a €
Fy.

1
1 FE|log |F 2
0. (qm_s + (leeiea))

The second example generalizes the result of | | to all multiplicative char-
acters:

Proposition (Partial intervals). Let ¢ € (0,1/4) and lett = x o f : F, — Fy be
as above. Then

1
‘{1<k<p:5(xpof,[1...k‘])E(ZH: 1 Lo 1 N logd 2
p [Ea] 77\ pae T Nlogp

uniformly for all a € Fy.

The method does not allow this to be generalized to Kloosterman sums, but
we can nonetheless do the following:

Proposition (Partial intervals with shifts of small subsets). We consider the situ-
ation of the first proposition above with ¥y = Fpe = F} and we let Ey, ..., E, < F,
be “small” subsets. Then the density

{(z1,...,2c) €Ty = [1...p]°: S(t, [1... 1] x [[{_o(Ei + 2:)) = a}|
q

(with respect to any Fp-basis of Fy) is equal to

1
1 |E[log |Fx| ) 2
1 OE,TL <q1/4—5 + ( log q

NN [Bllog ) 2
A 1 FE|logd 2
OE,f <q1/45 + ( log q ) >

for Kloosterman sums, respectively multiplicative characters, uniformly for all a €
Fy.

Again, these examples also apply to functions counting points on families of
hyperelliptic curves.

4This will be made more precise later on.
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1.4.6. Application of the large sieve. As a last application of our compu-
tation of the Fy-monodromy groups of Kloosterman sheaves, we get zero-density
estimates for arguments of hyper-Kloosterman sums with values in some algebraic
subset of the cyclotomic integers. The case of point-counting functions on families
of hyperelliptic curve was the subject of | | and | .

Proposition. Let n = 2 be an integer and let € > 0. For m = 2 coprime to p, we

have
p°logq

P((Kng(2) € Q)"™) <me 5z

— 0,

when q = p¢ — +00 with e > 16B8,,, where B,, = Mzn_l if n is odd and B, =
72"2+43n+4 if nis even, and Q(Cap)™ is the set of mth powers in Q(Cap).

More generally:

Proposition. Let n = 2 be an integer and let € > 0. For almost all f € Z[X] of
fixed degree, we have

p°logq
P(Klg(2) € Q) <pe B,q/e5 0

when q¢ = p® — 400 with e = 168, for By, as above.

This can further be extended to definable subsets of Q((sp) (i-e. defined by a
first-order formula in the language of rings), under some technical conditions.

1.5. STRUCTURE
This thesis is structured as follows:

— In the first preliminary chapter, we define precisely f-adic trace functions
over finite fields and survey their properties. In particular, we recall the
application of Deligne’s generalization of the Riemann hypothesis over finite
fields to the estimation of sums of trace functions. After a presentation of
the f-adic Fourier transform, we give the examples of trace functions we will
consider and their properties.

— In the second chapter, we recall the definition and use of monodromy groups,
notably through Deligne’s equidistribution theorem. We survey Katz’s com-
putation of the monodromy of £-adic Fourier transforms such as Kloosterman

sheaves (| I, | |). Finally, we consider Fy-monodromy groups and
prove our result about the finite monodromy groups of hyper-Kloosterman
sheaves.

— In the third chapter, we set up probabilistic models for trace functions,
reduced modulo an ideal of a cyclotomic field or not, inspired by Deligne’s
equidistribution theorem and the articles of Lamzouri | | and Lamzouri-
Zaharescu | |. In order to be able to prove their accuracy in the next
chapters, we survey the methods for estimating sums of products in the /-
adic formalism, following | |. We review the Goursat-Kolchin-Ribet
criterion of Katz for complex Lie groups of positive dimension and give an
analogue for finite quasisimple groups. We can then define the “coherent
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families” we will consider from that point. Finally, we state general criteria
on the ramification of sheaves so that the latter are part of a coherent fam-
ily. Altogether, we try to give a presentation which is as unified as possible
between the complex and finite cases.

— The fourth chapter is dedicated to proving our results generalizing the works
of Erdgs-Davenport and Lamzouri. We start by showing that the probabilis-
tic model is accurate and we compute moments in the model before conclud-
ing for the qualitative version. We finally prove the quantitative version by
adapting the arguments of Lamzouri. In particular, we need to estimate
moments of traces of random matrices in classical groups.

— In the fifth and final chapter, we prove the results mentioned above about
trace functions reduced modulo an ideal of a cyclotomic field. Again, we first
prove the accuracy of the probabilistic model, before carrying out compu-
tations in the latter. The three applications (equidistribution, distribution
of families of short sums, and use of the large sieve) are then treated in the
subsequent sections.

As a general principle, we try to give a self-contained exposition (excluding
Chapter 2). We give references for the proofs of non-original results, unless a
sketch is particularly enlightening for the remainder of the discussion.






CHAPTER 2

Trace functions over finite fields

In this preliminary chapter, we first define precisely the concept of £-adic trace
function over a finite field that we will study, following the recent works of Fouvry-
Kowalski-Michel, after Grothendieck, Deligne, Katz and others. Then, we recall
how Deligne’s work on the Weil conjectures can be used to estimate sums of trace
functions. Finally, we give the examples we will consider throughout, along with
their main properties.

This chapter is mainly based on | , Chapters 1-2, 5-7|, | , 7.2—
7.5, | , Chapter 4] and | |. The references | , Section 6] and
| | are also good surveys on the subject toward applications in number
theory. The notes | | contain more in depth information and further references
about f-adic sheaves and étale cohomology. All of the latter are based on | |
and | .

2.1. DEFINITIONS AND FIRST PROPERTIES

2.1.1. Middle-extension /-adic sheaves on curves.

DEFINITION 2.1. An {-adic coefficient ring is either:

— the finite field F, — the field E),
— the ring Oy, — the field Qy,

where F is a number field with ring of integers O and A an ¢-adic valuation on
O corresponding to an prime ideal over the prime ¢ with residue field Fy. When
A has characteristic 0, we supposed fixed an embedding’ ¢: A — C.

DEFINITION 2.2. Let A be an f-adic coefficient ring and let X be a proper smooth
geometrically connected algebraic curve over F,. We call middle-extension sheaf
of A-modules on X a constructible sheaf F of A-modules on X (with respect to
the étale topology) such that for every nonempty open j : U — X on which j*F
is lisse, we have F =~ j,j*F.

For the remaining of this section, we let X, A and F be as in Definition
DEFINITION 2.3. We write Sing(F) = X(F,) — Ur(F,) for the set of singularities

(or ramified points) of F, where Ur is the maximal open set of lissity” of F.

2.1.2. Correspondence with /-adic representations. There is an alternative
point of view for middle-extension f-adic sheaves that can be very convenient in

We recall that @, and C are isomorphic as fields, but not as topological spaces (with the
usual topologies).

20ne shows that such an open exists — it is where the stalk has generic rank — and that F
is determined by its restriction to Ur, see e.g. | , 8.5.1].

17
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practice, through f-adic representations of étale fundamental groups. As we shall
see, both perspectives complement each other.

Etale fundamental groups.

DEFINITION 2.4. We denote by 71 (X,7) the arithmetic étale fundamental group

of X with respect to a geometric generic point 77. The geometric étale fundamental
. geom — Al P

group is w37 (X, 1) = m (X x Fg, 7).

In what follows, we let K be the function field of X, K®°P be the separable
closure of K corresponding to 77, and U be a nonempty open of X.

DEFINITION 2.5. For F,//F, a finite extension and x € U(Fy), we let

(1) I < D, < Gal(K®P/K) be the inertia (resp. decomposition) group at the
valuation corresponding to x, defined up to conjugation. Moreover, we write
P, for the p-Sylow of I, the wild inertia group.

x = F 4 ] ‘ )

(2) Frob, s € D./I, = Gal(F,/Fy) be the geometric Frobenius at x, a class
mapping to the geometric Frobenius Froby,. This is again defined up to
conjugation.

Proposition 2.6. The étale fundamental group m (U,7), resp. =« (U,7), is
isomorphic to the quotient of

m(K,7) = Gal(K*P/K), resp. 7% (K,7) = Gal(K™/F,K), (2.1)

by the smallest closed normal subgroup containing all the inertia groups Iy for
xz e U(FF,).

Proof. See | , Example 6.6(b)| and | , Chapter 4. O

geom

NOTATION 2.7. We will write my4 (resp. @7 ) for the groups (2.1) when K =
Fy(T) (e.g. when X = P! x F,), with respect to a fixed algebraic closure of F,.

Sheaves and £-adic representations.

Proposition 2.8. There is an equivalence of categories between:
(1) Middle-extension sheaves F of A-modules on X.
(2) Continuous £-adic representations

pr T (K, ) — GL(Fy) = GL,(A).

Moreover, F is lisse at x € X (F,) if and only if I, acts trivially on A™.

Proof. See | , Theorem 7.13]. O
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Galois actions.

NOTATION 2.9. For any G < GL(F5;) = GL(V), we will write F (resp. F¢) for
the space of G-invariants V& (resp. the space of G-coinvariants V).

By the above, we see that:

— For any z € X(F,), the geometric Frobenius Frob, , acts continuously on
Fl= and on Fp,.

— Since 7 (K, ﬁ)/ﬂ%eom(K,gZ)m; 9al(ﬁq/Fq), the absolute Galois group of F,
acts continuously on F™ (K1) and on fﬂ_%eom (K7

2.1.3. Rank, geometric isomorphism, irreducibility.

DEFINITION 2.10. (1) The rank or dimension of F is the dimension of pr, i.e.
the dimension of the generic fiber 7.

(2) We say that F is arithmetically (resp. geometrically) irreducible if pr (resp.
the restriction of pr to w5 "™ (K,7)) is irreducible.

3) We say that F is arithmetically (resp. geometrically) isotypic if pr (resp.
P
the restriction of pr to m°*™ (K, 7)) is a sum of isomorphic irreducible rep-

resentations.

(4) We say that two middle-extension A-sheaves on X are geometrically isomor-
phic if the corresponding representations of 7§°™ (K, 7) are isomorphic.

2.1.4. Purity.

DEFINITION 2.11. An element o € Qy is a g- Weil number of weight i > 0 if for
any embedding 7 : @, — C we have |j(a)| = ¢"/2.

DEFINITION 2.12. If A has characteristic 0, we say that F is pointwise pure of
weight i > 0 if, for any finite extension Fy /F, and any x € Uz (Fy ), the eigenvalues
of pr(Frob, ) are ¢’~-Weil numbers of weight 1.

CONVENTION 2.13. From now on, “sheaf of A-modules on X (resp. over F,)”
will be synonymous for “middle-extension sheaf of A-modules on X (resp.
on P! x F,)". We will assume that Sing(F) < X(F,) and that if A has
characteristic 0, then F is pointwise pure of weight 0. We may replace “sheaf
of A-modules” by “f-adic sheaf” when the coefficient ring is either clear or left
free to choose.

As we shall see, the purity assumption amounts to asking all sheaves to be
normalized, but its validity may depend on deep consequences of the Riemann
hypothesis over finite fields.
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2.1.5. Trace functions.
DEFINITION 2.14. The trace function of F is the map
tr: X(Fy) — A
z — tr (pr(Frobg,g) | VIZ) :

If A has characteristic 0, we may also view ¢tz : X (F;) — ¢(A) < C through the
embedding ¢. If Fy/ /I, is any finite extension, we may also consider t : X (Fy) —

A, tr(x) = tr(pr(Frob, 4) | V).

Proposition 2.15. If A has characteristic 0, then

[ltF|lo < rank(F).

Proof. If x ¢ Sing(F), then |tr(z)| < rank(F) by the purity assumption. On
the other hand, if z € Sing(F), | , (1.8.9)] shows that the eigenvalues of
pF(Frob,) on VI are still Weil numbers of weight 0. O

Proposition 2.16. If F and G are two geometrically isomorphic sheaves of Q-
modules on X, there exists a € A* such that tr = a-tg. If F and G are pure of
weight 0, then a is a q- Weil number of weight 0.

Proof. This follows from the fact that w1 (K,n)/m3""(K,n) =~ Gal(F,/F,) and
Clifford theory, see | , Proposition 3.2.3|. O

NOTATION 2.17. As in Convention if X =Pl x Fy, we will call 7 an ¢-adic
trace function over IF,. Note that in general there exists more than one sheaf with
a given trace function.

2.1.6. Ramification. As we shall see, a precise study of the behavior of a sheaf
at singularities will be fundamental, in particular for the determination of mon-
odromy groups. We present below some of the tools we will need. These are
surveyed in | , Chapter 1 and Section 7.0] and detailed proofs can be found
in | , Sections 3-4]. Let again F be as in Definition corresponding to a
representation pr : m (K, 7) — GL(V).

Break decomposition. Let x € X (F,). There exists a uniquely defined decomposi-
tion of I,-modules

V= Vtame o Vwild _ V(O) @ ( @ V(t))
teR~o
with Vtame = V(0) = VP called the break decomposition of F at z. Note that
if ¢ Sing(F), then V = V(0). The finitely many ¢ > 0 such that V(¢) # 0 are
called the breaks of F at z. If V = V(0), we say that F is tamely ramified at x.

Remark 2.18. If F is a sheaf of Oy-modules (for Oy as in Definition 2.1), then,
by | , Remark 1.10], its break decomposition as sheaf of Q,-modules (by
extension of scalars) is simply obtained by extension of scalars from its break
decomposition as sheaf of Oy-modules. Similarly, if m) is the maximal ideal of
O, the break-decomposition of the sheaf F/myF of Fy = O,/mOy-modules is
obtained by reducing the break decomposition of F.
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Since the tame inertia group I/P, is topologically cyclic, we can also decom-
pose the tame part with respect to the Jordan decomposition of a generator,

ytame — (B YXT1IP: — () (Unip. @ Ly (X + 7)) (2.2)
X X
where x runs over characters of I, of finite order prime to p (see | , Section

1.0, Section 7.0]) and £, is a Kummer sheaf (see below).

Swan conductors.

DEFINITION 2.19. The Swan conductor of F at x € Sing(F) is

Swan,(F) = > tdimV(t),

=0
where V' = @, V(t) is the break decomposition of F at z.
Note that F is tamely ramified at x if and only if Swan,(F) = 0.
Proposition 2.20. The Swan conductor is a nonnegative integer.

Proof. See | , Section 4.4.2]. O

Remark 2.21. By Remark , we see that the Swari conductor does not change
if we view a sheaf of Oy-modules F as a sheaf of Q,-modules or as a sheaf of
Fy-modules, namely

Swan, (F) = Swan, (F/myF) = Swan, (F ® Q)

for all « € Sing(F).

Conductor. The following quantity was introduced by Fouvry-Kowalski-Michel
| |, and combines three invariants of the sheaf to measure its “complexity”
(with respect to dimension and ramification).

DEFINITION 2.22. The conductor of F is the positive integer

cond(F) = |rank(F)| + | Sing(F)| + Z Swany, (F).
zeSing(F)

The error term in Deligne’s theorem on estimates of sums of trace functions

will depend on the dimension, number of singularities and Swan conductors of the
sheaf, and the conductor is simply the most natural bound for the former.

2.1.7. Operations. In this section, we let Fy, F5 be sheaves of A-modules on

X as in Definition and Convention , corresponding to representations
pi + m(K,7) — GL(V;) and trace functions ¢; : X(F;) — A (i = 1,2). For the
proofs, we refer the reader to | , Chapter 3] (and | , Lemma 1.3| for

the break decomposition of products).
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Sum, product, conjugation.

Proposition 2.23.

(1) The sheaf F = F1 @ Fo of A-modules on X corresponding to the represen-
tation p1 @ p2 has trace function ti + to. Moreover, for all x € X (F,),

Sing(F) = Sing(F1) u Sing(F2)
Swan, (F) = Swang(F1) + Swan,(F2)
cond(F; @ F2) cond(F7) + cond(F2)

(2) The sheaf F = F1 ® Fa of A-modules on X corresponding to the representa-
tion p1®p2 has trace function equal to t1-ty on X (Fy)—(Sing(F1)nSing(F2)).
Moreover, for all z € X (F,),

(Vi ® Vo) (max(t1,t2)) :t1 # to

Vi(t1) ® Va(tz) < {®u§t1(vl ® Vo) (u) 11 =12

if Vi = @y Vi(t) (resp. Vi @ Va = @,20(V1 ® V2)(1)) is the break decom-
position at x of F; (resp. of F), and

Sing(F) < Sing(F1) u Sing(F3)
Swan, (F) < rank(F; ® Fo)(Swan,(F1) + Swan,(F2))
cond(F) « cond(F;)? cond(Fp)2.

(8) The sheaf D(F1) of A-modules on X corresponding to the dual representation
D(p1) has same singularities, Swan conductors, and conductor than Fi. If
A has characteristic 0, then the complex-valued trace function of D(Fi) is
ty.

In particular, by Convention , we assert that these sheaves are still point-
wise pure of weight 0.

Change of variable.

Proposition 2.24. If f : X — X is a nonconstant morphism defined over
Fy, the inverse image sheaf f*Fi has trace function equal to t1 o f on X (Fy) —
f~Y(Sing(F1)). Moreover,

Sing(f*F1) < f'(Sing(F1))
cond(f*Fy) <« deg(f)cond(.7:1)2

If f is an isomorphism, the conductors are equal and Fi is irreducible (resp. geo-
metrically irreducible) if and only if Fi is.

NOTATION 2.25. For a € AY(F,), we will write [+a]* (resp. [xa]*) for the inverse
image through the map = — z + a (resp. x — ax).
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Sum over solutions.

Proposition 2.26. If f : X — X is a nonconstant morphism defined over Fy,
the direct image sheaf fiJF1 has trace function equal to fit1 : X(Fy) — A, for

fati(@) = Y, tly)  (we X(Fy)).

yeX (Fq)
fly)==

Moreover, for Sy the set of ramified points of f over Fy and x € X(F,),

Sing(f«F1) < f(Sing(F1)) U S¢

Swan, (f*fl) = Z Swany (]:1)
yeP! (Fq) : f(y)=2
cond(fyF1) « deg(f)?cond(F;)?.

2.1.8. Decompositions.

Proposition 2.27. (1) There exists a family (F;)i1<i<n of arithmetically ir-
reducible and geometrically isotypic sheaves of A-modules on X such that
tr = Z?:l tF;-

(2) The representation pr |gseom g 7 is semisimple.

Proof. See | , Propositions 3.3.6, 3.5.3] and | , Théoreme 3.4.1(iii)].
For the second assertion, we use the assumption that F is pointwise pure of weight
0. O

2.2. SUMS OF TRACE FUNCTIONS

We can finally state Deligne’s analogue of the Riemann hypothesis over finite
fields and its application to the estimation of sums of trace functions.

We refer the reader to | , Exposé 6], | , Chapter 4], | , Chap-
ter 2] and | , Section 9| for other versions of this statement.

Theorem 2.28. Let A be an (-adic coefficient ring of characteristic 0. For F an
sheaf of A-modules over IFy as in Convention , we have

Z tr(z) =q-tr (Frobq |]:7r%i;>m> + O (E(F)\/q), where

z€elFy

E(F) = rank(F) | [Sing(F)| =1+ > Swan,(F) | « cond(F)?.
zeSing(F)

This will be the foundation of the remaining of our work.

Remark 2.29. In the works of Fouvry-Kowalski-Michel and others, the error term
is usually only given in terms of the conductor (i.e. cond(F)?,/q). We are more
precise above to be able to discuss cases where the conductor will be growing (see
Section 4.2).
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Remark 2.30. By Schur’s Lemma and Proposition , dim(}"ﬂi;eom) is equal
»q
to the number of trivial geometrically irreducible components of F.

It follows that geometrically irreducible ¢-adic trace functions over F, are “al-
most orthogonal”:

Corollary 2.31. Let A be an {-adic coefficient ring of characteristic 0. If F, G
are geometrically irreducible sheaves of A-modules over Fy, then

> tr(z)tg(z) = C(F,G)q + O(cond(F)? cond(G)*/q)

xeF,

with C(F,F) =1 and C(F,G) =0 if F and G are not geometrically isomorphic.

Remark 2.32. By Proposition , we may theoretically always reduce to this
case.
2.2.1. Proof of Theorem and Corollary . For the rest of this

section, we let F be a sheaf of Qy,-modules on a curve X as in Convention ,
and we assume moreover that F is lisse on a nonempty open U of X.

Cohomological interpretation. The cohomological interpretation of sums of trace
functions is given by the following:

Theorem 2.33 (Grothendieck-Lefschetz trace formula). We have

2

D1 tr(x) = D I(=1) tr (Frobg | HY(U x Fy, F)) |
zeU(F,) i=0

where H. are the étale cohomology group with compact support, on which Gal(F,/F,)
acts.

This is a deep link between the local Frobenius acting on the stalks of the sheaf
and the global Frobenius acting on the étale cohomology groups (see e.g. | ,
Section 8] and | , Rapport, Section 3 and Exposé 4, Section 3|).

Structure of extremal cohomology groups.

Theorem 2.34. If U is affine, then

H)U xFy, F) = 0,
HZ(U x Fg, F) = Fraeom(ge i (=1),

where the last expression denotes a Tate twist (see [ , 7.1.9]).

This follows from Poincaré duality (see e.g. | , Theorem 8.4]).

Deligne’s analogue of the Riemann hypothesis over finite fields. By purity, we
have the following fundamental estimate:

Theorem 2.35 (| , Theorem 3.3.1]). For every i = 0, the eigenvalues of
Frob, acting on H{(U x F,, F) are q-Weil numbers of weight at most i.
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By Theorems , and , we get that

Z tr(x) =q-tr (Frobq |}'7r%?;m(U7ﬁ)> + 0 (q1/2 dim H} (U x Fq,]:)>
zeU(Fq)

with an absolute implicit constant.

Remark 2.36. Up to this point, the same arguments would apply if X were re-
placed by a smooth geometrically connected (quasi-projective) variety over Fy
of dimension d with geometric generic point 77 (and F is not supposed middle-
extension anymore). Then, if U is affine,

2d—1
Z tr(z) = ¢ tr (Frobq |.7-"7T§;eom(Uﬁ)> + 0 ( 2 ¢ dim H(U x IE‘q,]:)>
zeU(Fq) =0

for pr : m1(U,7) — GL,(Qy) the representation corresponding to F. If q varies,
but the sum of Betti numbers in the error term does not depend on ¢, which is

often the case in applications (see for example the survey in | , pp. 307-308,
311-312]), then

;F )tr(:c) =g tr <Frobq ‘fﬂ_%eom(U,ﬁ)> L0 <qd—1/2)
TE q

with an absolute implicit constant. A greater saving in the error term would be
implied by the vanishing of further cohomology groups. For example, we have
square-root cancellation if H (U x Fy, F) = 0 for all 7 > d.

Bound on dim H} (U x Fy, F).

Theorem 2.37 (Euler-Poincaré formula/Grothendieck-Ogg-Safarevich). If X has
genus g, then

e

(~1)"dim HY(U x By, F) = rank(F)(2 = 29 - [(X — U)(F,)])
0

1

- Z Swang (F).

ze(X-U)(Fq)

(See e.g. | , Section 9]).

Conclusion. Therefore, if X = P! x F, and Ur is affine (e.g. Ur # X), Theorems
and show that

dim H(Ur x Fy, F) < rank(F)(| Sing(F)| — 1) + Z Swan,, (F).

z€Sing(F)
Theorem now follows from the fact that
Mitr(z) = > tr(z)+ O(|Sing(F)| rank(F))
xeFy zeUr(Fy)
by Proposition . Corollary is then a consequence of Schur’s Lemma and

Proposition
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2.3. THE ¢-ADIC FOURIER TRANSFORM

Discrete Fourier transform.

DEFINITION 2.38. For f : PY(F,) — C any function, we define its (normalized)
Fourier transform FTy(f) : P}(F,) — C with respect to a nontrivial additive
character ¢ : F, — C* by

FTy(f)(2) = ;; S f@y) (e,
yeFy

and FTy(f)(20) = —(0)//a
Proposition 2.39. Let ¢ : F; — C* be an additive character. Then:
(1) We have FTy oFTy = [x(—1)]*.

(2) FTy is a unitary operator on the space of functions P} (F,) — C with respect
to the inner product

(fro fo) = ; Y A@) fa(z)  (fi, f2: PHF,) — C).

zelFy

The £-adic Fourier transform. The following deep result of Deligne shows that it
is possible to perform Fourier transform on the level of f-adic sheaves:

DEFINITION 2.40. A sheaf of Q,-modules over F is a Fourier sheaf if it does not
contain an Artin-Schreier sheaf Ly (for ¢ : F; — C an additive character) in its
geometric Jordan-Hélder decomposition (see Proposition ).

Theorem 2.41 (Deligne, Laumon, Brylinski). Let ¢ : F, — C be a nontrivial
character. If F is an l-adic Fourier sheaf over Fy, there exists an (-adic sheaf
G = FTy(F) over Fy with trace function

tg = FTy(tr).
Moreover:
(1) G is a Fourier sheaf.
(2) G is geometrically irreducible if and only if F is.
(3) There is an isomorphism FTy(G) = [x(=1)]*F.

(4) If E is a number field with ring of integers O such that \/p € O and X is an
{-adic valuation on O, then G can be defined as a sheaf of Ox-modules if F

can.
Proof. See for example | , Chapters 5, 8]. For the last point, note that the
condition /p € O implies that /p € Oy since £ # p. O

The ramification properties of an f-adic Fourier transform have been studied
in details by Laumon, see | , Sections 7.3-7.5] and | , Chapters 7-8|. It
follows that the conductor of the Fourier transform can be polynomially bounded
in terms of that of the base sheaf:



2.4. FEzxamples 27

Proposition 2.42 (| , Proposition 8.2]). If F is a Fourier sheaf and 1) :
F, — C a nontrivial character, we have

cond(FT,(F)) « cond(F)?2.

Remark 2.43. According to Convention , the statement of Theorem in-
cludes the fact that the Fourier transform is pure of weight 0, so by Proposition

)

| FTy(tF)|loo < rank(G) < cond(FT,(F)) « cond(F)?,

which is usually bounded independently from ¢. Such a bound is of fundamental

importance in applications (see e.g. | |). Note that this would also follow
by applying Theorem ; actually, the proof of Theorem relies on Deligne’s
Theorem

2.4. EXAMPLES

In this section, we give the examples of trace functions we will consider later
on. In prevision of Chapter 6, we duly take note of the definition on discrete ¢-adic
coeflicient rings in some cases.

2.4.1. Characters. For this section, we refer the reader to | , Exposé 6,
Section 1], | , Examples 7.16-17] and | , Section 4.3]. An explicit con-
struction as f-adic Galois representations can be found in | , Sections
2.3-2.4].

Artin-Schreier sheaves.

Proposition 2.44. Let ¢ : Fy — Z[(p] be a nontrivial additive character, \ be an
C-adic valuation on Z[(,] corresponding to a prime ideal q above ¢ with all poles of
order < p, and f = f1/fa € Fy(X). There exists a sheaf Ly sy of Z[(p]x-modules
on Iy with:

(1) trace function ¢ o f (under the convention that (o) =0).

(2) singularities at the poles of f, with Swan conductor equal to the order of the
pole.

(8) cond(Lyp)) < 1+ 2deg(fa).
By reduction modulo q, this gives a sheaf of Fx = Z[(p]x/9Z[(p]x-modules with the

same properties and trace function o f (mod q).

Kummer sheaves.

Proposition 2.45. Let x : F* — Z[(4] be a nontrivial multiplicative character of
order d = 2, A be an {-adic valuation on Z|[(4] corresponding to a prime ideal q
above £, and f = fi1/f2 € Fg(X) that is not a d-power. We assume that f has no
zero or pole of order divisible by d. There exists a sheaf L, (p) of Z[Cq]x-modules
on Fyq with:

(1) trace function x o f (under the convention that x(0) = x(c0) =0).
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(2) tame singularities at the zeros and poles of f.

(3) cond(ﬁx(f)) =1+ deg(f1) + deg(f2).

By reduction modulo q, this gives a sheaf of Fy = Z[Cq]r/9Z[(a]r-modules with the
same properties and trace function x o f (mod q).

2.4.2. Hyper-Kloosterman and hypergeometric sheaves.

Kloosterman sheaves.

Proposition 2.46 (Deligne). Let n > 2 be an integer.

(1) There erists a Kloosterman sheaf Kl,, of Q-modules over Fy, of rank n,
with trace function equal to the Kloosterman sum

—1)nt r(z1 + -+
ZL"—>K1n,q($):¢ Z e<t( 1+ + )> (mquX)’

n—1
x p

q 2

and Kl, 4,(0) = (=1)""tq= D2 Moreover, Kl, is geometrically irre-
ducible, lisse on Gy, xFy, Swany (Kly,) = 1, Swang(Kl,) = 0, and cond(Kl,,) =
n+ 3.

(2) Let X be an (-adic valuation on Z[C4p| corresponding to a prime ideal q above
L. The sheaf Kl,, can then be defined as a sheaf of Z[(ap|r-modules and we
note that Kl ¢(x) € Z[Caplyn—1y2 < Z[Caplq for all x € Fy.

(3) By reduction modulo q, this gives a sheaf of Fx = Z[(ap|r/9Z[(ap]r-modules
over Fy with the same properties and trace function Kl, ; (mod q).

Proof. By letting Kl; = ¢ : P}(F,) — C with ¢(o0) = 0, we get that the Kloost-
erman sum Kl,, : FJ — C of rank n > 2 satisfies

Kl, = FTy([z = 2~ * Kl,,_1).

Thus, we can recursively construct the Kloosterman sheaf with Theorem by
setting Kly = Ly (the Artin-Schreier sheaf) and Kl,, = FTy([z — 27 1*Kl,—1).
For the remaining properties, see | , Theorem 4.1.1] or | , Exposé 6,
Théoréme 7.8|. Concerning and (3), recall that

1 :p=1 (mod4)

ep\/P € L[Gp] with &) = {z :p=3 (mod 4)

by the evaluation of quadratic Gauss sums, so \/p € Z[(p, (4] < Z[C4p] and /p €
Z[Caply since £ # p. O

Remark 2.47. Recall that |[Fy| = ¢/, where f > 1 is minimal subject to the
condition ¢/ = 1 (mod 4p), by the ramification theory of cyclotomic fields (see
| , Theorem 2.13]).

Remark 2.48. If p=1 (mod 4) or if n is odd, we can replace Z[(4p] by Z[(,] (in
the second case by using an untwisted ¢-adic Fourier transform before applying a
Tate twist of order 251 € N)



2.4. FEzxamples 29
As a consequence of Propositions and , we get Deligne’s bound for
Hyper-Kloosterman sums, generalizing Weil’s Bound (1.4):

Corollary 2.49. We have |Kl, 4(x)| < n for all x € F,,.

Hypergeometric sheaves.

Proposition 2.50 (Katz). Let n = m > 0 be integers with r = m +n > 1,
X = (Xi)1<i<n, P = (pj)1<j<m tuples of pairwise distinct characters of F5. There
exists a geometrically irreducible hypergeometric sheaf H(x, p) over Fy of rank n,
with trace function equal to the hypergeometric sum Hyp(x, p) : F; — C defined

_1\r—1 n m . o) —
b (q<1_)1>/2 2, (Hxi(m) Hm(w)) e (t (I )p T(y>)> (teF,)
zely yeF " =1 j=1

N(@)=tN(y)

where N : Fy — F, is the norm (product of components) and T : Fy — F, the
trace (sum of components). Moreover, H(x, p) is

— lisse on Gy, x Fy, tame at 0, and Swane, (H(x, p)) =1, if m # n,
— lisse on Gy, x Fy — {1} and tame everywhere, if m = n.

Hence, cond(H(x, p)) =n + 3.
Proof. See | , Theorem 8.4.2]. O

Ezample 2.51. For m = 0 and x = (1)1<i<n, we get the Kloosterman sheaf KCl,,.

2.4.3. Exponential sums. Next, we consider general exponential sums of the
form

-1y, (tr(:vf(y) + h(?J)))
\/a yelFq b

for f, g, h € Q(X) rational functions and x a multiplicative character on F . This
includes Birch sums

x(9(y)) (z€Fy), (2.3)

Bi(z,q) = —
(z,q) Vi ’

studied by Birch, Livné and Katz, and sums of the form

15, tr(zf(y)) .
vﬁgé (17) (z e F,) (2.5)

for f € Q(X), studied by Katz and Fouvry-Michel.

-1 e(“@y+fv (e F,), (2.4)

Proposition 2.52. Assume that p is large enough to consider f,g,h € Fq(X) and
assume that g (resp. h) has no pole or zero (resp. no pole) of order divisible by p.
Let

F1=Lyn) ®@Ly(g), Fo=fuF1.

If the sheaf Fa is a Fourier sheaf, then there is an (-adic sheaf G = FTy(F2) over
F, with trace function given by (2.3). Moreover,
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(1) G is geometrically irreducible if F is.

(2) The singularities of F1 are contained in the union of the set of poles of g, h
with the set of zeros of g. At any x € PL(F,), we have

ord,(h) if x is a pole of h

0 otherwise.

Swan, (F) = {

(3) For Fa, we have Sing(Fa) = f(Sing(F1))uSy, where Sy is the set of ramified
points of f as a morphism of P'. Moreover,

Swane (Fa2) = Z Swan, (F1).
yeP(Fq) : f(y)=00

In particular, if f is a nonconstant polynomial, Swan, (Fa) = Swane (Fi).
(4) We have the bound

cond(G) « deg(f)* deg(h2)®(1 + deg(g1) + deg(gz))®

where deg(f) is the degree of f as a morphism of P! and g = g1/g2, h =
h1/h2 fO?” 9gi, hi € FQ[X]

Proof. This follows directly from Section , Theorem and Proposition
since the sum (2.3) is given by the discrete Fourier transform FTy(f«(¢(h)x(9)))-
See also | , Chapter 7] and | , Exposé 6] . O

We can distinguish the following cases:

(i) h =0 and x = 1, so that F is the trivial sheaf.
These are sums of the form (2.5), studied in | , 7.10].

(ii) F7 is nontrivial and f = X. Of course, Fo = F) in this case.
More particularly, we will consider the case x = 1 and h is a polynomial of
degree n > 2, which includes Birch sums (2.1). These are studied in | ,
7.12| and | .

(iii) F; is nontrivial and f # X.
The ramification of 3 and G is studied in | , 7.7].
More particularly, we will consider the case where h is odd with a pole of
order = 1 at oo, f # 0 is an odd polynomial, and there exists an even or
odd rational function L with g(z)g(—z) = L(z)°*dX).

We review these situations in the next sections.

Supermorse functions and sums of the form (2.5). Exponential sums of the form
(2.5) have been studied by Fouvry and Michel in | I, | | and | |,
using their construction as trace functions and the determination of their mon-
odromy groups by Katz.

Proposition 2.53. Let f € Fy(X) with degree deg(f) as a morphism of P. Then:

(1) If p > deg(f), the sheaf fQ, is Fourier.
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(2) If the zeros of f' in P1(F,) are simple and f separates the zeros of f' (we
say that f is supermorse), then the sheaf fQy is geometrically irreducible.

Thus, if the above conditions hold, there exists a geometrically irreducible £-adic
sheaf Gy over Fy of rank deg(f) — 1, lisse on Gy, x Fy, and with trace function

given by (2.5).

Proof. This follows from | , Theorem 7.9.4, Lemmas 7.10.2.1, 7.10.2.3| and
Proposition . ]

Sums of the form (2.3) with f = X, x = 1, h polynomial..

Proposition 2.54. Let h € Z[X] be a polynomial of degree n = 2. For p large
enough (depending on h), there exists a geometrically irreducible {-adic sheaf G,
over Fy of rank n — 1 corresponding to the trace function

—Ly (ly+h@)y
:(H\/ay;q <p ) (xeT,).

Proof. Clearly, Ly, is an irreducible Fourier sheaf, so the first part of the state-
ment follows from Proposition . The computation of the rank can be found
in | , 7.12.4.2] (see also | D- O

Sums of the form (2.3) with f polynomial, x # 1.

Proposition 2.55. Let h € Q(X) with a pole of order n > 1 at o, f € Z[X]
nonzero of degree d with (d,n) =1, g € Q(X) nonzero, and x a character of F
of order r = 2, with the order of any zero or pole of g not divisible by r. For p
large enough (depending on f,g,h), there exists a geometrically irreducible (-adic
sheaf G over IF, corresponding to the trace function (2.3), with rank

N =max(d,n) — 1+ |S| + |T| + > ord,(h),

€S

where S is the set of poles of h in AL(F,) and T = {x ¢ S : g(x) = 0}.

Proof. By | , 7.7, 7.13 (Sp-example(2)) and 7.14 (O-example(2))|, the sheaf
f«(Lyn) ® Ly(g)) 1s an irreducible Fourier sheaf, so the conclusion follows from
Proposition . The same reference contains the computation of the rank. [

2.4.4. Zeta functions of families curves.

Zeta functions of curves. Recall that the zeta function of a variety X over [y is
defined as

Tn
Z(X,T) = exp (Z IX(]Fq")|n> € Z[[T1]].

n=1
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If X has dimension d, the Grothendieck-Lefschetz trace formula (Theorem )
gives that

2d
[ X(Fgn)l = D (=1)'tr(Frob] | Hi(X x Fq,Qy)), thus
=0
2d ' B »
Z(X,T) = []det(1—TFrob, | Hi(X x Fg, Q) V"""
i=0

Remark 2.56. This gives the rationality part of the Weil conjectures, and the
Riemann hypothesis is contained in Theorem

When X is a curve, Theorem implies that

det(1 — T Frob, | HY(X x qu@f))
(1-T)(1—qT) 7

Z(X,T) = SO (2.6)

agn(X) == ¢" + 1 — | X (Fpn)| = tr(Frobgn | HA(X x Ty, Qy)).

Families of curves. Let U be a smooth geometrically connected projective variety
over [Fy, with geometric generic point 7, and let m : C — U be a proper smooth
morphism whose geometric fibers are smooth connected projective curves over F,
(i.e. a family of curves parametrized by U). One can construct a sheaf F of Z-
modules on U, corresponding to an ¢-adic representation p : m1(U,77) — GL(V)
such that

det(1 — T'p(Froby))

6D =00 - an)

(x e U(Fy)).
In particular, the corresponding trace function is
tr(z) = aq(Cy) = ¢+ 1 —[Cu(Fg)| (x € UFy)).

This is surveyed in | , Chapter 10] (using the higher direct image R'mZ; of
the morphism 7); see also | | for examples over function fields.

Families of hyperelliptic curves. We will focus on the following example (because
the monodromy groups have been precisely determined):

Proposition 2.57. For f € Fy[X]| a squarefree polynomial of degree 2g > 2,
such that its set of zeros Zy is contained’ in Iy, we consider the family of smooth
projective models of the affine hyperelliptic curves over Fy of genus g given by

X, y2 = f(z)(x — 2),
parametrized by z € Fy, which are nonsingular when z ¢ Zy.

(1) There exists a geometrically irreducible sheaf of Zs-modules F over Fy of
rank 2g, pointwise pure of weight 1, corresponding to a representation

p: ’R’Lq — GL(V) = GLQQ(ZE)

3This is for convenience, to agree with Convention
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such that for all z ¢ Zy,

~ det(1 — Tp(Frob,))
2XT) = AT gn)

tr(z) = a(X.)=q+1-|X.(F,)|€Z.

Moreover:

a) Sing(F) = {o0}uZy and F is everywhere tame. In particular, cond(F) =
2g9 + ’Zf|,

b) At any z € Zy, the quotient V/V'= is the trivial (one-dimensional)
I, —representation.

(2) By reduction modulo £, this gives a sheaf]? of Zy/lZy = Fo-modules over Fy
with the same properties and trace function tx (mod ).

(8) Up to changing the above relations to

det(1 — ¢*/?Tp(Frob,))

S (S [y

and t5(z) = a(X.)g ">,

we may assume that F is pointwise pure of weight 0 by either:

— assuming that \/q € Z; (i.e. (%) =1 by Hensel’s Lemma),

~ considering it as a sheaf of Qy-modules,

— considering it as a sheaf of Z[(ap|x-modules, for A an L-adic valuation.

Proof. See | , Section 10.1] or | , Section 4| (using middle-convolutions).
For (3), it suffices to normalize with a Tate twist. O






CHAPTER 3
Monodromy

In this chapter, we introduce monodromy groups of sheaves of A-modules over
[F,, for A any (-adic coefficient ring (hence giving algebraic, compact, and finite
groups).

We first consider monodromy groups over C, review results about their struc-
ture, and state Deligne’s equidistribution Theorem as a motivation for the use of
monodromy groups to study distribution questions.

Then, we pass to integral and finite monodromy groups and present our strat-
egy to compute the latter by using the classification of maximal subgroup of
classical groups.

We review the local monodromy of Kloosterman sheaves, both as Q, and -
modules, along with the explicit computation of some conjugacy classes.

The computation of the monodromy groups of Kloosterman sheaves over C is
recalled, as a prelude to the proof of our result on their finite monodromy groups.

In the last section, we give further examples of the computation by Katz of
monodromy groups of sheaves from Section 2.4, with techniques to make algebraic
and geometric monodromy groups coincide.

3.1. MONODROMY GROUPS OVER C

DEFINITION 3.1. Let F be a sheaf of Q,-modules over Fy, corresponding to a rep-
resentation pr : m 4, — GL,(Qy). The geometric (resp. arithmetic) monodromy
group of F is the algebraic group in GL,(Q,) defined by

Ggeom(F) = pr(75,") < Ganitn(F) = pr(m1q) < GLa(Qy),

where - denotes Zariski closure. Through the fixed isomorphism of fields ¢ :
Qy — C (continuous for the Zariski topology), we may also view these as complex
algebraic subgroups of GL,(C).

3.1.1. Structure. The reason to take Zariski closure is twofold:
— It gives a more rigid structure to the groups, making them algebraic groups.

— It allows to pass without issues from the situation over Q, (where the sheaves
are defined) to the situation over C (in which we want to consider our trace
functions).

The two following results support these ideas:

Proposition 3.2 (Deligne). Let F be a sheaf of Qp-modules over F,. Then

Gooom(F) is semisimple.

Proof. The geometric monodromy group Ggeom(F) is reductive by Proposition
(recall that in our convention, F is pure of weight 0) and the semisimplicity
follows from a result of Deligne (| , 1.3.9], see | , 9.0.12]). O

35
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Corollary 3.3. Let F be a sheaf of Qp-modules over Fy and G = Ggeom(F).
There is an equivalence of categories between.:

— The complex representations of G as a complex algebraic group,

— The Qq-representations of G as an algebraic group over Q,

— The complex representations of G(C) as a complex Lie group,

— The complex representations of a mazimal compact subgroup of G(C),

where all the representations are assumed to be finite-dimensional.

Proof. See | , 3.2], | , 9.2.4], and more particularly | , Remark
[I1.2.11]. The equivalence between the last two categories is Weyl’s unitary trick.

O
3.1.2. Reformulation of Theorem . It is often desirable to have equal

arithmetic and geometric monodromy groups, so that the Frobenius conjugacy
classes lie in the geometric monodromy group, giving for example the following
proposition. As we will see in Section , this is often achievable up to twisting
by a sheaf of rank one.

Proposition 3.4. For F a sheaf of Q,-modules over Fy with monodromy groups
G = Ggeom(F) = Garitn(F), we have

Z tr(z) = qdim(Fg) + O (Cond(]—")2\/§) ,

zelFy
In particular, if F is irreducible, then dim(Fg) = 1 if F is trivial and O otherwise.

Proof. Since the coinvariants are defined by an algebraic relation, we have Fpeom =
q

Fag. Since Froby € Garith(F) = Ggeom(F), the Frobenius acts trivially on Fa
and the result follows from Theorem . The last claim follows from Schur’s
lemma. O

3.1.3. Deligne’s equidistribution theorem. The following theorem of Deligne
shows that for a “natural” family of ¢-adic sheaves, there is always an equidistri-
bution result in a compact group.

Let F be an f-adic trace function over IF4, corresponding to a representation
p:mq — GL,(Qy). Again, we assume that

G = Ggeom(]:) = Garith(f) < GLn(C)

and we let K be a maximal compact subgroup of the complex Lie group G(C).
For any x € Ur(F,), let
1(p(Frob, )™

be the semisimple part of the Jordan-Chevalley decomposition in G, defined up to
conjugation in G. Since all its eigenvalues lie in the unit circle (F is pure of weight
0), any element of this conjugacy class belongs to a maximal compact subgroup
of G(C), and is thus conjugate to an element 6, of K.
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Lemma 3.5. The conjugacy class 0, € K* is well-defined, and tr(x) = tr(6,).

Proof. This follows from Corollary and the Peter-Weyl Theorem, see | ,
9.2.4] or | , 3.3 O

Theorem 3.6 (Deligne’s equidistribution theorem). Let (Fy)q be a family of £-
adic sheaves over Fy, corresponding to representations

pq : T1,g — GL,(Qy).
We assume that there is an algebraic group G < GLy,(C) such that

(1) The arithmetic and geometric monodromy groups of Fy are conjugate to G
in GL,(C) for all q.

(2) cond(Fy) is uniformly bounded (i.e. independently of q).

Let K be a mazimal compact subgroup of G(C) and for all q, x € Ur(F,), let
0rq € K* be the conjugacy class given by Lemma 5.5. When ¢ — o0, the set

{02q: v Ur(Fy)}

becomes equidistributed in K* with respect to the pushforward p of the normalized
Haar measure of K. In other words, for any f € C(K*®), we have

1
lim Y f6n0) = | fan
7Y U (Fy) K*

Proof. By Weyl’s criterion, it suffices to show that for any nontrivial irreducible
representation 7 : K — GL,,(C) we have

1
= D, (tron)(fa4) = olg) (¢ = +0).
1 aetir(ry)
By Corollary 3.3, there exist 7) (vesp. 7]) a complex representation of G' (resp. a

Q,-representation of the algebraic group :~!(G) over Q) such that the diagram
7(G) — GLn (@)
G— " GL,.(C)
T /
K
commutes. Let G, be the sheaf corresponding to the /-adic representation

10 pg:Tiqg — L_I(G) — GLp(Qy).

Note that G, is irreducible, and has arithmetic and geometric monodromy group
equal to 7(G). Moreover, for all z € Ur(F,),

tg,(x) = tr ((77 oL0 pq)(Froqu)) =tr ((7] oLo pq)(Frob%q)SS)

= tr (n(pg(Frobug))™) ) = tr(n(6.q)).
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By Proposition 3.4,
1 1 2 —1/2
- Z (tron)(0zq) = — Z tg,(x) « cond(Gy)“q~ "/~

1 etz (Fy) 2€UF (Fy)

By definition, x ¢ Sing(G,) if and only if 7(p(I;)) = 1. In particular, Sing(G,) <
Sing(F,). Moreover, Swan,(G,) < dimn Swan,(F,) for all z € P}(F,) by | ,
3.6.2]. It follows that cond(G,;) < mcond(F;) « 1 by hypothesis, whence the
conclusion. O

Remark 3.7. See also | , Theorem 9.2.6, Theorem 9.6.10] for other variants.

Ezample 3.8 (Kloosterman sums, | , 13.5.3]). Let Kl be the Kloosterman
sheaf over I, from Section , with trace function equal to the classical Kloost-
erman sum Kls ;. By Proposition , the conductor is bounded independently
from ¢. As we shall soon see, the geometric monodromy group is SLy(C), with
maximal compact subgroup K = SUs(C), and coincides with the arithmetic mon-
odromy group. The map arccos(3 tr) : K¥ — [0,7] is a bijection, so that we can
write for all z € F
Klp 4(x) = 2c08(8z,4(2))

with 6, 4 € [0, 7] uniquely determined. Therefore the set
{0p4: 7€ IE‘;}

becomes equidistributed in [0, 7] as ¢ — oo with respect to the measure % sin? 0d6.
This is the vertical Sato-Tate law for Kloosterman sums, and this answers one of
the questions of Section

3.1.4. Real-valued trace functions and monodromy groups. Finally, we
note the following relationship, that will be useful in Chapter 5, between the range
of the trace function and the monodromy group:

Proposition 3.9. Let F be a geometrically irreducible £-adic sheaf over Fy, with
monodromy groups G = Ggeom(F) = Garith(F) < GL,(C). The following are
equivalent:

(1) For any finite extension Fy /Fy, the trace function t : Fy — C is real-valued.
(2) The standard representation of G < GL,(C) is self-dual.
(2) mult;(Std®?) = mult; (Std®D(Std)) = 1.

Proof. Let K be a maximal compact subgroup of G(C). By Corollary 3.3, it does
not matter whether we consider representations of the algebraic group G, of the
Lie group G(C), or of K. Note that by assumption, Std is irreducible. By the
Chebotarev density theorem, the Frobenius conjugacy classes Frob, ., for F/F,
a finite extension and x € Uz (Fy), are dense in 7y 4 (see | , 1.2.2, Corollary 2
a)]). Thus, is indeed equivalent to having ¢(tr(pr(m1,4))) < R for all ¢, which
in turn holds if and only if tr(G) < R. Hence, (1) is equivalent to (2) by character
theory of G(C). If (2) holds, then

mult; (Std®?) = mult; (Std ®D(Std)) = 1
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by Schur’s Lemma, so that holds. If holds, we have

1= L{ tr(g)*dg = UK tr(g)ng‘ < L{ | tr(g)[Pdg = 1,

so that tr(g)? = |tr(g)|? for almost all g € K. Hence, tr(g) € R almost everywhere
in K, and this holds everywhere in K since a nonempty open set has positive Haar
measure. Thus follows by Lemma 3.5. O

Ezample 3.10. Recall that the standard representations of Spy,(C) and SO, (C)
are self-dual, but not that of SL, (C) for n = 3. Thus, the fact that Kloosterman
sums of even rank are real-valued agrees with the fact that the monodromy group
is symplectic (Theorem below).

3.1.5. Determining monodromy groups. As we will see in the remaining of
this chapter, one successful general strategy to determine the monodromy groups
of an f-adic sheaf corresponding to a representation

p:mq— GL,(A)

is to study the images of the inertia groups at singularities, which lie in Ggeom-
For example, the tame part of the break decomposition gives unipotent elements
with prescribed Jordan form (see e.g. Proposition below), while the Swan
conductor can rule out the existence of certain morphisms (see e.g. | , Lemma
1.19]).

Assume that we want to show that Ggeom is equal to some complex algebraic
group H. The idea exploited in | I, | is:

(1) Show that Ggeom < H, often for symmetry reasons.

(2) By using the information provided by the ramification, apply classification
theorems to the Lie algebra of G (which is semisimple by Proposition

geom
) to show that G, = H.
It would then follows that Ggeom = Goeom = H.

3.2. INTEGRAL AND FINITE MONODROMY GROUPS

3.2.1. Integral monodromy groups.

DEFINITION 3.11. Let F be a sheaf of Oy-modules over F,, corresponding to
a representation pr : w4, — GL,(O)y), for O the ring of integer of a number
field and A\ an f-adic valuation on O. The integral arithmetic (resp. geometric)
monodromy group of F is the group

Garith(F) = P}‘(ﬂ'l,q)a resp. Ggeom(-/r) = pPF (ﬂ_feqom) < GLn(O)\)

3.2.2. Finite monodromy groups.

DEFINITION 3.12. Let F be a sheaf of Fy-modules over F,, corresponding to a
representation pr : w14 — GL,(F)), for F) a finite field of characteristic £. The
arithmetic (resp. geometric) finite monodromy group of F is the finite group

Garith(F) = pr(m1q),  resp. Ggeom(F) = pr(7fy™) < GLn(F»).
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3.2.3. Determining monodromy groups. The determination of the integral
and finite monodromy groups is usually much more difficult than that of the
monodromy groups over C, since we consider simply subgroups of GL,,(A) for A
an f-adic coefficient ring, instead of algebraic subgroups G of GL,(C) with G°
semisimple as before, and the structure of such groups and their subgroups is
much more complicated.

Here, we will focus on Fy-monodromy groups, since this is the case of interest
for our applications. We will nonetheless survey some results and techniques for
integral monodromy groups later on. The two are closely related.

Using the classification of mazimal subgroups of classical groups. Suppose that F
is a sheaf of Fy-modules over F; such that Ggeom (F) is contained in some classical
group G' < GL,(F)y), and we want to show that Ggeom(F) = G. If this is not the
case, there exists a maximal subgroup H of G such that

Ggeom(F) < H < G.

We may be able to exclude this possibility by using the classification of maximal
subgroups of classical groups. This can be achieved for Kloosterman sheaves, as
we will show.

In the remaining of this section, we survey this classification in a way adapted
to our needs.

Theorem 3.13 (| I, | ). Let Fy be a finite field of odd characteristic
¢ and for n = 2, let G = SL,(Fy) or G = Sp,,(Fy\) (n even). We denote by
7 : GL,(Fy) — PGL,(Fy) the projection. If H is a maximal (proper) subgroup of
G, then either:

(1) H belongs to one of the classes Cy,...,C7 described below, or
(2) w(H) is almost simple: there exists a simple group S such that
S =~ Inn(S) < w(H) < Aut(S).

Moreover, H admits a unique normal subgroup T' such that w(T) = S, and
the action of T < H < SLy,(Fy) on Fy is absolutely irreducible. If G =
SLy(Fy), then T preserves no nondegenerate bilinear or unitary form on FY.

Proof. This is a combination of Theorems 1 and 2 from | |. O

This classification originated from the work of Aschbacher | |, and was
then expanded by Kleidman-Liebeck | |. Another proof was given by Liebeck-
Seitz | | by proving an analogous result over an algebraically closed field and
using descent’ (as in the treatment of finite groups of Lie type with Steinberg

!The following comments in the introduction of [ | are particularly enlightening: “As-
chbacher’s result is an analogous reduction theorem for subgroups of finite classical groups. We
obtain this as a relatively easy consequence of our main result by taking fized points under the ac-
tion of a Frobenius morphism, using a standard process involving Lang’s theorem. [...] Various
complications which arise in the finite group setting in [ | become much more straightforward
in the algebraic group setting; in particular, questions involving extension fields do not occur, and
issues of conjugacy are easily settled.”
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isomorphisms). A good exposition of these results can be found in | , I1.18.1,
I11.27-28|.
We now recall the definition of the classes Cy,...,C7, along with some useful

properties we will use.

Let V = F}, V = Ty, and Frob € Gal(Fy/F)) be the arithmetic Frobenius
z — 2™l We will write G = SLy,(Fy) (resp. Sp,,(F»)). Let 8 be the zero bilinear
form on V' if G = SL,,(Fy) or the symplectic form associated to G if G = Sp,,(Fy).
The classes appearing in of Theorem are the following:

— Class C; (subspace stabilizers):
H = Stabg (W)

with 0 # W < V totally singular or nondegenerate with respect to 5. Note that
W <V is a submodule, so this case does not arise if H acts on V irreducibly.

— Class Cy (stabilizers of orthogonal decompositions):

V = il 1V,

(t = 2, all the V; isometric, n = dim(V})t),
M = Stabg(Vi L---LV)),
H < MPob,

In other words, the elements of M are the g € G such that there exists a
permutation o € &; with gV; = V,;) for all 1 < <.

— Class C3 (stabilizers of totally singular decompositions): if G = Sp,,(F),

|4 Vi@V, (V; maximal totally isotropic: Bly;, = 0),
H < MFrob‘

In other words, the elements of M are the g € G such that there exists a
permutation o € &y with gV; = V,;) for i = 1,2. In particular, dim(V;) =
dim(Va) = n/2.

— Class Cy4 (stabilizers of tensor product decompositions):

V. = Vi® -V, (dmV; =2, t>2),

L = GWV) x---x G(V;), acting on V by tensor product,
H < ]\4’Frob7

with ¢ = 2 if the V; are not mutually isomorphic, where we write G(V})
for the classical group of type G on the vector space V;. Note that n =
dim(V1) ...dim(V;), and n = dim(V4)" if the V; are mutually isomorphic. We
have

7 (N, @) (E) 0 G) < Nogp, g, (7(D)) 0 7(G) = N.
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Since 7(G) has trivial center, there is a morphism from N to

Aut(r(L)) = Aut(r(G(V1)) x - x 1(G(V1)))
Aut (1(G(W1))) x Aut (1(G(V2))) :t=2
T Awt (7 (G(W)) 1S, > 2
_, ) Out(x(G(V1))) x Out (7(G(V2))) :t =2
Out (7(G(V1))) 1 & it > 2,

with kernel isomorphic to w(L) n 7(G). The isomorphism on the second line
follows from:

Lemma 3.14. Let G1,...,G; be nonabelian simple groups and let G = G X
- X Gy. Then Aut(Gy x -+ x Gy) is isomorphic to

Aut(Gy) x -+ x Aut(Gy)
if there is no isomorphism among the G;, respectively
Aut(Gl) Gh

if the G; are mutually isomorphic.
Proof. Proceed as in the second paragraph of the proof of | , 3.3.20]. O

— Class C5 (symplectic-type r-subgroups):

(H) = Z)r*™ . Spo,, (F.) G = SLy(Fpm)
7/2?™. GOy, (F2) : G = Sp,,(Fam)
with n = ™, r # £ prime, { = 1 (mod r(2,7)). Here, we only give the classifi-
cation of the subgroups that arise in the class; for more details about the latter,
see | , Section 4.6].
— Class Cg (normalizers of classical groups): For G = SL,(F)) with n odd (since
¢ # 2, this class does not arise in the symplectic case) and F' < F) a subfield

such that [F'| = |F,|'/2,

H = NG(SOn(FA)) or NG(SUn(F/))

— Class C7 (subfield subgroups): For ' < Ty of prime index,

H = Ng(G(F")).

Note that the unitary cases of classes Cg and C; do not arise if Fy = [Fy.

Remark 3.15. Similar results hold for other classical groups and the description
of the classes C; can be made more explicit (see | D).
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Review on automorphisms groups. We now recall results about automorphisms of
Lie algebras/Lie groups/finite groups of Lie type that will be useful several times
in this chapter and the next one, in particular to handle class C4 and case of
Theorem

Proposition 3.16. If G is a simple Lie algebra (resp. a simply connected sim-
ple Lie group) over an algebraically closed field, there is an isomorphism between
Out(G) and the group of graph automorphisms of the corresponding Dynkin dia-
gram.

Proof. This can be found in | , Chapter 16.5] and | , Proposition D.40].
Ul

In the finite case, this becomes:

Proposition 3.17. If G is a finite simple group of Lie type defined over a finite
field k, every automorphism can be written as the product of an inner, graph,
diagonal, and field automorphism. More precisely,

Out(G) = (Diag(G) Aut(k)) .Graph(G),

where Diag(G) (resp. Graph(QG)) is the group of diagonal automorphisms (resp.
the group of graph automorphisms of the corresponding Dynkin diagram,).

Proof. See | , 4.237] and | , Theorem 12.5.1]. O
Proposition 3.18. The automorphism group of a Dynkin diagram is

72 for Ay, Dy (n>1), and Eg,
S3 for Dy,

trivial  otherwise.

3.3. LoOCAL MONODROMY OF KLOOSTERMAN SHEAVES

In this section, we summarize the properties of Kloosterman sheaves (see Sec-
tion ) that will be useful to recall Katz’s | | computation of the mon-
odromy over C and to prove our version over ). According to Katz, all were
already known to Deligne but the last one.

Proposition 3.19. Letn > 2 and let Kl,, be the Kloosterman sheaf of A-modules
over Iy from Proposition , corresponding to a representation p : w4 —
GL,,(A), for A equal to Qy, or Fy. Then

(1) Kly, is unipotent as Iy-representation, with a single Jordan block.
(2) Kl,, is totally wild at oo, with Swane, (Kl,) = 1. In particular:

a) p(1y) acts irreducibly on A™ and admits no faithful A-linear represen-
tation of dimension < n.

b) Any character p(I1y,) — A* is trivial on p(Py).
(3) det Kly, is trivial.



44 Chapter 3. Monodromy

(4) If n is even, there exists an alternating perfect pairing Kl, ® Kl,, — A of
lisse sheaves.

(5) If n is odd, then Kl, ® Kl,, is totally wild at oo, with all breaks at 1/n. In

particular, there is no nonzero Py -equivariant bilinear form Kl, ® Kl, — A.

Proof. (1) See | , 7.4.1]. By | , 12.3.3|, Kl,, as a sheaf of F)\-modules
still has a single Jordan block.

(2) This is | , 1.11, 1.18] with the fact that Swan., (Kl,) = 1.
(3) See | , 7.4.3].
(4) See | , 4.1.11] (existence) and | , 4.2.1] (sign).
(5) For the first assertion, see | , 10.4.4]. For the second, proceed as in
[[Katss, 4.1.7).
In the finite case, see also | , 12.3]. O

3.3.1. Explicit local monodromy. We now compute explicit conjugacy classes
in the monodromy groups that will serve as heuristics and to exclude subfield
subgroups in the computation of finite monodromy groups.

Local monodromy at o0. The local monodromy at oo of Kl, is determined ex-
plicitly in | | (as Py-representation) and | | (more precisely as Io-
representation), and more generally for hypergeometric sheaves in | , Propo-
sition 0.7]. We make this even more concrete for Kloosterman sheaves by finding
a matrix form of the representation.

Proposition 3.20. Assume thatn > 2 is coprime with p and that k = F, contains
a primitive 2nth root of unity (an. Let Z € k(T) be a solution to Z** = T and
W e k(Z)=k(T) be a solution to

W —w = —22.

Then the restriction I, — GL,(Q,) of the representation associated to the sheaf
Kl, over k is isomorphic to

iy (izitio) (ntrge (aoCh)
o — <(—1f +)( " L?<//p Oi—j=io (mod n)
p 1<i,j<n,

where ig € Z/2n and ag € k are such that o(Z) = (22 Z and o(W) = (3°(W + ao).
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Remark 3.21. Assuming that k contains a nth root of unity is not a restriction for
our purpose. Indeed, if L/k is a finite extension, we have a commutative diagram

Ior, = Ink
g £ o
T1,L \ / T,k
Proof. By | , 10.4.5] and | , Lemma 4.8]", the representation of I,

corresponding to Kl, is isomorphic to
1
[z 2" (£577 ® Lyam))

where y32 is the character of order 2 of E); and 1 (z) = e(tr(x)/p). In other words,
it is isomorphic to
Indz? (£33 ® Lygan)) -

where I, ,, is the unique subgroup of index n in I (see | , 1.13]).
YY) (Z,W)=k(ZW
/k \
k(Y)(2) ¥Y)(W)
M /
‘Z/n
k(T) = k(Y™)

The extension k(Z, W)/k(T) is Galois, and we have a split exact sequence

0 k 0
| | 2|

Gal(k(Z,W)/k(2))  Gal(k(Z,W)/k(T))  Gal(k(Y)(2)/K(T)),

so an isomorphism

kxZ/2n — G=Gal(k(Z,W)/k(T))

(a,i) — ola,i)

where o(a,i) is such that W — (2 (W + a) and Z — ¢}, Z. For every (a,i) € G,
there exists an element of I, extending o(a,?), that we will again denote by
o(a,i).

We have
(n)

IOO,’VL = IOO [ 7Tl7q7

2The factor 1/k in 1[1 therein should be replaced by k.



46 Chapter 3. Monodromy

where WET;) = Gal(K(T')/K(Y)) is the subgroup of index n in 7 4. Indeed,

Io/(Io n 1) = Lon™ /i = myq/m")
Gal(k(Y)/k(T)) = pn(k) = Z/n.

lIe

Note that (0;)1<i<n is a complete reduced system of representatives of Io,/Iop p,
where we abbreviate o; = (0, 7).

By definition (or properties) of induced representations, a matrix form of the
representation I, — GL,(Q,) evaluated at o = o(ag,ig) € I is then

<(£;;1 ® £¢(In)) (O-’L',j (O-))5O-i’j(o')elw’n)

I<ij<n,

where 0; j(0) = o;'00;. It remains to note that o; j(c) € I, if and only if
2(i — j) = 2ip (mod 2n), in which case:

— By definition of the Artin-Schreier representation,
Ly(eny(0ij(0)) = ¥((0i;(0)(W) = W)n),
and o, (o) (W) — W = (20T g,

— By definition of the Kummer representation, if n is even,

j—i+ig j—itig

Lo oij0) =G 2 =(-1)"n
O

In particular, we see that the image of the representation of I, contains an
element conjugate to the (permutation, up to signs) matrix

0 0 ... 0 (=1)n*!

10 ...0 0
m= 0 1 0 0

0 1 0

Note that m has order n (resp. 2n) if n is odd (resp. even).

Local monodromy at 0. By Proposition , the geometric monodromy group
contains an element conjugate to the Jordan block

1 1
11
u = 1

1
1

Note that for F) a finite field of characteristic ¢, the element u € SLy,(IF)) satisfies
(u®)ij = Sicj<k (]ﬁz) for 1 < i,j < n, so it has order ¢/°&"l by Lucas’ theorem.
In particular, u has order ¢ if £ »,, 1.
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3.3.2. Fields generated by traces. The following will be useful to deal with
subfield subgroups; it shows that we still recover arithmetic information (the sub-
field generated by the traces of the Frobenius) in the geometric monodromy group.

Proposition 3.22. Letn = 2, A be an £-adic valuation on

0 Z[¢p] moddorp=1 (mod 4)
; Z[Cap| otherwise,

and let p, : w1, — GL,(IFy) be the representation corresponding to the Klooster-
man sheaf KCl,, of Ox-modules over Pl/Fq, Then

Fy (Klyg(a) : aeFy) = Fy(tr pp(le)) »
with indez (f,n) in F.

Proof. Under the hypotheses, Fy = F((p) (since (4 € Fyif £ =1 (mod 4)) and
[ = [Fx : F¢] = ord(¢ € F)y). Fisher | , Proposition 2.8| showed that for
Q(¢p)-valued Kloosterman sums,

Q(Kl, 4(a) : a € Fy) = Q(¢,) G (Q@G)/ QM
We proceed similarly to show that for G = Gal(F,(¢,)/Fe),

Li:=TF, (Kln’q(a) ta€ qu)

_ G[n]
Lo = Fy (tr pn (L)) } FelG)™".

For o € G, let u, € F be such that o((,) = (;7, and note that for a € F,

o(Klpg(a)) = Klpglaug)
L ntr AUy 711
o (trp(o(a,0) = trp(o(aus,0)) = Y e 7, /F, (AUaCr) |
i=1 p
where o(a,0) is as defined in the proof of Proposition . Hence, G[n] <

Gal(IF¢(¢p)/L;) for i = 1,2.
On the other hand, let us assume that o € Gal(F¢((,)/L2). For every character
A:FS — F,, we define

$2(8) = Y trp(o(a,0)A(a)

X
a€lfy

= EK(Q)G”(A) = ndy,, =1Gn(A),
i=1

where G, (A) := Zaqux e (%W) A(a) # 0 since Gn(A)G_,(A) = ¢q € F}.
Then, since o |r,= 1, we have Sa(A) = A(uy)S2(A), which yields that A(u,) = 1
whenever A |,,= 1. Thus, ZAeF;/MH Alug) = (¢ — 1)/n, so that u, € puy, ie.
o€ G[n].

Similarly, Gal(IF¢((p)/L1) < G[n] by considering Si(A) = Zaqux Kl, 4(a)A(a)
(as in | , Proposition 2.8| over number fields).

The claim on the index follows from |G[n]| = [(Z/f)[n]| = (n, f). O
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Q(¢p) Z[Gp) [ Fi=TFu(Gp)
(p—1,n) | G[n] (fm) | Geln]
Q(Klyy(a) : a € F,) Fy(Kl(a): acF,)
) 162D
0 z 0#£p F,

3.4. MONODROMY GROUPS OF KLOOSTERMAN SHEAVES

For n = 2, we study in this section the monodromy groups of the Kloosterman
sheaves Kl,,, as sheaves of Qy, Z[(4p]x, and Fy-modules. Most of it is dedicated
to proving our result on the finite monodromy.

3.4.1. Monodromy over C. By (3) and (4) of Proposition , the monodromy
groups of the Kloosterman sheaf Kl,, of Q,-modules over F, satisfy

SL,(C) :n>2
Ggeom (Kln) < Garitn (Klp) <
geom (Kln) arith (Kl {Spn((C) :n = 2 even
One of the main results of Katz | | is that the two groups coincide and
are as large as possible:
Theorem 3.23 (| , Chapter 11]). In the above setting, assuming that F, has

odd’ characteristic,

SL,(C) :mn odd

Sp,(C) :n even. (3:1)

Ggeom(lCln) = Garith(ICln) = {

The proof follows the strategy described in Section

Katz’s classification theorem. By Proposition 3.2, G, (Klyn) < SLy,(C) is semisim-
ple and acts irreducibly on C" (since the sheaf is geometrically irreducible). Thus,
the Lie algebra G of Ggeom(lCln) is semisimple and has a faithful irreducible repre-
sentation into sl,(C). By using the existence of a unipotent element with a single
Jordan block (Proposition ), Katz shows that G is even simple (|
11.5.2.3]).

Hence, the proof of Theorem is reduced to the following classification
theorem. Indeed, cases other than sl,(C) (n odd) or sp,(C) (n even) in the
conclusion of Theorem are excluded by properties and of Proposition

. This determines G2, (Kl,,) and then Ggeom (Kly) (see | , 11.7]).

geom

)

Theorem 3.24 (| , Classification Theorem 11.6]). Let n = 2 an integer and
G a simple Lie algebra over C given with a faithful irreducible representation

p: G < sl,(C).

3The characteristic 2 case is also handled by Katz, but we omit it here for the sake of
simplicity.
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Suppose that there exists a nilpotent element N € G such that p(N) has a single
Jordan block. Then the pair (G, p) is isomorphic to one of the following:

(1) G = 51,(C) (n = 2), sp,,(C) (n =4 even) or s0,(C) (n =5 odd), with the
standard n-dimensional representation.

(2) G = g,(C) with its unique 7-dimensional irreducible representation.

Remark 3.25. Theorem also follows from a classification of Suprunenko | ,
Theorem (1.9)], which is valid over an algebraically closed field of arbitrary char-
acteristic, and that we will use in the next section after descent.

3.4.2. Integral monodromy. We now consider the Kloosterman sheaf Kl,, of
Z[Cap)x-modules over F, (see Section ). By and of Proposition ,
we still have

SLn(Z[Q;p])\) :n odd

Ggeom (Kln) < Garitn (Kly) <
& ’ Spn(Z[Capla) i even.

As Katz notes in the introduction of | |, it is an interesting question to ask
whether these integral monodromy groups are still equal and as big as possible,
i.e. is it true that

SLy(Z[Cap]r) :n odd

Spn(Z[<4p],\) 1 n even, (32)

Ggeom(’Cln) = Garith(ICln) = {

knowing that their Zariski closure in GL,(Qy) is SL,(Q,) (resp. Sp, (Q;)) by
Theorem ?

In | , Chapter 12|, Katz presents the proof of the following result of
Gabber:

Theorem 3.26 (Gabber). If Z[(ip|x = Z¢ (e.g. if € is completely split in Z[(ap] ),
then there exists an integer D = D(n,p) such that (3.2) holds if £ > D(n,p).

Unfortunately, the constant D(n,p) in the proof is ineffective, and nothing
shows that it should be independent from p. A similar result is shown by Nori
[ |, with the same limitations.

For the applications in analytic number theory that we consider, however, we
require that (3.2) holds for all £ large enough, independently of p.

3.4.3. Finite monodromy. Finally, we consider the Kloosterman sheaf Cl,, of
Fy-modules over [, (i.e. the reduction modulo the ideal corresponding to X of the
sheaf of Z[(4p|r-modules from the last section).

Again, we can wonder whether the finite monodromy groups

SL,(Fy) :nodd

G eom ’Cln < Gari ICln <
geom (Kln) th(Kln) {Spn(IF)\) :n even

are equal and as big as possible when ¢ », 1. We will show that this is indeed the
case:
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Theorem 3.27. Assume that n is coprime with p. For £ >, 1 with ¢ =1 (mod 4)
and (n,[Fy : Fy]) = 1, the monodromy groups of the Kloosterman sheaf of -
modules Kl over Fy are

SL,(Fy) :n odd

(3.3)
Sp,,(Fy) :n even.

Ggeom(lcln> = Garith(lCln) = {

The same results hold true without restriction on ¢ (mod 4) if p =1 (mod 4) or

n is odd, with O = Z[(p].

Remark 3.28. In any case, this holds for a set of valuations A of natural density
1, since

ANLZ[Cpl: =1 (mod4)} D {AJZ[lp|:£=1 (mod 4p)}
= {A<Z[(4p] degree 1}.

Consequence on integral monodromy groups. Of course, (3.2) would imply (3.3)
for all ¢ by surjectivity of the reduction SLy(R) — SL,(R/a) for any discrete
valuation ring R and a < R (since SL,(R) is generated by elementary matrices in
this case). Conversely, an argument of Serre | , IV-23, 27-28] actually implies:

Corollary 3.29. For { », 1 with £ = 1 (mod 4), the monodromy groups of the
Kloosterman sheaf of Z[Cap|r-modules Kl,, over Fy are as given by (3.2).

See also | , 8.13.3] for a result valid for general closed subgroups of
GL,(O)).

3.4.4. Further existing results and heuristics.

The results of Larsen-Pink. By results of Larsen and Pink (see | , Theorem
3.17] and the applications in | , Section 7], | , pp. 155-156], | ,
p. 29| and | , p- 7]), the monodromy result of Katz over C (Theorem )

implies that for all p, there exists a set A(n,p) of primes of Dirichlet density 1
such that for all £ € A(n,p), the result (3.3) holds, because Kloosterman sheaves
form a compatible system (see | , 8.9]).

However, as for the results of Gabber and Nori, the way A(n,p) is constructed
is highly dependent on p. This is not a problem for the applications of Kowalski
mentioned above, but issues arise if we need to take ¢, p — oo with some restrictions
on the range as in | ].

Note incidentally that | | uses in particular the classification of finite sim-
ple groups.

(Invariant) generation of SL,(IFy). As an indication that the monodromy group
for n odd should be SL,,(Fy), we have the following

Proposition 3.30. Forn odd, the elements u and m from Section generate
SL,, (Fy).
Proof. Proceed in a similar way to Gow-Tamburini | |, considering w =

m2u(mum)~! and using induction on n. O
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However, we do not know whether these elements are invariant generators,
namely whether any two conjugates are still generators. Without that, we may
not conclude anything for our problem. For ¢ small, the answer is negative, but
one may wonder if that holds for £ »,, 1.

Ezample 3.31. The pair (h~'uh, m) does not generate SL3(F3) for h = (é] § %).
More precisely, this pair generates the group for about 61% of the elements h €

GL3(FF3). This proportion increases to about 93% for SL3(F5).

There are many results on probabilistic invariant generation of classical groups,
for example by Guralnick, Malle, Kantor, Lubotzky, Saxl or Weigel, but we con-
sider here two specific elements.

The case n = 2 and Fy = Fy by the work of Yu and Hall. Hall | | proved
the following classification theorem, which generalizes a theorem on Yu on the
Fy-monodromy of hyperelliptic curves, and also applies to show big monodromy
results for families of twists of elliptic curves, as needed in | |.

Theorem 3.32 (| , Theorem 1.1]). Let V be a Fy-vector space with a perfect
pairing V. xV — Ty, and let H < GL(V) be an irreducible primitive subgroup that
preserves the pairing.

(1) If the pairing is symmetric, H contains a reflection and an isotropic shear,
and £ = 5, then H is one of the following:

a) the full orthogonal group O(V'),
b) the kernel of the spinor norm,

c) the kernel of the product of the spinor norm and the determinant.

(2) If the pairing is alternating, H contains a transvection and ¢ > 3, then

H = Sp(V).

See also the more general version | , Theorem 3.1]. In the alternating case,
this is a relatively direct application of a classification of linear groups generated
by transvections by Zalesski and Serezkin, which is a well-known result of Dickson
for n = 2.

We can apply this to the sheaf Kly as follows:

Proposition 3.33. Let ¢ > 5 be a prime with £ = 1 (mod p), so that Fy = Fy
(see Remark ). Then (3.3) holds for the Kloosterman sheaf Kla of Fg-modules
over Fy: the arithmetic and geometric monodromy groups are equal to SLo(Fy).

Proof. A unipotent element of drop 1 is an element whose Jordan decomposition
has exactly one Jordan block of size 2 and all other blocks trivial. Moreover, a
transvection is an element of drop 1 and determinant 1. The result then follows
from Proposition and Theorem (or the corresponding result of
Dickson). O

However, this argument does not generalize to n = 3, since the image of the
inertia at 0 in KCl,, contains a transvection only when n = 2. Moreover, we cannot
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handle the case Fy # Iy, since Hall considers only reduction of sheaves of Z,-
modules (and not Z[(4p|r-modules as for Kloosterman sheaves).

3.4.5. Classification theorem over F). We will prove Theorem by first
proving the following classification theorem. This is to be compared with how
Katz’s Classification Theorem (for complex algebraic groups) was used to
prove his Theorem

Theorem 3.34 (Classification theorem over Fy). Let n = 2, let Fy be a field of
characteristic £ and let

SL,(Fy) :mn odd
T Sp,(Fy)  :n even

be a maximal (proper) subgroup such that:

(1) The action of H on FY is irreducible.

(2) H contains a unipotent element with a single Jordan block.
Then, for £ >, 1, we have either:

(1) H = Ngr,,,(,)(SOn(Fy)) for n =3 odd.

(2) H = Ngr,,(r,)(SLn(F')) forn =3 odd or H = Ngp, (r,)(Sp,,(F)) for n even,
if B! <y is a subfield of prime degree.

(3) H = Ngi,,(r,)(SUL(F)) for n = 3 odd, if F' < Fy is a subfield such that
[F'| = [Fa|'/2.

Remark 3.35. We recall that for n odd, there is only one type of orthogonal group
over a finite field up to isomorphism (see e.g. | , Section 2.5]), so we do not
need to specify the quadratic form.

Proof of Theorem from Theorem . Assume that there exists a maximal
subgroup Ggeom(Kl,) < H < SL,(Fy) if n is odd (resp. Sp,,(Fy) if n is even) be
a maximal (proper) subgroup. By Proposition , H satisfies the hypotheses of
Theorem

It remains to show that the four cases of the conclusion of the latter are
excluded:

(1) For n odd and T' = SO, (F)), we proceed as in | , 11.5.2]. We have
H = Ng1,, ) (T) = T % pn(F).

Over C, this follows from the fact that T' contains no nontrivial scalars and
that all automorphisms are inner by Propositions and . In the
finite case, we must take into account diagonal and field automorphisms by
Proposition : the result is given in | , (2.6.2), Cor. 2.10.4, Prop.
2.10.6] (and is also true for™ T' = G2(F)) < SO7(F)) because there are no
diagonal automorphisms).

4This is the realization of Gy as the automorphism group of imaginary octonions, see [ ,
4.3].
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Let p : w14 = GLy(F)) the representation corresponding to Kl,,. By of
Proposition , considering the character p(Iy) — H — un(Fy), we must
have p(Py) < T, which contradicts of the same proposition. Indeed, T
preserves a nonsingular symmetric bilinear form.

For and (3), where subfields appear, we use Proposition : under the
hypothesis ([Fy : F¢],n) = 1, we have

Fy = Fo(tr pn(Lon)) < Fo(tr(Ggeom))- (3.4)

Lemma 3.36. For L/k an extension of finite fields and G € {SL,, Sp,},
[n] Ny (G(R)) < Gk),

where [n] : G(L) — G(L) is defined by g — g".
Proof. Let o € Auty (L) be the Frobenius. If g € Ng (1) (G(k)), we have ghg € G(k)
for all h € G(k), i.e. o(ghg™!) = ghg™! (applying o entry-wise), so o(g)ha(g)~! =
ghg™!, which shows that o(g)g~" € Cg1)(G(k)). Recall that SL, (k) is generated
by elementary matrices e; ; (i # j) and that Sp,, (k) (with the usual form) contains
the elementary matrices e; 5;) where o(i) = i + n — 1 (mod 2n). This yields

Car)(G(k)) < Z(G(L)). Therefore, o(g) = A\gg with Ay € un(L). Since o(g") =
o(g)" = g", we get that ¢g" € G(k). See also | , 4.5.3-4]. O

(2) If H = Ng,)(G(F')) with G € {SLy, Sp,,}, then Lemma shows that
tr p(o(an,0)) e F/

for every a € F,. Since (n,p) = 1, it follows that tr p(I,) < F’, which
contradicts (3.1) since F’ is a proper subfield of F.

(3) Finally, we use a combination of the techniques used in (1)-(2) to handle
the case of H = Ngr,, (r,)(SU(F")). By | , Proposition 4.8.5],

SUn (F') x pn(F»)
SUR(F') A pn(F)
SUn (F') x pn(F»)

tinas ey (Fr)

H = 11,(Fy) SUL(F) =

By Proposition applied to the representation

H — piy )i+ (Fr)

restricted to p(Iy), we have p(Py) < SU,(F'). In other words, Py, leaves
invariant the sesquilinear form on (F))™ associated to the involution o €
Aut(Fy), z — 2/,

Asin (5) of Proposition (and its proofin | , 4.1.5-4.1.8]), this yields
an isomorphism of Py,-representations between p and o(D(p)). Equivalently,
there exists A € GL,(F)) such that

Ap(g)A~" = o (p(g™")") for all g € Py,

so Ap(Py)A~1 < GL,(F"), which contradicts again (3.1).
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O]

Remarks 3.37. The conditions p t n and ([Fy : F¢],n) = 1 in Theorem are
required to exclude subfield subgroups. In particular:

— If p | n, the elements produced with Proposition are all trivial.

— If e = ([Fy : Fy],n) > 1, Proposition shows that we cannot exclude that
Ggeom lies in N, ) (G(F')), for I < Fy a proper subfield of index e (where
G = SL, if n is odd, Sp,, otherwise).

Moreover, in the case p =3 (mod 4) and ¢ = 2 (mod 3), we cannot exclude that
Glgeom is defined over Fy((,) < Fy(Cap) = Fy. Indeed, (4 € Fy because of the Tate
twist, which is trivial on the geometric fundamental group.

In | | (and applications in | | and | |), subfield subgroups
do not enter the picture because only sheaves of Zy,-modules are considered, as
opposed to reductions of sheaves of Z[(4p|r-modules for Kloosterman sheaves.

The remaining of this section is dedicated to the proof of Theorem

3.4.6. Strategy for the proof of Theorem . The latter will be proven by
using the classification of maximal subgroups of classical groups (Theorem )
presented in Section . The strategy is the following:

First, we exclude elements of classes Ci,...,C5 by using that H contains a
unipotent element u with a single Jordan block. Classes Cg and C7 remain in the
conclusion of Theorem

Remark 3.38. This also appears in | , Proposition 2.1] to classify subgroups
of algebraic groups over an algebraically closed field containing a regular unipo-
tent element (i.e. a unipotent element with a single Jordan block in the case of
SL,), where the authors use the generalization we mentioned in Section of
Aschbacher’s result to algebraically closed fields by Liebeck-Seitz | |. We will
comment further on this later on.

On the other hand, if H satisfies (2) of Theorem , there exists a nonabelian
simple group S such that

S =n(T) < H=n(H) < Aut(9)

with 7' < H < SL,(F)) and T acting irreducibly on ﬁz, for 7 : SL,, — PSL,, the
projection.

Since u € H has order ¢ (and is not scalar), we have |H|,|H| > ¢. Hence, when
£ >, 1, the following result allows to reduce to the case where S is a group of Lie
type in characteristic £.

Theorem 3.39. Let S < PGL,,(F,) be a simple group. Then either |S| <, 1, or
S is a group of Lie type in characteristic £.

Our first proof used the classification of finite simple groups, but this is also a
particular case of a powerful theorem of Larsen-Pink, independent from the clas-
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sification.

Let us then assume that S is a finite group of Lie type in characteristic £. We
first show that the degree of the field of definition must be small, according to
results of Liebeck on the minimal dimension of faithful irreducible modular repre-
sentations of simple groups of Lie type. This implies that the group of outer auto-
morphisms is small, and then that S must contain the regular unipotent element
of H for £ », 1. Over an algebraically closed field, the irreducible representations
of a semisimple algebraic group with central kernel whose image contains an el-
ement with a single Jordan block are classified by a result of Suprunenko. The
absolute irreducibility of the action of 1" allows to descend to finite groups of Lie
type by a result of Seitz-Testerman, and this gives Theorem

Remark 3.40. The strategy to exclude alternating groups and groups of Lie type
in cross-characteristic in the almost simple case of the characterization is quite
standard (see e.g. | , Chapter 28]). The results of Liebeck mentioned are
notably used in | | to determine the probability that two random elements
of PSL,,(F/) are generators, in the case ¢ < 9.

Remark 3.41. According to | |, building on Theorem and the classifica-
tion of finite simple groups, a maximal subgroup H of a classical group over a
finite field ), of characteristic £ satisfies one of the following:

— H belongs to one of the families Cy, ..., Cs.

— H is Alt(c) or &, with c € {n +1,n + 2}, and H — GL,(F)) is the repre-
sentation of minimal dimension.

- [H| < [FaPr.

As we just mentioned, it is relatively easy to exclude the first two families by using
the presence of a regular unipotent element or the growth of H when ¢ — 0. Since
| SLn(F))| = ©n([FA|"*"1) and | Sp,,(Fa)| = On(|[FA|"21), the result of Liebeck
shows that in the remaining cases H is quite small. In other words, we only need
to show that the monodromy group is “moderately big” to show that it is the full
classical group expected.

3.4.7. Excluding members of classes Ci,...,C5. Let us consider a group
He Ule C; acting irreducibly on V and containing a unipotent element u with a
single Jordan block. We use the notations of Section . We assume throughout
¢ >, 1 so that u has order /.

Lemma 3.42. Let K be a field and v € SLy,(K) be a Jordan block of size n. There
are n + 1 subspaces which are u-invariant, given by 0, span(e; ), span(ey,ea), ...,
V = span(eq,...,epn), where (e;) is the canonical basis of K™.

Proof. As a K[u]-module, V is isomorphic to K[X]/(X — 1)" and the claim is
then clear since K[X] is a principal ideal domain. O

Class C1. The first class is excluded by the assumption that H acts irreducibly
on V.
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Class C2. By assumption, there exists a permutation o € &; such that uV; = V,;
for all 7. Note that there is at most one V; which is u-stable, since the V; are
disjoint with equal dimension, and w has exactly only invariant subspace of each
dimension 0 < d < n, by Lemma . In particular, o has at most one fixed
point. Write o = o1 ...0y where o1,...,0; are disjoint cycles, with o; of length
2 < 55 < n. Since v has order ¢, we have

‘/i = UK‘/i = Vaé(i)v
so of = id and either
— o0 = id, which implies that all V; are u-stable, a contradiction.

— ord(c) = lem(s1,...,s;) = €. Hence s; = £ for all j, thus k¢ = n — |fix(o)],
ie. £|norf|n—1. This can be excluded if £ > n.

Class Cs. (for G = Sp,,(Fy)). This is excluded in the same way as class Ca.

Class C4. Consider the morphism

Out (7(G(V1))) x Out (7(G(V2))) :t =2
Npcr,)(T(L)) nm(G) — .

Out (7(G(V1))) 16 > 2
with kernel (L) n 7(G). If w(u) ¢ w(L), then the order of the image of 7(u) is
0| |Out (n(G(V;)| t! = 2t¢!
for some i € {1,2}, by Propositions and . Thus ¢ «, 1 since t < n. On
the other hand, elements in w(L) have at least two Jordan blocks’, which also
rules out the case m(u) € w(L). Indeed, if g1 € G(Vi) and g2 € G(V2) are two
Jordan blocks, then g1 ® g2 fixes the linearly independent vectors v1 1 ® ve1 and
V12 ® V21 — V1,1 ® V22, Where v; 1,v; 2 are the first two elements of the standard

basis of V; (i = 1,2).

Remark 3.43. A finer analysis in | , pp. 374-375| shows that taking ¢ > 5 is
sufficient.

Class Cs;. Consider the morphism
H — n(H) — m(H)/(Z/r"™) = Spap, (Fr).
Since u has order ¢ # r, the image of u in Sps,,, (F,) still has order ¢, hence
O] Spom (Fr)| = ™ (r2 = 1)(r = 1) ... (2™ — 1) < pm D),

which implies that ¢ «,, 1 because n = r™.

5Since the center of GL, (F,) is the group of scalar matrices, it makes sense to speak of the
number of Jordan blocks of an element in PGL (Fy).
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3.4.8. Excluding almost simple groups. Let us now assume there exists a
nonabelian simple group S such that

S =n(T) < n(H) = H< Aut(9),

with T' <0 H < SLy,,(F,) and T acting irreducibly on Fy. We assume moreover (see
the hypotheses of Theorem ) that H contains a unipotent element u with a
single Jordan block, so in particular |H|, |H| = ¢ as above.

Reduction to groups of Lie type in characteristic £. Theorem is a direct con-
sequence of | , Theorem 0.2] (see | , Theorem 0.3]), exploiting the theory
of algebraic groups.

Let us nonetheless show how it also follows from the classification of finite
simple groups (| , no. 1, p. 6]). According to the latter, S can be:

(1) An alternating group Alt(m) of degree m = 5.
(2) A simple group of Lie type over a finite field F,:
a) A classical group of type A, (n > 1), B, (n = 2), Cp, (n = 3) or D,
(n>4).
b) A Chevalley/Steinberg group:
— Exceptional type: Eg, E7, Eg, Fy, Go.
— Twisted type: 24, (n = 2),2D, (n > 4).
— Exceptional twisted type: 2Eg,3Dy.
c¢) A Suzuki-Ree group: 2B5(227+1),2F4(22"*F1) over Fozni1, or 2Go(3%7+1)
over Fgsnt1.
(3) A sporadic group.

Thus, it suffices to prove:

Proposition 3.44. If S is sporadic, alternating or of Lie type in characteristic
coprime to £, then £ <, 1.

Proof. First note that we have | Aut(S5)| «,, 1:
— If S is sporadic, this is clear.

— If S = Alt(m) (with m > 5), then Wagner | , Theorem 1.1] showed
that the dimension of a faithful modular representation of S is at most n+ 2.

Since S < H < PSL,,(F)), it follows that m < n + 2, so | Aut(S5)| «,, 1.
— If S is of Lie type of rank [ over a field IF,. of characteristic distinct from £,
then the main theorem of Landazuri-Seitz | | shows that r,l <, 1, so

that | Aut(S9)| <, 1.

Hence £ < |H| < | Aut(S)| <, 1. O
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Groups of Lie type in characteristic £. Assume now that S is a group of Lie type
of rank [ over F,., with r = ¢¢. The first difficulty to overcome is that we do not
know a priori whether S itself contains a regular unipotent element. However, we
can show:

Proposition 3.45. If ¢ », 1, then w(u) € S and T contains as well an element
with a single Jordan block.

We prove this proposition in the following paragraphs. Recall that we have an
exact sequence

1 — S ~Inn(S) - Aut(S) — Out(S) — 1,

an inclusion S < H < Aut(S), and n(u) € H of order ¢. If 7(u) ¢ S, then its
image in Out(S) has order ¢ and so ¢ divides | Out(S)|. Thus, it suffices to show
that | Out(S)| «,, 1 to rule out this possibility.

Lemma 3.46. We have
| Out(S)| = Na

with N € {1,2,6,8,12} unless
- S = Ai(r) with | = 3 odd, where we have | Out(S)| = 2a(l + 1,7 — 1), or
~ 8 =2Ay(r) with | > 3 odd, where we have | Out(S)| = 2a(l + 1,7 + 1).

Proof. See Propositions , and Table 3.2: there are a field automorphisms,
1,2 or 3 graph automorphisms, and less that 4 diagonal automorphisms, except
for A; and ?A; which have respectively (I + 1,7 — 1) and (I + 1,7 + 1) diagonal
automorphisms. ]

Letting m(S) be the minimal dimension of a faithful irreducible projective rep-
resentation of S over an algebraically closed field of characteristic £, the following
result lets us bound the rank of S and the degree of its defining field:

Lemma 3.47. We have

I < m(S) < nllFxFeda)/a

Y

whence l,a <, 1. In particular, for n fized, there is only a finite number of
possibilities for S.

Proof. The bounds follow from | , (2.1)-(2.2)] and the fact that S < H <
lPSLn(IFl)\). Since m(S) = 2 (see Table 3.1), we have a < [FA}]FO;% <n 1, so thaDt
,a <p 1.

Remark 3.48. This is to be compared with the fact that SL, (C) has no nontrivial
irreducible complex representation of dimension < n (and no nontrivial finite-
dimensional unitary representation).

Remark 3.49. By a result of Seitz | , Corollary 6], one could actually assume
that a = 1.
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S m(S)
A, 2Al [+1>=2

By 204+41=5

C 20> 6
D,,%D; 20> 6

3Dy 8

Gy 7

Fy 26
Eg,2FEg 27

Er; 56

Fxg 248

Table 3.1: Minimal dimension of a faithful irreducible projective representation of
a simple group of Lie type over an algebraically closed field in the same charac-
teristic p > 3, according to | , Table 2] or | , Table 1].

By Lemmas and ,
|Out(S)| < 12a(l + 1) «,, 1,
which concludes the proof of Proposition

The next difficulty is that we do not know whether the action of T on [}
is the action induced by T" < H < SL,(F)), i.e. if the inclusion " — SL,,(F))
is the standard representation. However, thanks to Proposition and the
irreducibility of the action of T on V', we can now apply the following:

Theorem 3.50. Let T < SL,,(Fy) be a finite group of Lie type in characteristic
¢ =5, of simply connected type and acting absolutely irreducibly on FY. Assume
that T' contains an element with a single Jordan block. Then either (up to conju-

gacy):

(1) T = SL,(Fy), Spin,,(Fy) for n odd or Sp,,(Fy) for n even, with the standard
embedding in SLy(Fy).

(2) T = SU,(F") with the standard embedding in SL,, (Fy), if ' < F) is a subfield
such that [F'| = |Fy|'/2.

(3) T = Go(Fy) and n = 7, with T < SL7(Fy) the unique 7-dimensional irre-
ducible representation.

This is a version of | , Theorem (1.9)| for finite groups of Lie type”. To
prove this variant, we use the lifting theorem of Seitz and Testerman:

Theorem 3.51 (| , Theorem 1, case G = SL,|"). Let H be a simple algebraic
group over Fy, with a Steinberg endomorphism F: H — H, and X = [HY , H"]
perfect. If ¢ :+ X — SL,(F\) is a morphism such that o(X) lies in no proper

5Suprunenko remarked herself in the article that the results could be “easily transferred to
irreducible Fo-representations of finite Chevalley groups over fields of characteristic £.” It seems
however that we need to restrict to absolutely irreducible representations.

"See also | , Section 29.2].
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F-stable parabolic subgroup of SL,(Fy), then ¢ can be extended to a morphism of
algebraic groups ¢ : H — SL,(Fy) with ¢ |x= .

Proof of Theorem . By hypothesis, T = TF for T a simple algebraic group
over Fy and F : T — T a Steinberg endomorphism. We consider the absolutely
irreducible representation ¢ : T — SL,(F)). By irreducibility, the image of T
is not contained in a proper parabolic subgroup of SL,,(F)). Theorem thus
shows the existence of a morphism ¢ : T' — SL, (F,) extending ¢ and which is still
an irreducible representation. We can then apply | , Theorem (1.9)], and the
classification of Steinberg endomorphisms | , 22.1-22.2| gives the result. O

Remark 3.52. Again, compare Theorem with the fact that the only non-
trivial irreducible representations of SL,(C) of dimension < n are the standard
representation and its dual.

If n is odd, the cases T' = Spin,(F»), G2(F,) and SU,(F’') can be excluded
by the hypothesis of Theorem , since these fix a nondegenerate bilinear or
unitary form on V' (see the proof of Theorem page 53; note that we use here
that 7' — SL,(F,) is the natural representation). If n is even, there are no other
cases than T = Sp,,(Fy). This concludes the proof of Theorem

3.4.9. Concluding remarks.

Katz’s classification theorem. We note that Katz’s Theorem , leading to the
determination of monodromy groups over C of Kloosterman sheaves, follows from
Suprunenko’s result | , Theorem (1.9)].

Further classification theorems. Let K be an algebraically closed field of char-
acteristic £ > 0 and let G be a classical group over K (e.g. G = SL,(K) or
G = Sp,,(K)) with associated vector space V.

Saxl and Seitz | | classified maximal closed subgroups H < G of positive
dimension acting irreducibly on V' and containing a regular unipotent element of
G (see Remark ). In particular, this generalizes | , Theorem (1.9)]. A

simplified” version can be stated as follows:

Theorem 3.53 (| , Theorem B|). Let H < G as above, and assume that { = 0
or £ » 1. Then either:

(1) H is imprimitive on V, £ > 0, G # SO, (K) and
H = Stabg(Vi L+ L V)
for an orthogonal decomposition V.=V, L --- LV, with t a power of £.
(2) H° is tensor indecomposable on V and H < G is either

a) SLQ(K) < G,

8In | |, H is actually assumed to be reductive, but not necessarily irreducible. By | ,
Corollary 17.14] a maximal closed subgroup of positive dimension H < G is either parabolic
(which is excluded if it acts irreducibly on V), or H° is reductive. The condition £ » 1 is not
present in | |, but was added here to simplify the statement.
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S | Out(9)]
2a =1
Ay(r) 2a 21> 2 even
2a(l+1,r—1) :1>3odd
2a : | even
2A(r)
2a(l+1,r+1) :lodd
By(r), Ci(r) 2a
12a :l=14
8a :l>4even
Dy(r)

8 :1>=5o0dd, r=1 (mod 4)
4da  :1>=50dd, r=3 (mod 4)
4da :7r=1 (mod 4)

2Dy(r) 8a :r =3 (mod4), [ odd
4da :r =3 (mod 4), [ even
3D4(T) a
6a :r=1 (mod 3
Fs(r) = ( )
2 :7r =2 (mod 3)
2B4(r) 2¢ :r=1 (mod 3)
6a :7r=2 (mod 3)
Eq(r) a
Eg(r) a
Fy(r) a
Ga(r) a

Table 3.2: Outer automorphism groups of finite simple groups of Lie type over F,,
with r = ¢® odd, ¢ > 3.

b) Sp(V) < SL(V) with dim V' even,
¢) SO(V) < SL(V) with dim V' odd,

d) Spin;(K) < SOg(K), the smallest faithful irreducible representation of
Spin, (K).

As we already mentioned, this also uses the classification of Liebeck-Seitz
[ |. Because of the positive-dimensional assumption, one can actually assume
that H is itself simple in the almost simple case of Theorem (observe the
sketch of the proof of Theorem in | , Theorem 18.6]). Since H is closed,
it is a simple linear algebraic group, and the classification can be finished by using
weight theory.

Remark 3.54. Our classification theorem over F) cannot be simply deduced
from Theorem by descent, avoiding the use of the classification of finite simple
groups. Indeed, taking a maximal (proper) subgroup H < SL,(F)) containing a
regular unipotent element and acting irreducibly on F;L, we do not know whether
there exists a positive-dimensional closed subgroup H' < SL,(F)). Showing this
would actually be more or less equivalent to our proof of Theorem : note that
if H is allowed to be 0-dimensional in Theorem , one has to consider almost
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simple subgroups and not only simple ones, which is the additional difficulty we
need to deal with in the proof of Theorem

More generally, Testerman and Zalesski | , Theorem 1.2] show that con-
nected reductive linear algebraic groups containing a unipotent element with a
single Jordan block are irreducible. Combined with | |, this gives a classifica-
tion of semisimple subgroups H of simple algebraic groups G containing a regular
unipotent element of G (| , Theorem 1.4]).

3.5. FURTHER MONODROMY GROUPS

In the next sections, we give further monodromy groups of sheaves from Section
, most of them determined by Katz in | | (see in particular | , Main
¢-adic Theorem 7.2.7]).

Remark 3.55. Except for characters and functions counting points on families of
curves, we will consider in the following only monodromy groups over C. In fur-
ther work, we hope to generalize our technique used for the finite monodromy
groups of Kloosterman sheaves to hypergeometrics and sheaves associated to gen-
eral exponential sums, but this would require to extend classification results of
Kostant, Kostant-Zahrin, Gabber or Kazhdan-Margulis in positive characteristic,
which seems difficult.

3.5.1. Characters.

Proposition 3.56. (1) Let Lyy) be an Artin-Schreier sheaf of A-modules as
i Proposition . The arithmetic and geometric monodromy groups are
equal to py(A).

(2) Let Ly (5 be a Kummer sheaf of A-modules as in Proposition , where x
has order d. The arithmetic and geometric monodromy groups are equal to
pa(A).

3.5.2. Hypergeometric sheaves. The connected component at the identity
GO of the geometric monodromy group of the hypergeometric sheaf H(x, p)

geom

from Proposition is computed in | , Theorems 8.11.2, 8.11.3|, and can
be SL,,(C), Sp,(C), SO, (C), plus some exceptional cases in low rank. Moreover,
GO — GO,der

geom geom -

The distinction between the possible cases is not straightforward (see | ,
p. 291]), and we will for simplicity only consider two situations where Ggeom is
determined without ambiguity.

Proposition 3.57. For the hypergeometric sheaf H(x, p) of Proposition . we
have GRoom = G4 — SL(C) if either

(1) n=mis odd and A = [ [, xs = 1, or
(2) n—m =3 is odd.

Proof. This is | , Theorems 8.11.2, 8.11.3]. O
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3.5.3. Supermorse functions and sums of the form (2.5).

Proposition 3.58 (Katz). Let us consider the {-adic sheaf Gy over Fy associated
by Proposition to a supermorse function f € Fy(X). For Zs the set of zeros
of f" in PYFp) and k¢ = |Zp|, we assume that p > 2ks + 1 and either:

~ (H) If 51 — sg = 53 — 54 with s; € f(Zy), then s1 = s3, so = 54 0or 51 = 52,
S3 = S4.

~ (H') fis odd, and if sy —s2 = s3—s4 with s; € f(Zy), then s1 = s3, 52 = 54

OT 81 = 89, 83 = S84 OT 81 = —S84, Sg = —S3.
Then
SLk,.(C) if (H) holds,
GO (gf) _ GO,der (gf) _ { !
geom geom . ,
Spi, (C) if (H') holds.
Proof. This is | , 7.9.6, 7.9.7, 7.10]. ]

Remark 3.59. This makes sense in the symplectic case since (H') implies that ky
is even.

Ezamples 3.60. The following examples are given in | , p- 229, | , P
7] and | , 7.10], where more details can also be found. In all cases, since f
arises from the reduction of a polynomial in Z[X], its degree as a morphism of
P! x F, is bounded independently from g.

(1) The polynomial f = aX" ! +bX with a,b,r € Z and ab # 0 verifies ky = |r|
and
(H) :|r| =3 odd,
(H') :r# 0 even.
(2) Let g € Z[X] be monic of degree r with full Galois group &, (a “generic”
condition by | ]), and let f € Q[X] be the unique primitive of g with

>y flag) =0, where o, ..., o, are the zeros of f. Assuming that r > 6 is
even, we have that (H) holds for f and k; = n.

(3) For n > 3 and a € Z nonzero, the polynomial f = X" — naX satisfies (H)
or (H') with ky =n —1.

3.5.4. Sums of the form (2.3) with f = X, x = 1, h polynomial..

Proposition 3.61 (Katz). Let Gy, be the (-adic sheaf over Fy of Proposition
associated to the polynomial h = > 1 a; X" of degree n > 3. We assume that
an—1 = 0. The geometric monodromy group Geeom(Gh) is

(1) SLp,—1(C) if n — 1 is odd,
(2) If n —1¢ {6,8} is even:

- Sp,,—1(C) if h(x) + h(—x) is constant (i.e. h has no monomial of even
positive degree),

- SL,,—1(C) otherwise.
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Proof. See | , 7.12.4.2] (also | D- O

Ezample 3.62. For the Birch sums (2.4), we have h = X3 and the corresponding
monodromy group is Sp,(C) = SLy(C).

3.5.5. Sums of the form (2.3) with f polynomial, x # 1.

Proposition 3.63 (Katz). Let G be the (-adic sheaf over Fy associated to f, g, h, x
from Proposition . We assume furthermore that h and f are odd and that
there exists L € Q(X) even or odd with L(x)" = g(x)g(—=z). If either N # 7,8 or
|n —d| # 6, then Ggeom(G) is given by

(1) Spyn(C) if L is even,
(2) SON(C) if L is odd and n > d.

Proof. See | , 7.13 (Sp-example(2)) and 7.14 (O-example(2))]. O

3.5.6. Families of hyperelliptic curves.

Proposition 3.64.

(1) Let F be the normalized sheaf of Q-modules over F, from Proposition
. We have Ggeom(F) = Garitn(F) = Spey(C)

(2) Assume that \/q € Z¢ and let F be the normalized sheaf of Fy-modules over

~ ~

F, from Proposition . We have Ggeom(F) = Garitn(F) = Spay(Fy).
Proof. (1) By| , Theorem 10.1.16|, the geometric monodromy group is sym-
plectic. Since we normalized, | , Lemma 10.1.9] shows that the arith-

metic monodromy group preserves the sames pairing (without normalization,
it is a symplectic similitude with multiplicator q).

(2) This is a theorem of Yu, also proven in | | with Theorem . in-
deed, by Proposition , the geometric monodromy group contains a
transvection.

O

3.5.7. Arithmetic and geometric monodromy groups. In the previous sec-
tions, often only the geometric monodromy group Ggeom = Ggeom(F) of a sheaf
F, or its connected component

GO < Ggeom < Garith = Garith(f)7

geom

were given. However, as we see in Proposition and Deligne’s equidistribution

Theorem 3.6, we are interested in Ggeom, and it is desirable to have Ggeom = Garith-

As it is explained in | , 7.11-7.14] and | |, it is usually possible to
get

0
G = Ggeom = Garitha

geom

up to twisting F by a rank 1 sheaf, or even, ideally, a constant:
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— (Symplectic case) This is the simplest case. Proving that G, = Sp,,(C)
with the techniques in | , Chapter 7| actually shows that the sheaf is
itself symplectically self-dual (see | , 7.13, p. 244]), as for Kloosterman
sheaves (see Proposition ). Hence Gaith < Sp,(C) and thus Ggeom =
Garith = Spn((c)

~ (Special orthogonal case) Similarly, proving that Gge,p, = SO, (C) (or O,(C))
with the techniques of | , Chapter 7| actually shows that Gaitn <
On(C) (see | , 7.14, O-Example(2)]). Hence, there exists a € {+1}
such that F' = o™ ® F has Ggeom(F') = Garitnh (F') = SO, (C).

— (Special linear case) This is the hardest case. Assume that G%, = = Ggg%% =

eom
SL,(C). We can determine the geometric determinant det(%:) and twist it
by a rank one sheaf £ to make it geometrically trivial, hence arithmetically
isomorphic to a ® Q,, for a Weil number a of weight 0 (which may be
difficult to determine explicitly). If we let F' = a V"L F , we have
Garith(F') € SL,(C) and SLy,(C) = Geory © Goeom (F') since Gy, is equal
to its derived subgroup and £ has rank one. This gives

Ggeom<]:/) = Garith(]:/) = SLN(C)

Moreover, it happens in some cases that £ is arithmetically constant, so that
F' = a Y™ ® F is simply a renormalization of F.

We will apply this strategy to the sheaves studied above in Section






CHAPTER 4
Probabilistic models

In this chapter, we develop the probabilistic models that will be used to study
the distribution of values and sums of trace functions (in C or in residue fields of cy-
clotomic fields), inspired by Deligne’s equidistribution Theorem and | l,
| |]. We then introduce the tools that we will use to show that they are accu-
rate (in the sense of convergence in law).

In this chapter, we fix an f-adic coefficient ring A and an isomorphism ¢ : A —
Cit A=Qy, ¢t=1id: A — A otherwise.

4.1. PROBABILISTIC MODELS

We consider an /-adic sheaf of A-modules F over F, lisse on a dense open U,
corresponding to a representation

pr:m,q — GL(V) = GL,(c(A)).

We are interested in the distribution of the images of the compositions

pr o Frob : U(F,) Frob G

or in other words in the G’irith—valued (resp. ¢(A)-valued) random variable

<p]:(FrobI)>z€U(Fq)7 (4.1)

resp. (t]:($)>a:e]Fq (4.2)

(with the uniform measure on F).

CONVENTION 4.1. Note that if x € Sing(F), then pz(Frob,) belongs to GL(V'#)#,
and not GL(V)#, which is why exclude the singularities in (4.1). To simplify the
notations, we will only implicitly restrict all expressions containing local Frobenius
to unramified points. For example, we will write (pr(Frob,)) vek, for (1.1). This
will have no impact since any estimate of a sum of trace functions starts by
restricting to the set of lissity (see Section 2.2).

4.1.1. Model for (1.1). Deligne’s equidistribution Theorem 3.6 suggests to model
(1.1) as the random variable
Y = TF(X)7

where X is a random variable uniformly distributed in a maximal compact sub-
group K of Gaitn(C) with respect to the normalized Haar measure and 7 : K —
K* is the projection.

67
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Remark 4.2. When A is finite, note that K = G,ign with the counting measure.

Remark 4.3. In | |, the values of Dirichlet characters of order d are modeled
by random variables uniformly distributed in the unit circle, while in | | and
in our model, uniform random variables in the roots of unity of order d are used.
Since the moments are the same (see Remark ), this will make no difference.

4.1.2. Model for (1.2). We shall then naturally model the random variable (1.2)
by the ¢(A)-valued random variable Z = trY’.

In other words, the measure corresponding to Z is the pushforward of the
normalized Haar measure through the map trom : K — ((A).

4.1.3. Model for shifts. Similarly, for I < I, of size L > 1, we will model the
random vector

(o (Frobsa))er )

zelFy

by the random vector (Y7,...,Y7), for Y; independent distributed like Y, and
correspondingly the random vector

(G

zelFy

by (Zi,...,21), for Z; independent distributed like Z.

Therefore, the sum of shifts

will be modeled by the random walk S(L) = Z1 + -+ + Z, as in | | and

[LZ12].

4.2. SUMS OF PRODUCTS

To show that the models defined above are accurate (in the sense of convergence
in law), we will need to estimate precisely “sums of products” of the form

L
Dt (4.3)
zefFg i=1
where tq,...,t;, : Fg — 1(A) are trace functions over F,. More precisely:

— In the case A = Qy, the method of moments will lead to sums of the form

Z Ht(:z: +a)at(z+a)" (4.4)

zelFy ael

for t : F;, — C a trace function, I < F; and k4,7, = 0 integers.
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— In the finite case (A is a residue field), we can directly work with density
functions by using the second orthogonality relations, and this will lead to

sums of the form
7 T [ xalp(Frobaya)) (4.5)

2€Fq ael

for p : w14 — Garitn the representation corresponding to a trace function over
F,, with monodromy group Gasith, I < Fg, and x4 : Garith — C characters
of irreducible representations. We will see that this can be reinterpreted as
a sum of products of trace functions.

In the rest of this chapter, we present how to achieve such estimates through
the ¢-adic formalism, building upon | | and | |.

Note that we here critically need to keep track of the dependency of implicit
constants with respect to conductors, because those will be unbounded as the
parameters grow, which is not the case in | ].

4.2.1. General sums of products.

Proposition 4.4. Let (F;)1<i<z, be a tuple of sheaves of Q-modules over Fy, with
corresponding trace functions (t; : Fy — 1(A))1<i<r. Then

Z ti(x)...tp(x) =q-tr (Frobq | ]:ﬂ%e;m> + O(r*Le*/q)
zely 1

for F = @1<i<rFi, ¢ = maxigi<r cond(F;), v = maxi<i<r rank(F;), and an ab-
solute implicit constant. In particular, the error term is O(CSL\/@), and O(LCQ\/@
ifr=1.

Proof. First, we pass from the product of trace functions to the trace function of

the product of the corresponding sheaves. By Proposition , we have
diti@) . tp(e) = Y tr@) + O (|l - ([t E])
zely zelFy
= ). tr(x) + O (rank(F)|E))
z€elFy

where E = {z € F, : t1(z)...tr(x) # tr(x)}, the second equality following from

Proposition . We have E < S, where S = Ule(Sing(E) n AY(F,)). Hence,
> ti() = ) tr(x) + O (rank(F)[S]) . (4.6)
zely xeF,

For x € Sing(F), we have Swan,(F) < rank(F) Y%, Swan,(F;) by Proposition
. Thus, by Theorem ,

Z tr(r) = q-dim (.7: gcom) + O (E(F)\/q)

zeF,

with

L
E(F) = rank(F) <|S| —1+ > )] Swanx(]ﬁ)> «rfLe?,

zeSi=1
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Remark 4.5. Note that the error term is exponential in L, with basis r. If we
had used the bound E(F) « cond(F)?, we would have gotten the error term
O(c* \/q), which is exponential even when r = 1. For other applications, it may
be interesting to know whether one could do better, e.g. an error term polynomial
in 7, L, c. We investigate this question in Appendix

4.2.2. Sums of products arising from a single sheaf. As we see in (1.1) and
(1.5), we will need to handle the case where the trace functions ¢1, ..., ¢tz in (1.3)
are obtained from a single sheaf by additive change of variable, multiplication,
conjugation, or composition with a representation of the monodromy group. To
do so, we will use the following:

Lemma 4.6. Let (F;)1<i<r be a family of sheaves of Q-modules over Fy, corre-
sponding to representations (p; : w1, — GL(Vi)),;<p- Let G = @< Fi be the
direct sum, which corresponds to the representation

Pg—@ﬂz qu_’GL@zz HGL

If A is a Qq-representation of Gaien(G) as a Qg-algebraic group then the composi-
tion

Ao PG - Tl,q —> pg(ﬁl,q) I Garith<g) - H@ GL(Vi>
\ l/\
~ GL(W)

corresponds to an l-adic sheaf G(A) over Fy of dimension dim A such that

g(A)ﬂ-l,q = AGarith(g)’ g(A)ﬂ'%i;m = AGgeom(g)'
Proof. This is clear by Proposition 2.8. O

Remark 4.7. More precisely, by Tannakian duality, the map A — A o pg yields an
equivalence of Tannakian categories between the category of sheaves of A-modules
over F, generated by the F; and the category of representations of Gayith(G) (see
[ , Theorem 6.5.3, Proposition 6.5.15] and | , Proposition 2.5]).

4.2.3. Sums of products of the form (1.1).

Proposition 4.8. Let F be a sheaf of Q,-modules over F, with monodromy groups
G = Guith(F) = Ggeom(F). For L = 1, let a1, ..., ar, € Fy be distinct. We

assume that the arithmetic and geometric monodromy groups of

g = @ [+ai]*.7:

1<i<L

coincide and are as big as possible, i.e. isomorphic to G¥. Then, for all k,r € N¥,

the sheaf
Ghr = @ ([+a]*F @ D([+a;]" F)®")

2
1<i<L



4.2. Sums of products 71

satisfies

tr (Frobq | (gk,r)W§?;m> = 1_[ mult; (Std®ki @D(Std)@)m)7

1<i<L
where Std is the standard representation of G in GL,(C).

Remark 4.9. Recall that there is an equivalence of categories between the Q-
representations of the monodromy groups as Q-algebraic group and their rep-
resentations as complex algebraic groups (see Corollary 3.3). Thus, it does not
matter if we view G as a an algebraic group over C or Q, in the statement of
Proposition 4.8. By the same reference, the multiplicity can also be computed in
a maximal compact subgroup.

Proof. We apply Lemma with F; = [4a;]*F, observing that G, = G(A) for
the representation

A= (Std®ki®D(Std)®”).

1<i<L
Since we assume that Ggeom(G) = Garith(G) = G¥, we have as in Proposition

tr (Frobq | (gkm)ﬂ—ie;m> = dim (AGgeom(g)) = dim (AGarith(g)) =dimAqge
dim (Std®’% ®D(Std)®”)G

I

1<i<L
=[] multy(Std® @D(Std)®),
1<i<L
where the last equality holds by Schur’s Lemma. O
By combining Proposition with Proposition 4.8, we immediately get our

desired estimates about sums of products of the form (4.1). It also applies to
Kummer sheaves by multiplicativity (for which a bit more care is needed when
the character is composed with a rational function).

DEFINITION 4.10. For F an (-adic sheaf over F, and I < [F,, we say that F is
I-compatible if, in the case where F is a Kummer sheaf £, ;) with deg(f) > 1,
we have that > /" x; # 0 for all 1 < m < deg(f) and z1,...,zy € I. If F is not
such a Kummer sheaf, it is always I-compatible.

Corollary 4.11. Let F be a sheaf of Qg-modules over Fy with monodromy groups
G = Guith(F) = Ggeom(F) and let a1, ..., ar, € Fy be distinct. Assume that
either:

(1) F and the a; verify the hypotheses of Proposition /.5, or

(2) Fis a{ai,...,ar}-compatible Kummer sheaf L,y

Then, for all k,r € NX, the sum of products

1 —T
p ST trle + a)Mtr(@ + ai)

zelfy 1<i<L
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18 equal to
[T multy (Std®* @D(Std)®™) + O(r**M S (k,r)c?q~'/?)
1<i<L
where the implicit constant is absolute, r = rank(F), ¢ = cond(F), and S(k,r) =
Sy (ki + ).

Proof. It remains to treat the case of a Kummer sheaf £, () for x : F; — C of
order d and f € Fy(T"). By multiplicativity, the sum is equal to

; S X(g(@) = j] St ) (@)

zelFy z€elFy

where g(X) = H1<z<L f(X + ai)ki—Ti. Writing f = fi/f2 and ¢ = g1/g2 with
fi,gi € Fg[ X], we see that

deg(g1) + deg(g2) < S(k,r)(deg(f1) + deg(f2)) < S(k,7) cond(F).

By Proposition and Corollary , it follows that

1 _
= 3 X(9(@)) = 8y is a d—power + O(S(k,7)c?q /).

z€elF,

Observe that
multy (Std®" @D (Std)®) = 841, 1.

so that the claim is clear if f = X. Otherwise, the compatibility assumption
shows that' there exists a zero x of f such that f(z +a) # 0 for all a € I. Indeed,

otherwise, for any zero z of f and any dy > 0, there would exist a1,...,aq4, € Fy
with z +a1,..., 2+ Zji 1 a; distinct zeros of f, which is impossible. This implies
that g cannot be a d-power if d { k; — r; for some 3. O

Ezample 4.12. A Kummer sheaf £, () is I-compatible if:
~IfIc[1...p] =F, with maxeera < p/deg(f).

— More generally, if I < [1...p]|® = F, with max,er m;(a) < p/deg(f) for all
1 <i<e, where m; : F; — [1...p] are the projections.

4.2.4. Sums of products of the form (1.5). Let now F be a sheaf of Fy-
modules over Fy, corresponding to a representation p : m ; — GL,,(F)), and with
monodromy groups G' = Ggeom(F) = Garith(F) < GLy(F)). We want to handle
sums of the form

LS T xaloFroby ) (4.7)
q

zelFq ael

for I c F, and x, : G — C characters of irreducible representations.
DEFINITION 4.13. We fix an isomorphism of fields ¢ : C — Q, and:

(1) For o € Aut(Fy), we let o(F) be the sheaf of Fy-modules corresponding to
the representation o o p : 1 4 — GL,,(F}).

!This idea appears on page 9 of the published version of [ .
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(2) For n : G — GL(V) a complex representation, we let F, be the sheaf of
Qp-modules over [, corresponding to the representation

tonop:mg— G— GL(V) — GL(«(V)).

Remark 4.14. Since G is discrete, there are no issues with the continuity of the
composition ¢ o7 o p, even if ¢ is not continuous.

Note that the trace function of ¥, at unramified points is precisely x opoFrob,
where y is the character of 7.

As for Proposition 4.8 /Corollary , we obtain:

Proposition 4.15. We consider F be as above. For L > 1, let a1,...,ar, € Fy
be distinct, and let n; be complex irreducible representations of G, not all trivial,
with characters x; (1 <1i < L). We assume that either:

(1) The arithmetic and geometric monodromy groups of

C_B [+ai]*]:77i

1<i<L
coincide and are as big as possible, i.e. isomorphic to H1$i<L G/kern;, or
(2) Fis a{ai,...,ar}-compatible Kummer sheaf L,y

Then the sum of products (1.7) is

L L
« ¢ 2 cond(F)G)° (H dimm) Z dimn;
i=1 i=1

with 6 = 0 in case and § = 1 otherwise.

Proof. (1) As in Theorem 3.6, note that dim(F;) = dimn, Sing(F,) < Sing(F)
and Swan, (F;,) < dim»n Swan,(F). By Proposition 4.4 (with the error term
given in the proof) and Lemma applied with F; = [+a;]*F,,, the sum
(1.7) is thus

H dim(F,;’) + O < 2 cond(F (H dim 771> Z dim m> .
1<i<L
By Schur’s Lemma, lel(]:G) Op; trivial-

(2) For every i = 1,..., L, there exists an integer 0 < b; < d such that »; is the
one-dimensional representatlon z — zP. By multiplicativity,

- Z HXz (Frobgq,)) = q Z tg(x)

xquz 1 zelfy
where G = F, (,) with g(X) = HiL=1 f(X + a;)¥. Since

cond(G) < 1+deg(g) <1+ Lddeg(f),
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Corollary gives
1 _
- Z tg(w) = Og is a d—power T O(deeg(f)q 1/2)

and the conclusion follows as in the proof of Corollary

4.3. GOURSAT-KOLCHIN-RIBET CRITERIA

In this section, we investigate when the hypotheses of Propositions and

hold, namely given an f-adic sheaf F over [F, with monodromy group G =

Ggeom (F) = Garitn(F), an integer L > 1 and ay, ..., ar, € Fy distinct, when do the
arithmetic and geometric monodromy groups of

G= @ [+al]*F

1<i<L

coincide and are as big as possible (i.e. isomorphic to G¥), where F; = F if
A = Qy (resp. F; = Fy, for some irreducible representation n; of G if A =T)).

In the case A = Q, this is handled by the Goursat-Kolchin-Ribet criterion of
Katz. After reviewing the latter, we give an analogue for sheaves of IFy-modules.

4.3.1. Preliminaries. First, recall the classical Goursat Lemma:

Lemma 4.16 (Goursat). Let G1, Gy be groups (resp. Lie algebras) and H < G X
G2 be a subgroup (resp. Lie subalgebra) such that the two projections p; : H — G;
(1 =1,2) are surjective.

G1 G1/ker py
Tpl ’T\
H *>G1 X GQ — (Gl/kerpg) X (Gg/kerpl)
P2 |
Go G2/ ker py

Then the image of H in G1/kerpy x Gao/ker py is the graph of an isomorphism
Gi/kerpy =~ Ga/kerpy. In particular, if G1,Go are simple, then either H =
G1 x Ga, or H 1is the graph of an isomorphism G1 = Gs.
Proof. See for example | , Lemma 5.2.1]. O
Lemma 4.17 (| , Lemma 5.2.2 and p. 791]). Let G1,...,G,, be either

(1) finite groups with no nontrivial abelian quotients, or

(2) simple finite-dimensional Lie algebras,

and let G < Gy x --- x Gy, be such that every projection G — G x G (i # j) is
surjective. Then G = G1 X «++ X Gy,
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DEFINITION 4.18. Let k be a field. A pair (G; — GL(V;))i=12 (or (G; —
PGL(V;))i=1,2) of faithful group representations over k is Goursat-adapted if every
potential isomorphism G =~ G5 is of the form

X — Ao(X)A™1 for an isomorphism A : V; — V5 or
X — Ao(X)7tA=!  for an isomorphism A : Vj* — V3

with o € Aut(k), o = id unless k is finite.

Ezamples 4.19. (1) Let G € {SL,+1(C),Sp,,(C),S0,+1(C)} — {SOs(C)} for
some n > 1, and assume that G, G are conjugate to G. Then (G;, Std);—12
is Goursat-adapted by Propositions and . Indeed, Out(sl,,) =~ Z/2
(with the negative-transpose map) if n > 2, while Out(sp,,) and Out(s02,+1)
are trivial. Similarly, Out(sos,) =~ Z/2 (with conjugation by an orthogonal
matrix) when n # 4 (but Out(sog) =~ G3).

(2) Similarly, for k£ a finite field, G € {PSL,11(k),PSpy,(k)} for n > 1, and
G1, Gy are conjugate to G, the tuple (G;,Std);—1 2 is Goursat-adapted by
Propositions and

4.3.2. Complex case. First we recall the Goursat-Kolchin-Ribet criterion of
Katz for Lie groups of positive dimension:

Proposition 4.20 (Goursat-Kolchin-Ribet criterion, | , Chapter 1.8|). Let
pi ™ — GL(V;) be finitely many complex irreducible representations of a topologi-
cal group 7, with monodromy groups G; = p;(m) < GL(V;) (where - denotes Zariski
closure). Consider the representation p = @ p; : m — GL(@®V;) = [ [ GL(V;) with
monodromy group G = p(m).

7r pi(G) —= G; —= GL(V})
W Vi

G

| e

[1G: ’
J /
[1GL(V;) —

(1) G?’der acts irreducibly on V; and Lie(G?’der) is simple.

Assume that:

(2) For every i # j, (G?’der — GL(V1)> ~is Goursat-adapted.

l=1,j

(3) For every i # j, there is no isomorphism

pi = X ® pj or pi = X ® D(p;)
for x a 1-dimensional representation of w.

Then G%9°" is as large as possible, i.e. GO = HG?’der,
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Proof (idea). The group G is reductive, so G%4" is semisimple (see e.g. | ,

Theorem 1.29]). Without loss of generality, we can assume G = G%9°" and G; =
G?’der (the 1-dimensional representations in arise through this reduction). By
Lie theory, it is enough to prove that Lie(G%%r) = J]Lie(G™%"). By Lemma

, it is enough to treat the case n = 2. By Goursat’s Lemma , either
the conclusion holds or Lie(G%9") is the graph of an isomorphism Lie(G?’der) ~
Lie(Gg’der). By Goursat-adaptedness, this gives an isomorphism as in (3). O

Ezxample 4.21. By Example , this holds when there is
Ge {SLn-l‘l((C)? San(C)a SOn+1((C)} - {808(6)}

for some n > 1 such that every G; is conjugate to G.
4.3.3. Finite cases.

Goursat-Kolchin-Ribet for finite groups of Lie type. In the case of a finite mon-
odromy group (i.e. a O-dimensional Lie group), the Lie group is not connected
and the Lie algebra is zero (thus not simple), so the above does not apply. We
can however give a finite analogue, where quasisimplicity replaces semisimplicity.

Proposition 4.22 (Goursat-Kolchin-Ribet for quasisimple groups). Let p; : m —
GL(V;) be finitely many representations over a finite field k of a topological group
7, with finite monodromy groups G; = pi(7) < GL(V;), and let n; : G; — GL(W;)
be nontrivial representations over a field F. Consider the representation p =

@®(n; o p;) : m — GL(@W;) = [ [ GL(W;) with monodromy group G = p(m).

I h Gi —">ni(Gi) — GL(W;)
Gp
|
[17:(Gi) = P(Gi/ ker 7);)
[IGL(W;)

Assume that:

(1) The groups G; are quasisimple, i.e. they are perfect (G; = G?er) and G}, =
G/ Z(G;) is simple.

(2) For every i+ j, (G} — PGL(VZ))I:M is Goursat-adapted.
(3) For every i # j, there is no isomorphism
pi = X ®0(pj) or pi = x®D(o(p;))
for x a 1-dimensional representation of m over k and o € Aut(k).
Then G is as large as possible, i.e. G = [[(G;/kern;).

Proof. Since GG; is quasisimple, note that we have either:
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~ G; = Z(G;)kern;. By taking derived subgroups, this gives G = G; <
(ker 1;)°" < kern;, so kern; = G; and 7; is trivial, which is excluded;

— kern; < Z(G)).

For H any group, let us continue to denote H' = H/Z(H). By perfectness, it
is enough to show that G’ = [[(G;/kern;) = [[G.

Since a quasisimple group has no nontrivial abelian quotient (the derived sub-
group is the smallest normal subgroup with an abelian quotient), it is enough to
treat the case n = 2 by Lemma

By Goursat’s Lemma and the simplicity of G}, either G’ = G| x G}, or G’
is the graph of an isomorphism G =~ G). In the second case, since the center of
GL is the group of scalar matrices, the isomorphism given by hypothesis lifts
to an isomorphism contradicting (3). O

Remark 4.23. The setting of Proposition is more general than that of Propo-
sition . This is to allow us to compute the monodromy group of sums of
f-adic representations composed with representations of the monodromy group,
as in Section . Condition is assumed on the original sheaves, and not also
on the compositions.

Remark 4.24. In Proposition , the 1-dimensional representations appear when
passing from G to G%9°* while in Proposition they appear when passing from
G to G'.

Ezample 4.25. Let k be a finite field and n > 1 be an integer. By | , The-
orem 24.17], SL, (k) and Sp,, (k) are quasisimple as soon as |k| > 3. Hence,
by Example , conditions and of Proposition hold if there exists

G € {PSL,+1(k), PSp,, (k)} for some n > 1 such that every G; is conjugate to G.

Goursat-Kolchin-Ribet for g (d prime). Lastly, we give a version of the Goursat-
Kolchin-Ribet criterion for cyclic groups of prime order.

Proposition 4.26. Let p; : 1 — k> be finitely many one-dimensional representa-
tions over a field k of a topological group 7, with monodromy groups G; = p(m) =
Z/d (d prime), and let n; : G; — F* be nontrivial representations over a field F'.
Consider the representation p = @(n; o p;) : @ — [[ F* with monodromy group
G = p(w). If there is no isomorphism of the form

pi;pj@l fori+#j, 1<a<d,

then G is as large as possible, i.e. G = [[Z/d.

Proof. Since Z/d is simple, we can apply Lemma to reduce to the case of
two representations as before. By Goursat’s Lemma , either GG is as large as
possible, or it is the graph of an isomorphism G; — Gs. Since Aut(Z/d) =~ (Z/d)*,
this proves the statement. ]

4.4. COHERENT FAMILIES

Being given Corollary and Proposition — that we will use to prove
the accuracy of our models — and the criteria from Section — which give
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sufficient conditions to apply the former — we can now make precise the notion
of good/natural families we mentioned in Section
4.4.1. Definitions.

DEFINITION 4.27 (Complex case). We fix a prime ¢ and an isomorphism of fields
t:Q, — C. A family (F,), of geometrically irreducible sheaves of Q,-modules
over [F, (for ¢ varying over powers of primes distinct from ¢) is coherent if:

(1) (Conductor) cond(Fy) is uniformly bounded (i.e. independently from g),
and either:

(2) Kummer case: For every q, F, is a Kummer sheaf, and the associated char-
acters are either all real-valued or all complex-valued.

(2") Classical case: There exists G € {SL;,+1(C), Spy,,(C), SO,+1(C)} —{SOs(C)}
for some n > 1 such that for every sheaf F, over F, in the family:

a) (Monodromy groups) The geometric and arithmetic monodromy groups
of F, coincide and are conjugate to G in GL,(C).

b) (Independence of shifts) There is no geometric isomorphism
[+al*Fy = Fy®L or [+a]*F, = D(F)QL (4.8)
for a sheaf £ of rank 1 over F, and a € G, (F,).

DEFINITION 4.28 (Finite case). A family (F) of irreducible sheaves of Fy-modules
over finite fields F, (with F\ and [, varying, of distinct characteristic) is coherent
if:

(1) (Conductor) cond(F) is uniformly bounded for all F in the family,
and either:
(2) Kummer case: Every F in the family is a Kummer sheaf.
(2') Cyclic simple case: For every sheaf F of Fy-modules over [, in the family:

a) (Monodromy groups) The geometric and arithmetic monodromy group
of F coincide and are equal to p4(FFy) for some prime d.

b) (Independence of shifts) There is no geometric isomorphism of the form
[+a*F = F® (1<i<d, acF)).

(2") Classical case: There exists G € {SLy+1, Spy,,} for some n > 1 such that for
every sheaf F of Fy-modules in the family:

a) (Monodromy groups) The geometric and arithmetic monodromy groups
of F coincide and are conjugate to G(F,) in GL,(Fy).

b) (Independence of shifts) There is no geometric isomorphism of the form
[+a]*F = L&®o(F) or [+a]*F = LR D(o(F)) (4.9)

for a € G, (Fy), 0 € Aut(Fy) and £ a rank 1 sheaf.
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Remark 4.29. Note that we fix the structure of the monodromy group in the
classical case (in particular the rank) but we let eventually the order of the char-
acter/monodromy group vary otherwise. By keeping track of the dependency of
the conductor with respect to the rank we could also let the latter vary, but this
is not a natural aspect in applications.

Remark 4.30. In the finite case, we let the coefficient ring vary to study the
reductions of the trace function (whose image often does not depend on A) modulo
various ideals. See Chapter 6 for more details.

Remark 4.31. By Theorem and Proposition , the geometric irreducibility
and conductor conditions are stable by Fourier transform. As always, if the sheaf
is not geometrically irreducible, one may decompose it by Proposition

Remark 4.32. When the monodromy group is equal to pq(C) (resp. pq(Fy)) with
d nonprime, Proposition (resp. Propositions and ) cannot be applied
because the Lie algebra is not simple (resp. the group is not quasisimple). Thus,
we assume that the sheaf is a Kummer sheaf to handle sums of products via
multiplicativity instead.

4.4.2. Sums of products. Finally, we sum up the previous sections by showing
how sums of products of the form (/1.1) and (4.5) can be controlled for coherent
families.

Complezx case.

Proposition 4.33. Let (F,), be a coherent family of sheaves of Q-modules over
Fy, with monodromy group G < GL,,(C). Let ai,...,ar € Fq be distinct. If Fq is

{ay,...,ar}-compatible, then for all k,r € N-,
1  Se—s . .
3T tr+a)bits@tra)” = [ mult(Std® @D(Std)®™)
1 JeF, 1<i<L 1<i<L

+0 (rs(kﬂ')S(k:, r)q_l/2>

where the implicit constant does not depend on q, S(k,r) = ZiLzl(k?i +7;), and
Std is the standard representation of G.

Proof. In the classical case, the Goursat-Kolchin-Ribet criterion (Proposition )
and Example show that the arithmetic and geometric monodromy groups of
D1 <icp[+ai]* Fy coincide and are conjugate to GE. Hence, we can apply Corollary

Under the compatibility assumption, the latter also applies to Kummer
sheaves. O

Finite case.

Proposition 4.34. Let (F) be a coherent family of sheaves of Fx-modules over
finite fields F, (with Fy and Fy varying, of distinct characteristic). Let F be a
sheaf in the family, corresponding to a representation p : w14 — GLy(Fy), and let
ai,...,ar € Fy be distinct. If F is {a1,...,ar}-compatible, then for all nontrivial
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irreducible complex characters x1,...,xr of the monodromy group G of F,

L L
1 _ . .
= > T xip(Frobesa)) <« ¢ |G (Hdlmm> >, dimn;,
1 JeF, 1<i<L i=1 i=1

where the implicit constant does not depend on q, and § = 1 in the Kummer case,
0 = 0 otherwise.

Proof. Let n; be the representation corresponding to x;. We apply Proposition

. In the classical and cyclic simple cases, it suffices to show that the geometric
and arithmetic monodromy groups of the sheaf El—)iL:l[—i—ai]*]:m coincide and are
isomorphic to ]_[le G/ ker n;. For the classical case, by Proposition (see also
Remark ), it suffices to show that for i # j there is no geometric isomorphism

[-Hli]*f =~ L® [—l—aj]*a(]-") or [—&—a,-]*]—" = L® [—i—aj]*a(D(]-"))

for some rank 1 sheaf £ and o € Aut(Fy). This would give an isomorphism of the
form (1.9) for some a € [F7, which is excluded by the independence of shifts. For
the cyclic simple case, proceed similarly with Proposition . The Kummer case
is handled by the compatibility assumption. O

4.4.3. Examples. In Section and Chapter 3, we already encountered families
of sheaves with fixed large known monodromy groups and uniformly bounded
conductors:

(1) Hyper-Kloosterman sheaves of fixed rank (Propositions and Theorem
), in the complex and finite cases.

(2) Families of additive or multiplicative characters, eventually with varying
order, pre-composed with the reduction of a fixed rational polynomial in
Q(X), in Sections and , in the complex and finite cases.

(3) Hyper-geometric sums of fixed rank, in the complex case.

(4) The three families of general exponential sums of Sections and 3.5,
where the rational functions arise from the reduction of fixed rational poly-
nomials in Q(X), in the complex case.

(5) The sheaves from Propositions and , associated to zeta functions of
hyperelliptic curves in a family, when f therein arises from the reduction of

a fixed squarefree f € Z[X].

Remark 4.35. According to Remark , we do not consider the finite cases for
the last two families, even though one may be able to do so in the future.

To show that these are coherent families, it would remain to show the inde-
pendence of shifts and the equality of the arithmetic and geometric monodromy
groups. This study will be carried out in the next two chapters, respectively for
the complex and finite cases.

We saw in Section that the second condition could usually be achieved
up to twisting the sheaf. In the next section, we will give criteria for the first
condition.



4.5. Independence of shifts 81

4.5. INDEPENDENCE OF SHIFTS

Showing that a geometric isomorphism of the form (4.8) or (4.9) does not exist
can usually be done by looking at the ramification on both sides. In this section,
we give some general techniques that we will apply in the next chapter.

Lemma 4.36. Let F be a nontrivial £-adic sheaf over Fq and let a € G, (Fy) such
that there ezists a geometric isomorphism of the form (1.8). Then

(1) Sing(F)A(Sing(F) — a) < Sing(L) < Sing(F) u (Sing(F) — a), where A

denotes the symmetric difference.

(2) If Sing(F) n AY(F,) # @, AY(F,), there exists x € Sing(F) n AY(F,) such
that F'= = 0.

(3) If Sing(F) # @, {0}, the sheaf L is not geometrically trivial.

(4) If L is not geometrically trivial,

| Sing(L)] + Z Swan, (L) = 2. (4.10)
xeSing(L)

(5) If F has unique break t € Rsq at z € PL(F,), then the break decomposition
of FRL at x is

(F®L)(Swany (L)) :t < Swaneg (L)
FRL=S(FRL)() :t > Swane, (L) (4.11)
2t (F®L)(2) : t = Swangy, (£).

(6) If F has unique break t € Rsq at oo, then Swany, (L) < t. If t is not an
integer, then Swany (L) < |t].

Proof. (1) This is clear.
(2) If x € Sing(L) — Sing(F), then
Fleto = ([+a]*F)r = (FR L) = Fo Ll =0.
In particular, by (1), if y € Sing(F) but y — a ¢ Sing(F), then Flv = 0. If
z € Sing(F) n AL(F,) and A'(F,) ¢ Sing(F), there exists an integer m > 1

such that y = x — (m — 1)a € Sing(F) but x — ma ¢ Sing(F), whence the
conclusion.

(3) By (1), £ is not lisse under the assumptions.

(4) The Euler-Poincaré formula (Theorem ) gives that the left-hand side of
(1.10) is equal to

2 +dim H (U x Fy, £) = 2
if £ is nontrivial.

(5) This follows from Proposition
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(6) By (4.11), we have

rank(F) Swany, (L) :t < Swang (L)

S FQL)=
wang (F ® L) {rank(]:)t :t > Swany (£).

On the other hand, by (1.8),
Swane (F ® L) = Swany ([+a]*F) = Swane (F) = trank(F),

which implies that the case t < Swany (L) cannot hold. The last statement

follows from the fact that the Swan conductor is an integer.
O

The following classification result will also be useful:

Lemma 4.37. Let F be a geometrically irreducible (-adic sheaf over F,.
(1) If Sing(F) = &, then F is geometrically trivial.
(2) If | Sing(F)| = 1 and F is tamely ramified, then F is geometrically trivial.

(3) If Sing(F) = {=z,y} for z,y € PL(F,) distinct and F is tamely ramified,
then there exists a multiplicative character x : Fi — C* and a geometric
isomorphism

F = La((X—y)/(X )

(4) If Sing(F) = {z} and Swan,(F) < 1, there exists an additive character
Y :Fy — C* and a geometric isomorphism

Fa £¢ T =00
Lypajx—ay 7 0.

Proof. This follows from Theorems , and , and can be found in
[ , Proposition 4.4.6]. m

Arguments with unipotent blocks.

Lemma 4.38. Let G an (-adic sheaf over F, such that Sing(G) n AY(F,) #
@, AY(F,). For every s € Sing(G) n AY(F,), we consider the tame part of the
break decomposition of G at s,

G(5)*™ = D (Unip. ©Ly(x+)) (4.12)
X
(see Section ), and we assume that either the trivial multiplicative character

x = 1 appears, or that at least two distinct characters x1, x2 appear. Then there
is mo isomorphism of the form (1.8) with a # 0.

Proof. Let us assume that there is an isomorphism of the form (1.8) for G with
a # 0. If the break decomposition of G at some s € Sing(G) n A'(F,) does not
contain a summand Unip. ®L, (x4s) With x trivial, we replace G by G ® Ly (x+5),
where y; is a character appearing in ( ). This new sheaf still satisfies the same
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hypotheses as G, with the same a in (1.8) (but with a different £), and with a
unipotent block in the break decomposition at s.

Recursively, we can hence assume that the tame part of G at any s € Sing(G) n
Al(F,) contains a unipotent block.

By Lemma , there exists s € Sing(G) n A(F,) such that GIs = 0, a
contradiction. O

Lemma 4.39. Let ¢ : F; — C* be a nontrivial additive character and let G =
FTy(F) where F is an {-adic Fourier sheaf over Fy with rank(F) < ¢ — 1. For
all s € Al (Fy), we consider the break decomposition of FG) = F® Lysx) at o:

J,—_~(s) _ @ f(s) (t) _ f(s),tameéBf(s),wild

teR;o

(@ (Unip(x, 5) ®Ex<x+s))> ® (@ F (t)) (4.13)

X t>0

(see Section ). We assume that
— The decomposition (1.13) at s = 0 contains at least one break t € [0,1].

— For all s € AY(F,) such that the decomposition (1.13) contains a break t €
[0,1), either the trivial multiplicative character appears in the tame part, or
the latter contains at least two distinct characters.

Then there is no isomorphism of the form (1.8) for G with a # 0.

Proof. By | , Corollary 8.5.8] (see also | , Corollary 7.4.5]), the first
assumption and the condition on the rank of F imply that Sing(G) n AL(F,) #
@, AY(F,). Moreover, s € Sing(G) n A'(F,) if and only if the decomposition
(1.13) contains a break t € [0,1). By | , 7.4.4(3)], the tame part of the break
decomposition of G at s is in this case

@ (Unip(Xv 5) ® £X(X+s))

X

(with the same unipotent blocks). It suffices to apply Lemma to conclude. [

Arguments for sheaves of the form (2.3). In this section, we consider sheaves from
Proposition , giving rise to general exponential sums of the form (2.3).

The following criterion generalizes the argument of | | for Birch sums
to sums of the general form (2.3) and allows to reduce to the case of £ being an
Artin-Schreier sheaf.

Lemma 4.40. In the setting of Proposition , we assume that f is a polynomial

of order d = 1, n = Swany(F1) > d, and (n,d) = (d,p) = 1. If there is a
geometric isomorphism of the form (1.8) for G = FTy(F2) with a # 0, then

Swang (L) € {0,1,..., [nﬁd“

If n > 2d, there exists an additive character 1 : Fg — C* such that L = Ly,
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Proof. By | , 7.7], F2 has unique break n/d at oo, thus
Swang, (F2) = (n/d) rank(Fy) = n.

Moreover, G is lisse on Al x F,. By Lemma , Sing(£) < {0}. We may
assume that £ is not geometrically trivial, the conclusions being clear otherwise.
By Lemma , it follows that Sing(L) = {0} and Swany (L) > 1.

By | , 7.4.1(1)], G has unique break "5 at co, with multiplicity

n—d
n

Swang (F2) = n — d.

The break -"- is not an integer since we assume that (n,d) = 1, and the first

conclusion follows from Lemma . For the second one, note that = < 2
if n > 2d and use Lemma, . ]

The next lemma consequently considers isomorphisms of the form (1.8) when
L is an Artin-Schreier sheaf.

Lemma 4.41. In the setting of Proposition , let us assume that there is an
isomorphism of the form (1.8) for G with a € Fy and L = Ly, for some additive
character 11 : Fg — C*. Then

(1) Sing(F2) = {0} or AY(F,) = Sing(F2).

(2) If f = X, then either x # 1 and g is constant, or x = 1 and h is a polynomial
of degree at most 2.

Remark 4.42. Since we consider families of sheaves whose conductors are bounded
uniformly from ¢, the condition A'(F,) = Sing(F2) is clearly exceptional.

Proof. Let b € F, such that ¢ (z) = ¢¥(bx) (z € F;) and let us assume that we
have a geometric isomorphism

[+a]"G = G Lypx)

with a € F7. Taking Fourier transform on both sides of the isomorphism and

using that
[+a]* FTy(F) = FTy(F® Lyax))
FTy(FTy(F) ® Lypx)) = [z —b—z]*'F
for any Fourier sheaf F (see Theorem ), we get a geometric isomorphism
Fo® Lyax) = [+(=0)]* Fa. (4.14)
Then:

— If b = 0, taking determinants shows that a = 0.

— Since the Artin-Schreier sheaf is ramified at most at oo, we have Sing(F2) N
AY(F,) = (Sing(F2) n AY(F,)) +b. If b # 0, this yields

Sing(F2) = @, {00}, or A'(F,) c Sing(F2)

because for any y € Fy, b € F, the map F; — Fy, z — y + xb, is a bijection.
By Lemma , Sing(F2) # @ because we assume that F; is geometrically
irreducible and not geometrically trivial.
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If f =X and b # 0, the geometric isomorphism (1.11) becomes

Lyp(n(x)—h(X-b)+aX) = Ly(g(xX-b)/g(X))-

Since the Kummer sheaf is tame while the Artin-Schreier sheaf is not, we must
have x =1 or z — g(z — b)/g(z) constant on F,. If x = 1, then

x — h(xz) — h(z — b) 4+ ax is constant on F,

i.e. h(r) = —ab~'2?/2+ ax/2 + constant. On the other hand, if z — g(x —b)/g(x)
is constant, then g is constant.
The case with a geometric isomorphism [+a]*G = D(G )®L’¢(b x) is similar. [






CHAPTER 5
Gaussian distribution of short sums of trace functions

In this chapter, we apply our probabilistic model to prove the results intro-
duced in Section 1.3, extending works of Davenport-Erdés | |, Mak-Zaharescu
| | and Lamzouri | |.

Reminder on notations. For a function t : F; — C and a subset I < [, recall

that
S(t,1) = > ty)

yel

is the partial sum over I. For a family (¢, : F, — C), of functions, we are interested
in the distribution of the complex random variable

(S(th + 37))

z€elF,

(with respect to the uniform measure on F,) as ¢, |I| — +00, where [ +2 = {y+x :
y € I} is the translate of I. We will write Sy(z,I) := S(tq, I + ).

FEzample 5.1. When g = p, the finite field F, can be identified with the interval
[1...p]. For an interval Iy = [1...H] < [1...p] and 1 < = < p an integer, we
have the partial sum of length H starting at x + 1

S(t,x, H) = S(t.Ip+x)= >, ty).
r<y<z+H

This is the situation considered in the works mentioned above. More generally,
when ¢ = p®, we can look at “boxes” in Fy, = F}.

5.1. STATEMENT OF THE RESULTS
The general result is the following:

Theorem 5.2. Let (t, : F; — C)q be a family of (-adic trace functions, arising
from a coherent family (F4)q of (-adic sheaves over F, (see Definition ), with
monodromy group G < GL,,(C), and denote by Std the standard representation of
G in GL,(C).

Let (I4)q be a family of subsets I, = Fy such that Fy is I-compatible. Then,
with respect to the uniform measure on Fy, the random variable

Sy (1,
V |IQ| xE]Fq
converges in law to a normal distribution in C = R? with mean 0 and covariance
matrix

1 0) . . 1/1 0 .
= (0 0) if Std is self-dual, and T = B (O 1) otherwise, (5.2)

when
q, 14| — o0 with log |1,] = o(logq). (5.3)

87
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Remark 5.3. In particular, the limit has independent real and imaginary parts.

Remark 5.4. The trace functions ¢, in Theorem can be complex- or real-valued
(the latter occurring for example for hyper-Kloosterman sums of even rank and

Birch sums). Let us write I' = (E; 11:25 ) Of course, if ¢, is real valued, we expect

that I's = 0. Actually, we will see that I'sp = 3(1 —mult; (Std®?)), so ¢, is indeed
real-valued if and only if I'yo = 0 by Proposition

Remark 5.5. We recall that the I-coherence of F is a restriction only for Kummer
sheaves L, () with f # X, and holds if I < [1...p/deg(f))® = F, = F; by
Example

5.1.1. Quantitative version. Asin | |, we also get the following quanti-
tative version, about the joint distribution function:

Theorem 5.6 (Quantitative version). In the notations and hypotheses of Theorem
, fir e € (0,1/2) and let R = rank(G). For any closed rectangle A = C =~ R?
with sides parallel to the coordinate axes and Lebesgue measure j(A), the proba-

bility
b (Suled) |\ _ He e By Sy, 1,)//TT] € A
vV |Iq| q
18 given by

1 Y ’
PN e A) + 0. <H(A) <q2+€ * (11§g|qu|> i \/!117|>>

when q, |I,| — o0 with

log |I4| = o(log q) : self-dual and Kummer cases

2R
g =0 ((IOgQ)m> : otherwise,

where N is a normal random variable in C with mean 0 and covariance matriz T’
as in Theorem 5.2, and

R—-1

2R—1

5 1/2 —¢e : self-dual and Kummer cases
: otherwise.

Remark 5.7. In the self-dual case, Theorem recovers the bound and the range
of | |, with an improvement on the power of |I| (from 1/4 to 1/2), thanks to
a modification of the method.

Remark 5.8. In the non-self-dual case, we recover the bound valid for Dirichlet
R
characters when the rank R — o0, but under the weaker range |I,;| = o ((log q) ﬁ)

than the one for which Theorem is valid. We will explain the reason for this
later on.

5.1.2. Moments of traces of random matrices in classical groups. As
we will see, an important ingredient in the proof of Theorem is the following
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result on moments" of traces of random matrices in maximal compacts~ of classical
groups with respect to the Haar measure:

Proposition 5.9. For n > 1, let G be SL;,1+1(C), Spy,(C) or SO,+1(C) with
standard representation Std. Then, for R = rank(G) (namelyn, n and [(n + 1)/2]
respectively):

(1) If Std is self-dual (i.e. in the symplectic case),

mult; (Std®*) = 0 (k=0 odd), (5.4
multy (Std®%) = (k — 1)!! (0 < k < R even), 5.5
mult; (Std®*) < (k — 1)!! (k=1) (5.6
(2) Otherwise,
mult; (Std®* @D(Std®*)) = k! (0< k< R), (5.7
mult; (Std®* @D(Std®")) = 0 (0<k#r<R), 5.8
mult; (Std®* @D(Std®")) < VE!r! (k,r>=0), 5.9

where multy (- ) denotes the multiplicity of the trivial representation in a represen-
tation of K.

In other words, these moments correspond to that of a Gaussian’ in R? >~ C
if the order of the moment is small enough with respect to the rank. This has
been known and exploited for example by Diaconis-Shahshahani | |, Pastur-
Vasilchuk | |, as well as Larsen | | in the context of trace functions.

A new aspect is that we will moreover need the bounds (5.6) and (5.9) on the
large order moments.

Remark 5.10. Recall that (see Section ):

— For k,r > 0 distinct integers, the (k,r)th moment of a standard Gaussian
in R? =~ C is zero (see (5.12)).

— For k odd, the kth moment of a standard Gaussian in R is zero.

In the self-dual case, odd moments are zero even for high rank, but in the non-self-
dual case, we will see that there are infinitely many nondiagonal terms. This is
the reason for the restricted range in the non-self-dual case of Theorem noted
in Remark

5.1.3. Examples. At the end of this chapter, we will finish to prove that the
families of Q-sheaves of Section are coherent, so that Theorems and
apply to them.

Recall that these families include (as trace functions):

'For a complex-valued random variable X, we consider here the moments E(X*X") (and
not E((Re X)*(Im X))); see Remark below.

2Recall that by Corollary 3.3, the moments can be computed in G or in a maximal compact
subgroup K of G(C) (this is Wey!’s unitary trick).

3Still in the sense of Footnote 1.
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(1) Dirichlet characters pre-composed with a rational function f (this is the case
of | | when f =id and g = p).
If f # X, we must assume that I has no zero-m-sum for m < deg(f), e.g.
Ic[l...p/deg(f)) = Fq =T,

(2) Hyper-Kloosterman sums and hypergeometric sums.

(3) General exponential sums of the form (2.3), including Birch sums and Fouvry-
Michel sums.

(4) Point counting on families of hyperelliptic curves.

Note that to make the arithmetic and geometric monodromy groups coincide,
we may eventually need to replace a family (F;), by the twisted family (o, ® Fy)q
for g € Q; a Weil number of weight 0. This has simply the effect of multiplying
the trace function by a4, and the covariance matrix I" of Theorems by the

orthonormal matrix
Reay —Imaoy
Imag; Reoay )’
where we identify o, with its image through the fixed isomorphism ¢ : Q, —C.

5.2. PROOF OF THEOREM

5.2.1. Strategy and comparison with other approaches. The idea of the
proof of Theorem is the following:

(1) By the method of moments, it suffices to show that the moments of the
random variable (5.1) tend to that of the Gaussian .

(2) We show that the probabilistic model of Chapter 4 is accurate, in the sense
that the moments of (5.1) converge to that of the model.

(3) To conclude, it suffices to apply the central limit theorem (with convergence
of moments) to the model.

This is to be compared with the approaches of earlier works which do not use
the central limit theorem:

— Davenport-Erdés | | and Mak-Zaharescu | | directly show that the
moments of (5.1) are asymptotically Gaussian and apply the method of
moments.

— Lamzouri | | first proves that his probabilistic model is accurate as in
step above. He then remarks that the random variable X modeling the
values of the Dirichlet characters itself has moments bounded by those of
a Gaussian. That allows to approximate the characteristic function of the
model for the sums by that of a Gaussian. By using a method of Selberg,
this finally gives an approximation for the joint characteristic function. We
will comment more on this approach in Section

We shall see that with the ¢-adic formalism, the proof that the model is accu-
rate becomes very natural and does not involve explicit computations of moments
of random matrices.
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5.2.2. Moments of the model. Recall from Chapter /| that we model (5.1) by
the random variable
SH)=2Z1+--+Zy

where H = |I| and Z; are independent uniformly distributed like tr(7 (X)), for X
uniformly distributed in a maximal compact subgroup K of G(C) (with respect
to the Haar measure) and 7 : K — K¥ the projection.

Proposition 5.11 (Probabilistic moments). For all integers k,r =0 and H > 1,
the moment

Mprob(k7 T H) = E(S(H)kS<H)T)

Z Z (kl . k kH> <r1 . r TH>

e
k; =0 r; =0

18 equal to

H
x | [roulty (Std®* @D (Std®™)).
=1

Proof. By independence and the multinomial formula, Mp.on(k, 75 H) equals

S5 () e

ki+-+kg=kri+-+rg=r
k; =0 r; =0

By the Peter-Weyl Theorem,

BZZ) = [ AT = [ @ G

= mult;(Std®* ®D(Std®")),

where p is the normalized Haar measure on K, since tr (resp. tr) is the character
associated to the standard representation of G (resp. its dual). O

Remark 5.12. The covariance matrix (5.2) of Theorem is given with respect
to the standard basis 1,7 of C as R-vector space, and a nice feature of the result
is that the matrix is diagonal, i.e. the real and imaginary parts are independent.
However, it will be more natural for the proof to make the linear transformation
(%) = (12%) (BeZ) and consider as in Proposition the moments E(Z¥Z7)
instead of E((Re Z)¥(Im Z)"). The reason is that conjugation has the algebraic
interpretation of dualization of representations, characters, and trace functions. In
the self-dual case (i.e. when the trace function takes only real values, see Remark

), there is no difference.

Lemma 5.13. The covariance matriz of the random vector Z = (Re Z,Im Z) is
equal to the one given in (5.2), and E(Z) = 0.

Proof. Since the sheaf is geometrically irreducible, Std is irreducible, so that
E(Z) = mult;(Std) = 0 by Schur’s Lemma. Moreover, for every integer r = 0 we
have

mult (Std®") = J

tr(g)"du(g) = j (@) dulg) = multy (D(Std)®")
K

K
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where the second equality follows from the fact that mult;(Std®") is an integer.
Using this, we find that the covariance matrix of Z is

[ L (multy(Std®?) +1 0
2 0 1 — mult; (Std®?) )

Finally, again by Schur’s Lemma,

mult; (Std®?) = mult; (Std ®D(D(Std)) = dstd sel-dual-

5.2.3. Accuracy of the model.

Proposition 5.14. Under the hypotheses of Theorem 5.2, for all integers k,r = 0
and I < Fy of size H, the moment

My(k,r;1) = E (Sq(x, 1)¥8, (=, I)’“)

satisfies
My(k, ;1) = Myeor(k, 3 H) + O <c3(k+r)q71/2Hk+r)

with ¢ = max, cond(Fy).

Proof. As in Proposition , the moment M, (k,r;I) equals

Z Z (/ﬁ . k I<:H> <r1 . T 7"H>

ki+-+kg=kri+-+rg=r

kiZO r; =0
1 l _—
= [Tt + ai)bitg(a + ai),
q zelfy i=1
where I = {a1,...,ag}. By Proposition , this is equal to

Z Z <k1 . k kH> (rl . T TH>

O
k;=0 r;=0

x [ multy(Std®* @D(Std;)®")

1<i<H

L0 < AE+r) q_1/2 Hk+r)

for all integers k,r > 0, recalling that Zk1+---+kH:k, k=0 (klkkH) = H*. The

conclusion follows from Proposition . O
We make the normalizations
Sulw, ) = Sy(w, 1)/+/IT] and S(H) = S(H)VE,

and for k,r > 0 we denote by Mq(kz,r;I), Mprob(k:,r;H) the corresponding mo-
ments, so that Proposition becomes:

My (k,7;I) = Myop(k, 3 H) + O (03(’”’”)(1‘1/2Hk5r) . (5.10)
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5.2.4. Central limit theorem.

Proposition 5.15. Under the hypotheses and notations of Theorem 5.2, the ran-
dom variable S(H) converges in law to the random variable N when H — oo,
Moreover,

lim Mpmb(k,r;H) = My (k, 1),

H—o0

for all integers k,r = 0, where Mar(k,r) is the (k,r)-th moment of N.

Proof. This follows from the two-dimensional central limit theorem and Lemma

To obtain the convergence of moments, it suffices to show that S(H) is
uniformly integrable (see e.g. | , Chapter 5.5|), which follows from | ,
Theorem 7.5.1]. O

By (5.10), this immediately implies:

Corollary 5.16 (Moments are asymptotically Gaussian). Under the hypotheses
and notations of Theorem 5.2, we have for all integers k,r = 0 that

lim M, (k,r; 1) = My (k,r).

q,[I|—00
5.2.5. Method of moments and proof of Theorem . To conclude the
proof of Theorem 5.2, it now suffices to apply the method of moments:

Proposition 5.17 (Method of moments for complex-valued random variables).
Let (X)) n>0 be a sequence of complex random variables with moments Mx, (k,r).

If
lim Mx, (k,r) = Mx,(k,r)

n—0o0

for all integers k,r = 0 and if

| M, (k, )| 7

lim sup < 00,
k+r—o0 k+r
then X, converges in law to Xo.
Proof. See for example | , Chapter 5.8.4]. O

Corollary 5.18 (Method of moments for normal convergence). Let (X,)n>0 be
a sequence of complex random variables. If for all integers k,r = 0, the moment
Mx, (k,r) converges to the corresponding moment of a normal random variable
N asn — o, then X, converges in law to N .

Hence, by Corollary , Theorem follows directly from Corollary

5.3. QUANTITATIVE VERSION: PROOF OF THEOREM

5.3.1. Review of Lamzouri’s method. An improvement of | | on previ-
ous results is the ability to give a bound on the error term for the joint distribution
function:
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Theorem (| , Theorem 1]). If xp is a non-real Dirichlet character modulo
p and A  C a rectangle with edges parallel to the axes, the probability

{xeﬁp:S%xaH)eAH
P a2

when log H = o(logp), for N a normal random variable in C with mean 0 and
unit covariance matriz, and p the Lebesque measure.

1

s given by

The idea is to study more precisely the random variable Z modeling the values
of the Dirichlet character and remark that its moments are bounded by those of
a Gaussian. In particular, this implies that if S(H) = Z; + -+ + Zy with Z;
independent distributed like Z as above, we have

E ((ReS(H))Qk(ImS(H))2r> « (k + ) HR

(see | , (3.5)]), which is a square-root cancellation over the trivial bound
H 2(’”’")(2/-4: + 2r)!. This implies that one can approximate the characteristic func-
tion of (S(Xp,z, H))zer, asymptotically by that of the probabilistic model when
p, H — oo (see the proof of | , Theorem 3.1]). Lamzouri then proceeds as
follows:

(1) Asin the classical proof of the central limit theorem, the characteristic func-

tion of the model is approximated by that of a Gaussian (| , Lemma
3.2]).

(2) Combining these, this gives an asymptotic approximation of the character-
istic function of (S(xp,z, H))zer, by that of a Gaussian (| , Theorem
3.1]).

(3) Using a smooth approximation for the sign function involving characteristic
functions, due to Selberg (| , (4.4)]), one gets an approximate expres-
sion of the joint distribution function from the characteristic function, which
allows to conclude.

5.3.2. Generalization to trace functions. It turns out that this can be gen-
eralized to trace functions because traces of random matrices in maximal compact
subgroups of SL,,(C), Sp,,,(C) and SO,,+1(C) have Gaussian moments as the rank
tends to infinity, and can be well bounded when the rank is fixed: this is Propo-
sition

One actually needs only bounds on the moments, but exploiting the fact that
they become exactly Gaussian allows to improve the error terms as the rank tends
to infinity.

Hence, we use a different phenomenon than the averaging of the central limit
theorem: the random variables modeling the values of the trace function are them-
selves “close to Gaussian”.
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We will however proceed a bit differently than Lamzouri, skipping steps (1)—
above and:

(1) Directly use step to approximate the joint distribution function of the
random variable (5.1) by that of the model.

(2) Apply a generalization to higher dimensions of the Berry-Esseen theorem
appearing in | |, to obtain an approximation of the joint distribution
function of the model.

We first prove Theorem conditionally on Proposition , before taking
care of the latter.

5.3.3. Characteristic function of a Gaussian. Let us recall that if Z is a
normal random variable in R with mean 0 and variance o2, its moments are

E(Z*) = 0 it k>11isodd
oF (k=1 if k> 0is even

and its characteristic function is
. 1.2, 2
u— E(e?) = 7274,
Hence, if Z is a normal random variable in C =~ R? with mean 0 and diagonal
covariance matrix o2 (} {), then its characteristic function is
2

(u,v) — (u,v) = E (ei(uReZ+UImZ)) _ B ue?)

As we explained in Remark , we will continue to rather work with moments
of the form E(Z*Z") and characteristics functions of the form

(u,v) — ¢(u,v) = E (ei(uZJer)) 7

which renders the computations easier and more natural in our setting. Note that

d(u,v) = ¢(u+v,i(u—v)) and

- uU—1 U+
Huyv) = ¢>( S ) (5.11)

for all u,v € C. Hence, ¢(u,v) = 6*2"2“”, so that

E(Z¥Z7) = (20%)" k10, (5.12)
5.3.4. Approximation of characteristic functions through moments.

Lemma 5.19. Let X1, Xy be complex random variables with moments M;(k,r) =
E(XJI“Xi;) and characteristic functions (u,v) — ¢;(u,v) = E(e{@XitvX)) for
u,v € C and k,r = 0 integers. Assume that

Ml(va) = MZ(va) + O(g(k:,r))

4This is a nice combinatorial identity to prove directly, if one does not use characteristic
functions.
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for all k,r = 0 with some g : N> — R. Then for any fized even integer N = 1 and
u € C, we have

UN
or(u,) = ¢2<u,u>+0<' (N2, N/2)| + |M(N 2, N/2>|>)

+0 (n;v%’,n zn] <Z) lg(a,n — a)\> .

a=0

In particular, if g(k,r) = h(k + r) for all k,r =0 for some h : N — R, we have
N
ortu,m) = oalum) + O (B (A2 /2] + 32 N /2)
+0 <m<a]{[( |h(n)|(1 + |u|N)> .

If X1, Xo are random wvariables in R, then a similar relation holds for ¢1(u,0)
and ¢2(u,0) with u € R.

Proof. It suffices to use the expansion e’* = Dn<N n, +0 (l |! ) valid for x €

R. O
5.3.5. Bounding moments. In order to apply Lemma , we will need bounds
on the moments Mpon (NN, N; H), provided by Proposition 5.9. Recall that by
Proposition , we have
Zk ZTZ)
) _ A2
Mprob(N, N; H) = N! Z Z ]_[ Py
ki++kg=Nri+-+rg=Ni=1
k;=0 r; =0

Note that if all Z; were normal variables in C with mean 0 and covariance ma-
trix 02 (§9) (resp. o2(§9)), then this would be equal to (202)¥NNIHYN (resp.

o?N (2N — D)IHN),

Proposition 5.20 (Non-self-dual case). If the conclusions of Proposition hold,
then in the non-self-dual case,

M,

orob (N, N; H) < (N + H-1)VNHY.

Proof. By the Cauchy-Schwarz inequality,

2

M (N +H—1)!
MprOb(N7N;H) < Z s <HN—"
ki Ak =N VEil k! (H—1)!
k;=0
since the number of weak H-compositions’ of N is equal to (N Elj N 1). Finally, we
usethaﬁcM (N+H—1)N. o

(H-1)!

SRecall that a weak H-composition of an integer N is a tuple of nonnegative integers
(ki,...,km) such that k1 + -+ + kg = N.
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Remark 5.21. In Remarks and , we explained that the reason for the
restriction on the range in Theorem for the non-self-dual case came from the
fact that X; may have infinitely many nonzero nondiagonal moments. If (5.8)
in Theorem held for all distinct k,7 > 0, then we would get the bound HYN
instead of HY(N + H —1)V. We will see later how this additional exponential in
H modifies the aforementioned range.

For Dirichlet characters, we can achieve the following better bound:

Proposition 5.22 (Non-self-dual case, Kummer sheaves). In the case of Kummer
sheaves, we have

Mpyon (N, N; H) < N'HY,

Proof. If Z is a random variable uniformly distributed in pg(C), then

E(Z¥Z7) = dEg“’“ = Sper, 50

N!
Mprob(N NH)gN' Z 7<N'HN
9 Y ' ' 2
S (k1!...kg!)
k; =0
O
Remark 5.23. Actually, Lamzouri | | models Z as a random vector uniformly

distributed on the unit circle S'. This is equivalent since the moments are then
- 1 27 .
E(Z*Z7) = J e*=1dg = 64—, (k,r = 0).
2T 0

Proposition 5.24 (Self-dual case). If the conclusions of Proposition hold,
then in the self-dual case,

Mprob(Ny N; H) < (2N — 1)”HN

Proof. Since (k — 1)!l = WILMZ)' for k > 1 odd,
(2N)! k!
Mpr0b<N7N;H) < Z H
kit Ak =2N kal.. k! 2k:/2 (ki/2)!
k; =0 even

- ﬁgj)v' > (mlN/zmH) = (2N - )IHY.

mi+-+mpg=N
m;=0

O]

5.3.6. Approximation of joint distribution functions through charac-
teristic functions. The following result appears in | |, and follows from a
smooth approximation of the sign function (and thus of the characteristic function
of a rectangle in R?) by Selberg in | ]
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Proposition 5.25. Let X be a complex random variable with characteristic func-
tion ¢x(u,v) =E (ei(“ Re X+vIm X)) (u,v € R) and A = [a,b] x [¢,d] be a rectangle
in R? >~ C. Then, for any real number t > 0,

P(Xe4) = LRe L fo Gluft)G (/1) (6x (2, ~270) () Fo0)
du dv

—6x (270, 270) (1) fea(v) )
+0 (5 [ lox@ru,0) + [ox(0.2m0))au

where G(u) = 2% + 2(1 — u)cot(mu) for u € [0,1] and fop(u) = (e(—au) —
e(—pu))/2 forueC, a,p e R.

Proof. See | , Section 4]. O

Corollary 5.26. If XY are complex random wvariables such that there exists a
positive continuous function g : R — R with

¢x (2mu, 2mv) = Py (2mu, 27v) + O(g(|ul, |v]))
for all u,v € R, then we have
P(XeA) = PYeA
+0 < t Lt 9(u, v)dudy + 1Lt(g(u, 0) + g(o,u))du>
t

0

1

+0 <tf (lox (2mu, 0)] + \¢X(0,27ru)\)du> )
0

5.3.7. Central limit theorem and sums of quasi-normal random vari-

ables.

Lemma 5.27. For H > 1, let X1,...,Xg be independent identically distributed
random variables and consider

Assume that for 0 < k,r < N, the moments M (k,r) = E(XFXT) of X1 correspond
to the moments of a normal random wvariable in C with mean 0 and covariance
10

matriz o2 (}9), respectively (({)2 8). Then the characteristic function ¢g(u,v) =

E <ei(uS(H)+vTH))) of S(H) satisfies

— —202|ul? ‘u’N

when u € C with |u| < H%, respectively

L lg2y2 Jul ¥
¢ (u,0) =e 2 <1 +0 <H<N1)/2)>

N—

when u € R with |u] < H2v .

N
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H
Proof. By independence of the X;, we have ¢g(u,v) = ¢ (\/Lﬁ, \/Lﬁ) where

d(u,v) =E <ei(“X1+”71)) is the characteristic function of X;. Then

H
é (’LL ﬂ) _ 67202|u|2/H+O ‘U|N
LA HN+D/2

N
—202|u|? |u‘
e <1+O<H(N_1)/2

in the first case, since (e? 4+ O(a?))? = e (1 + O(a?H)) if a?H < 1. The second
case is similar. O

5.3.8. Normal approximation. Below, we give a particular case of the gener-
alization of the Berry-Esseen Theorem in higher dimensions appearing in | |.

Proposition 5.28. Let Xi,..., Xy be independent and identically distributed
random vectors in R?, satisfying

E(X1) = 0, and E(||X1||*) < oo,

and let S(H) = L\/%FXH Then for any A < R? Borel-measurable,

P(S(H)e A) = P(N € A) + O(u(A)H™/?),

where N is a normal random vector in R? with mean 0 and covariance Cov(X7).

Proof. This follows from | , Theorem 13.2] taking d = 2 and f = 14. Note
that, under the notations of the latter,
HlogH _ _ A
o < ecii and w;(27/27r 3948 ps H=12 : @) « /i;ﬁ)

for some absolute constant C' > 0. Thus, for ® the density function of N/,

1 log H 1 1
d(S(H) — ® R?
[ asan >’ < w ><m+ 7 +H¢@+e0wm>

(TR 12 )
< w(AYH2,

O
5.3.9. Proof of Theorem . Combining the above results, we can finally
prove Theorem 5.6, conditionally on Proposition 5.9. Let us consider the charac-

teristic functions

¢q,[(ua U) -F <€i(u§q(:v,l)+v§q(m,l))> (u, ve (C)

of the normalized complex-valued random variable (S, (z, ))zer, and

op(u,v) =E (ei(“S(HH”@)) (u,v e C)
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of the random model

where H = |I|. Recall that by (5.10), we have for all integers k,r > 0

MQ(k7T;I) = Mprob(k,T;H) +0 (C3(k;+r)q_1/2Hk;—r) '

Let us fix 0 < e < 1/2 and let

N=2M< %;(()ffm (5.13)
be an even integer, so that in particular ¢8M¢=1/2HM < ¢~1/2+¢ and
Mq(M, M;I) = Myrop(M, M; H) + O(g~/2+°).
By Lemma , we find the following relation between the characteristic func-
tions:
Gq1(u, ) = ép(u,1)
+0 (W it (01,30 10 + 47750+ ) ).
Let t = M®/(2m) for some o > 0 to be determined later. We apply Corol-
lary after making a change of variable with ( ) to consider characteristic

functions arising from (u,v) — uRe X + vIm X (u,v € R) instead of (u,v) —
uX +vX (u,v e C). For all u,v € R, we then have by Holder’s inequality

P(S,(z,I)e A) = P(S eA)

( \¢H (mu, mu)| + |pq (iTu, —mu)|)du>

+o(jf uvdudv)

+0< g(u,0) + g(0, u))du) (5.14)

where

vV +yN - —1/24¢ N, N
9(zy) = (2m)" | =5 [Mprob (M, M; H)[ + q (T+a™ +y7)|-

Let us bound the three error terms in (5.11) one after another:

(1) For the first one, note that

1 1
tf | (2w, 27mu)|du < tf |prr (2mu, 2mu) | du.
0 R

Using Lemma and the assumptions on the moments, we have

—u?/2 |U|R

for |u| < H5% . Since & e /2 < o, the error term becomes O(1/t) =
O (M~%) under the condition

R—1 R—1
ot < H2r | i.e. M < H?2fa (5.15)
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(2) The second term S(t) Sé g(u,v)dudv is bounded (up to a constant) by

Mprob(Mv M; H) (27rt)2M+2

(2M)! M
2t 2M+1
g2t ((27rt)2 + m) : (5.16)
M
By Propositions (non-self-dual case), (Kummer case) and (self-
dual case),
(M + H — 1)  non-self-dual case
]\prrob(M,M; H) << M! Kummer case

(2M — 1) self-dual case.

By Stirling’s approximation, the first summand of (5.16) is bounded (up to a
constant) by:

— In the Kummer case:
MM(20¢—1)+20¢—1

) M (2 log(e
g ( 1+ é 1/W2) > X

lo

M
— In the non-self-dual case:

4 M
M2e3 <€4 (M2 HM?2 - M2a2)> « M5 (5.17)

1
if &« < 1/2 and under the additional condition M » H?2-2a. With (5.13),
this imposes the more restrictive range

2—2«
H=o ((1og q)71+5(2*2a)> (5.18)
and the condition
1 R—1 R—1
< e a< 5.19
29— 20 S 2Ra ¢ YSoR T (5.19)

because of (5.15).

By (5.15), the second summand of (5.16) is

O <q—§+2a)

if log H/log q < € since

(2nt)? < H R =qled B and

(27Tt)2M+1 < HS 5 < q

=
‘:U
L
K3
SE
-

™

(3) Under the same conditions, the last error term %Sé(g(u,O) + ¢(0,u))du of
(5.14) is bounded by the first one.
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Hence, the error term in (5.141) is:

— In the self-dual and Kummer cases
log(e/2)
0 <M‘O‘ N M2a—1+M<2a—1+§g7M> N q_5+2€> ‘

. : MO-SEED )
We optimize by taking o = W, which leads to an error term of

O (M—%-&-a + q—%+28> .
— In the non-self-dual case,
9] (Mfa + q7%+2€>

since 2a — 3/2 < —a when a < 1/2). By (5.19), we optimize by taking

a = 2%111 and we obtain the error term

19) (M—% + q—%+2a)

for the range
2R
H=o0 ((10g q) (2R71)(1+25)) .

Finally, after letting

R—-1

. r-1 ¢ loggq
M: H oa, —— —
jmin (15 S5 ) | o

we can apply Proposition to S(H), and combining with ( ) gives Theorem

5.4. TRACES OF RANDOM MATRICES IN CLASSICAL GROUPS

In this section, we prove Proposition , which will conclude the proof of
Theorem 5.6. In comparison to earlier works, recall that it is important for us to
obtain bounds on moments of high order with respect to the rank.

5.4.1. Special linear case.

Proposition 5.29. Let N > 2 and let X = tr, where 0 is a random variable
uniformly distributed in SUn(C) with respect to the Haar measure. For k,r = 0
integers, let us consider the moment M (k,r) = E(X¥XT). Then:

(1) We have

M(k,r) = Snjp—r > dim Sy dim Sy | ()
Ak
ION)<N, Av=>—a
where a = (k —r)/N and Sy — respectively Sxy, — 1is the Specht S-
module (resp. &,-module) associated to the partition X — resp. A+ (aV) =
A+ (a,...,a).
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(2) M(k,r) < VEr!.
(3) M(k,k) = k! if k < N.
(4) M(k,r)=01ifk,r <N and k # r.

Proof. We use the same technique as in | |, but we also need to handle the
case k,7r = N.

Let Std be the standard representation of SUx(C) in GLx(C). Recall that the
irreducible representations of SLy(C) (and hence of its maximal compact subgroup
SUN(C)) are the Schur-Weyl modules S)(Std) indexed by partitions A of length

I(A) < N (see | , 15.3]). Moreover, the character of S)(Std) is given by the
Schur polynomial sy evaluated on the eigenvalues (see | , L3l or | , 6.1]).
For A = (A1,..., ), recall the power symmetric polynomials

PA = PA; - -- Py, Where py, = )" + - + 2y for any m e N.

By the representation theory of the symmetric group and the theory of sym-
metric polynomials (see | , 1.7.8]), we have the decomposition of py into the
basis of Schur polynomials: for any partition A of length < k,

Px = Z X}L(}‘)Sua

pek

where x,, () is the character of the irreducible Specht &;-module S, corresponding
to A, evaluated on the conjugacy class corresponding to A. In particular,

(214 + ) = Z dim Sys, (1, .., TN).

ek
{p)<N

Since (z1 + -+ + 2n)F (vesp. s,(z1,...,2x)) is the character of Std®* (resp. of
the irreducible representation S, (Std)) evaluated at a matrix whose eigenvalues
are x1,...,ZxN, we get by orthogonality that M (k,r) is equal to

f tr(g)te(g)rdg = D) Y, dimSy, dimSy,ds, (si)as,, (si)-
SU~(©) pikk  pebr
U(p1)<N Up2)<N

(5.20)
The Cauchy-Schwarz inequality yields
M(k,r)? < ) (dimS,,)> D (dimS,,)* < klr! (5.21)
ik H2bT
W(p1)SN lp2)<N

since the Specht modules S, (u - k) give the irreducible representations of the

symmetric group &y, (see | , 1.7]). Hence we obtain
Next, note that S, (Std) = S,,(Std) if and only if uy = pu1 + (a’¥) for some
a€Z (see | , p- 223]). If the latter holds, we have N |k —r, a = (k —r)/N,

I(u1) < N and (pu1)n = —a. Thus (5.20) becomes

M(k,r) = > dim S dim S, (,v)

Ak
I(AN<N, Ay=—a
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if N'| k—r and 0 otherwise. This gives
Let us now assume that £ < N. We then automatically have I{(\) < k < N
for every partition A of k. If moreover k = r, then a = 0 and

M(k, k) = > (dim Sy)® = kI,
A-E

which is (3). Finally, if 0 < k,r < N are distinct, then N { kK —r and M (k,r) = 0,
which is . O

Remark 5.30. (see also Remarks and ). The second bound we have given
in (5.21) is not asymptotically tight for & # r. However, replacing it by a bet-
ter asymptotic would not improve the results (or in particular recover the range
log H = o(log q) in the non-self-dual case of Theorem 5.6). Indeed, Regev | ,
Corollary 4.4| used the hook-length formula to show that as k — oo, we have

N2k:
- 2
A;k (dim S)) ”C(N)M,
IN<N

where

C(N) = N2 (H) (L))

For all € > 0, we get by (5.21) the bound

Nk—i—r
(kr)N?-1

M(k,r) < (1+¢)C(N)
and the bound of Proposition becomes
Mo (M, M; H) < H*M (1 + e)C(N)T N,
which still has an additional factor of H*. Hence, the bound (5.17) becomes
(1+e)C(R + 1) M22 (HM* (R +1)2)"

1
for which we still need the restricted range M > H?2-2a,

5.4.2. Symplectic case.

Proposition 5.31. Let N = 1 and X = trf, where 0 is a random variable
uniformly distributed in USpyn (C) = Spon(C) n Uan(C) with respect to the Haar
measure. For k =0 an integer, let us consider the moment M (k) = E(X*). Then

(1) M(k) =0 if k is odd.
(2) M(k) < (k— 1 if k is even, with equality if k < N.

Proof. Let Std be the standard representation of Spyx(C). As in the simple
linear case, recall that the irreducible representations of Spyn(C) (and hence of
USpyyn(C)) are given by the Weyl modules Sy, (Std) indexed by partitions p with
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I(p) < N (| , 17.3]). By Peter-Weyl, M (k) = mult;(Std®*). By | ,
Theorem 6.15|, we have the decomposition

Std®F = @ FR(N) S (Std),
l(u)<N

where f{f(N) is the number of sequences of partitions (& = uo, ..., ur = p) such
that

(a) two consecutive partitions differ by exactly one box in their Young diagrams,
and

(b) I(pi) < N for all 4.

Hence, M (k) = fY¥(N), so that is clear. By | , Lemma 8.3], when £ is
even, the number f,’j of sequences of partitions (& = ug, ooy p = p) verifying

satisfies f§ = (k — 1)!, whence since f2¥(N) < f2, with equality if £ < N
since then I(p;) <i < k. O
Remark 5.32. When k < N, this is proven in | , Theorem 6] by using the
analogue for Sp of the Schur-Weyl duality, through the Brauer algebra D¢(—2N),
following results of Wenzl and Ram (see in particular | , Theorem 4.4 (c),

Corollary 4.5 (c)]). However, this cannot be exploited when k& > N since D¢(—2N)
is not semisimple in that case.

5.4.3. Special orthogonal case.

Proposition 5.33. Let N = 2 and X = trf, where 0 is a random variable
uniformly distributed in SO N (R) with respect to the Haar measure. Let us consider
the moment M (k) = E(X*) for k = 0 an integer. Then:

(1) M(k) =0 if k is odd.
(2) M(k) < (k—1)Nif k is even, with equality if k < |N/2].

Proof. This is similar to the symplectic case. Let Std be the standard represen-
tation of SO (R).

(1) (Case N = 2N’ +1 odd). By | , Theorem 4.2|, we have the decompo-
sition
Std®k = @ FF(N")S,(Std),
l(u)<N’

where Sp,1(Std) is the irreducible representation of SOgn11(R) associated

to the partition p (obtained from the Weyl module, see | , 19.5]) and
Fj(N’) is the number of sequences of partitions (& = pg, ..., ux = ) such
that

(a) two consecutive partitions either differ by exactly one box in their
Young diagrams, or are equal of length N’ and

(b) I(u;) < N’ for all i.
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Hence, M (k) = F¥(N'). Clearly, FF(N') < f¥(N') < f¥ with equality if
k < N’, where fé“(N’) and f(lf are as in the proof of Proposition . The
result follows then from the latter.

(2) (Case N = 2N’ even). By | , Corollary 4], we have for SOx/(R) the
decomposition
Std®* = (Jua GP(N')Sp,(Std),

Up)<N’

where G/’j(N’) is the number of sequences of partitions (& = pg, ..., ux = p)
such that:

a) two consecutive partitions differ by exactly one box in their Young
diagrams, and

b) for every 0 < i < k, the sum of the length of the first two columns in
the Young diagram of pu; is < N'.

Thus, we have again G/’j(N’) < fE(N') < fF with equality if & < N’, since
the Young diagram of u; contains at most ¢ < k boxes.

O

Remark 5.34. As for the symplectic case (see Remark ), this is proved when
k< Nin | , Theorem 4|, by using | , Theorem 4.4 (b), Corollary 4.5
(b)], but again this method cannot be used when k > N.

The idea of Sundaram in | | and | | is to define tableaux general-
izing the Robinson-Schensted-Knuth correspondence and to prove a generalized
insertion scheme. The symplectic case actually goes back to Berele, and the odd-
dimensional orthogonal case is an extension of the latter. For orthogonal groups,
there are also generalized tableaux by King-Welsh, Koike-Terada and Fulmek-
Krattenhalter, but these do not have at first an easy combinatorial description.

5.5. EXAMPLES: COHERENT FAMILIES

In this final section, we finish the proof that the families of sheaves of Section
are coherent (eventually up to twisting by Weil numbers of weight 0), and
hence satisfy Theorems and (eventually up to multiplying the covariance
matrix by an orthonormal matrix).
For each of them, except Kummer sheaves, it remains to show:

(1) The independence of shifts (see Section 1.5).

(2) The equality of arithmetic and geometric monodromy groups, eventually up
to twisting (see Section ).

5.5.1. Kummer sheaves.

Proposition 5.35. A family (F), of Kummer sheaves L,,y), where deg(f) bounded
independently from q and f has no zero or pole of order divisible by ord(x), is co-
herent.

Proof. This is Propositions and . O



5.5. Ezxamples: coherent families 107

5.5.2. Kloosterman sheaves.

Proposition 5.36. Let n > 2 be an integer. The family (Kly, 4)q of £-adic Kloost-
erman sheaves over F, (see Proposition ) is coherent.

Proof. The geometric irreducibility, conductor bound, and condition on the mon-

odromy groups follow from Proposition and Theorem . The independence
of shifts follows from Lemma , which can be applied thanks to Proposition
O

5.5.3. Hypergeometric sheaves.

Proposition 5.37. Let n > m > 0 be integers with m +n > 1 and let x, =
(Xi.g)1<i<n, Pq = (Pjq)i<j<m be tuples of pairwise distinct characters of F\. We
assume that A =[], xi,q = 1 and either:

1) n=misodd and ' =|].p;q =1 is constant, or
j Pia
(2) n—m =3 is odd.

Then the family (H(Xq, Pq))q of hypergeometric sheaves (see Proposition ) is
coherent.

Proof. The geometric irreducibility and conductor bound follow from Proposition

By Proposition , we have GO, = Gt — SL,(C) under the assump-
tions. To make the arithmetic and geometric monodromy group coincide, we use
the strategy of Section . By the computation of the arithmetic determinant
in | , 8.12], there is an explicit Weil number o = a(x, p) € Q; of weight 0
such that

det H(x,p) = a®L
with
LA®[x—1—z]* Ly ifn=m,
L= Ly @ L ifn—m=1,
LA ifn—m>=2.

Under the assumptions of the proposition, £ is arithmetically trivial and o = 1.
The break decomposition of the hypergeometric sheaf is determined recursively

in | , Theorem 8.4.2(6)|, and the independence of shifts is then a consequence

of Lemma . O

Thus, families of hypergeometric sums of the form

_1\r—1 - . o) —
(q(Tl_)l)/2 Z <H XZ oy p’L YilYn )) (t (T( )p T<y))> (tGFq)

zely yeky i=1
N(z)=tN(y)

with n odd or
(=t & tr(T'(z) — T(y))
q—D/2 2 H Xi(Tiw H » (teFy)
zelFg yeF*  \i=1
N(z)=tN(y)

with n —m > 3 odd, are coherent.
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5.5.4. Supermorse functions and sums of the form (2.5).

Proposition 5.38. Let f € Q(X) and let Zy be the set of zeros of f' in C. We
assume that either

~ (H): kf = |Zyp| is even, B = Zzer/ f(z) =0, and if s; — s2 = s3 — s4 with
s; € f(Zy), then sy = 53,50 = 54 0T §1 = S2,53 = 54.

~ (H"): fis odd, and if sy — sy = s3—s4 with s; € f(Zy), then s1 = 53,52 = 54
or §1 = 82,83 = 84 0T §1 = —84,82 = —S83.

For q large enough, let (Gfq)q be the family of L-adic sheaves of Proposition ,
with trace functions

T — :/;y;qe (W) (z € F,).

There exist Weil numbers oy € Qq of weight 0 such that the family of £-adic sheaves
(aq®Gfq)q is coherent. Moreover, we can take ag = 1 in the (H') case.

Proof. The geometric irreducibility and conductor bound follow from Proposition

The computation of G2, was recalled in Proposition . By Section
, we get Ggeom = Garith = Spkf (C) in the (H') case. In the (H) case, we use
the determination (geometrically) of the determinant of G from | , 7.10.4]:

there is a geometric isomorphism
det(gf> = ﬁw(_ﬁx) ® ‘C‘X’

where y = ng for yo the character of order 2 of F; and B is viewed in F,. Under
(H) or (H'), this sheaf is geometrically trivial, and it suffices to apply Proposition

It remains to show the independence of shifts. We consider the case of a
geometric isomorphism

[~|—a]*gf >~ gf®£ (5.22)

for £ a rank 1 sheaf and a € Fy, the argument with D(G¢) being similar. We adapt
the multiplicative case treated in the proof of | , Théoréme 2.3]. By Lemma

and Proposition , we must have Sing(L) = {0, —a, 0} or {0, —a}.
Moreover, by | , 7.5.4(5)], the ramification of £ at 0 and —a is tame. By
| , 7.9.4], G5 as I-representation is

Gr(o0) = GrZ) (Lo(rrx) ® Ly, (x))
A f/

where X is a multiplicative character, and we view Z; in Fq. Hence, by Propo-
sition all the breaks are at 1 and as representations of the wild inertia
group Py, we have

Gr(0) = @ Lyp)x)-

ZEZf/

We distinguish two cases:
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— If oo ¢ Sing(L), then Lemma implies that there is a multiplicative
character y1 such that

L= Ly ((x+a)/x)-
Hence, there exists some 8 € C of unit norm such that

BEe(tr((erpW): Ze<tr(x£(y))>xl<x;ra>

yelFy yeF,

for all x e F. If a # 0, taking z = —a gives 8¢ = 0, a contradiction.

— Assume that o € Sing(L£). By Proposition , Swane, (L) € {0,1} because
all the breaks of Gy at oo are at 1. If Swany (L) = 1, the break-depression
lemma | , 8.5.7] implies that £ = (tame at ©0)®Ly;x) for some b € F .
On the other hand, £ is by definition tame at o0 if Swany(£) = 0. In both
cases, the restriction of the isomorphism (5.22) to Py, gives

D Logextay = D Lose)mx)
ZEZf/ ZEZf/

for some b € Fy. Thus the sets {f(2)(X +a) : z € Zp} and {(f(2) +b)X :
z € Zp} are equal, which implies that @ = 0 (and b = 0).

O

Example 5.39. In particular, the families of Example are coherent, under the
condition r = 2 even for

Remark 5.40. Lemma does not apply here because F; is trivial.

Remark 5.41. Note that there is a misprint in | , Section II.1]: a4 therein
actually depends on a, unless further assumptions are made. This is not important
in | |, but in our situation we need to select examples so that « precisely does
not depend on a.

5.5.5. Sums of the form (2.3) with f = X, y = 1, h polynomial..

Proposition 5.42. Let h = > ; a; X" € Z[X] be a polynomial of degree n > 3,
n ¢ {6,8}, with a,—1 = 0. For q large enough, let (Gnq)q be the family of (-adic
sheaves of Proposition , corresponding to the trace functions

—L oy (ly+h@)y
xH\/ay;q < . ) (zeT,).

There exist Weil numbers oy € Qg of weight 0 such that the family (og ® Ghq)q @5
coherent. Moreover, ag = 1 if n is odd and h has no monomial of even positive
degree.

Proof. The geometric irreducibility and conductor bound are given in Proposition

The geometric monodromy group was given in Proposition . In the sym-
plectic case, Section gives that Ggeom = Garith = SP,—1(C). In the special
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linear case, the hypothesis a,—1 = 0 implies that the geometric determinant of G

is trivial by | , Section 7.12|, and the statement follows from Section
The independence of shifts follows directly from Lemmas and , simi-
larly to Kloosterman sheaves. O

5.5.6. Sums of the form (2.3) with f polynomial, x # 1.

Proposition 5.43. Let f,g,h € Q(X) and (xq)q be as in Proposition , and
consider for q large enough the associated family (Gq)q of £-adic sheaves with trace

functions
—1 v (2f(y) + hy)) .
= ( L )X(g(y))( ¢ F,).

Assume that n > 2d, either g is nonconstant or h ¢ Z[X], and either N # 7,8 or
|n—d| # 6. Then there exist ag € {1} such that the family (aa®Gy)q is coherent.
Moreover, ag = 1 if L is odd.

Proof. Proposition gives the geometric irreducibility and the conductor bound.

The geometric monodromy groups are given by Proposition under the
above assumptions, and the statement follows by Section

We finally show the independence of shifts. Let us assume that there is a
geometric isomorphism of the form (1.8) for G with a # 0. By Lemmas and

, we have Sing(F2) = {00} or AY(F,) < Sing(F2). Since cond(F3) is bounded
independently from ¢, the last possibility is excluded for ¢ large enough.

Let us then assume that Sing(F3) = {0}. By Proposition and the fact
that f is a polynomial, we have Sing(F;) < {oo}. Since the Kummer sheaf is
tamely ramified everywhere while the Artin-Schreier sheaf is totally wild at all
ramified points, this implies that h € Z[X] and that g is constant. O

5.5.7. Families of hyperelliptic curves.

Proposition 5.44. Let f € Z[X] be a squarefree polynomial of degree 2g > 2.
For q large enough, the family (Frq)q of £-adic sheaves over Fy from Proposition
is coherent.

Proof. The geometric irreducibility and bound on the conductor can be found in
Proposition , and the computation of the monodromy group in Proposition

. It remains to show the independence of shifts. Let us assume that there exists
an isomorphism of the form (41.8) for 7,. By Lemma , if ¢ is large enough,
there exists z € Sing(F) n AL(F,) such that .7-";9” = 0, which is a contradiction
with Proposition . O

Remark 5.45. More generally, this argument for the independence of shifts applies
to all sheaves with pseudoreflection monodromy.



CHAPTER 6

Trace functions with image in the cyclotomic integers

As we explained in the introduction (see Section 1.1), the goal of this chapter
is to study the reduction of trace functions modulo prime ideals in the cyclotomic
rings of integers in which they lie, or more generally distribution questions for
sheaves of IFy-modules over F,.

Under some technical assumptions (i.e. the corresponding reduced family is
coherent), we will get:

— An equidistribution result for values and/or shifted sums of such trace func-
tions (Section 6.1).

— Generalizations of | | to the distribution of families of sums of reduced
trace functions (Section (.5). In particular, this gives an analogue of the re-
sults Chapter 5 and a generalization of | | to all multiplicative characters

and to Kloosterman sums.

— Zero-density estimates for arguments where the trace functions take values in
some algebraic subsets of the cyclotomic integers (Section 6.6). For example,
for m > 2, we show that if p is large enough, then Kl,, ,,(x) ¢ Q((ap)™ for all
relFX.

P

This applies in particular to multiplicative characters of any order, Klooster-
man sums and trace functions counting points on families hyperelliptic curves (see
Section 2.1).

This chapter is structured as follows:

— In Section 6.1, we recall the technical setup to handle reductions of trace

functions in the f-adic formalism, the examples we will consider, and finish

to prove that the latter are coherent.

— In Section 6.2, we prove that the probabilistic model we developed in Chapter
is accurate for coherent families.

— In Section 6.3, we make preliminary computations and observations in the
model, in particular regarding “Gaussian sums” in monodromy groups.

— In Sections 6.4, and 6.6, we transfer the results from the model to the
actual probability space to get the results mentioned above.

6.1. SETUP AND EXAMPLES
We start by reviewing the general setup and the examples we will examine.

111
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6.1.1. Reduction of sheaves of Z[(;|\-modules. Let F; be a finite field of
odd characteristic p. For an integer d > 2, let E' = Q({y) be the dth cyclotomic
field with ring of integers . We fix an auxiliary prime ¢ # p and a prime ideal
q < O above ¢, corresponding to a valuation A of E extending the ¢-adic valuation
on Z. Let Ey and Oy be the completions, and let

T O,\ — (’)A/qO,\ = FA

be the reduction map.
We consider a sheaf F of Oy-modules over F,, corresponding to an /-adic
representation
P = Pgx:Tlq = GL,(Oy),

and with trace function ¢t : F;, — O,.
We are interested in the reduction modulo q of the latter, namely t = 7ot :
F, — Fy.

GLn (O)\) ad O)\

T

GL(Fy) ————F)

T,q

/
T

By reduction of F modulo ¢, we get a sheaf of Fy-modules corresponding to the
representation
p:miq — GL,(Fy),

and with trace function equal to t.

Remark 6.1. By the theory of ramification in cyclotomic fields, we have |Fy| = ¢™
with m the multiplicative order of £ modulo d (see | , Theorem 2.13]). In
particular,

’F)\’El (mod d), d< |F,\‘,
and Fy =y (i.e. ¢ splits completely) if and only if £ =1 (mod d).

Remark 6.2. In practice, t : F; — O, will actually have image in O (or O, for
some a € O\q when we normalize), but this cannot be assumed in general and
will play no role in the arguments except for the large sieve in the last section.
Nonetheless, if t(F;) © O, we can study the reduction of ¢ modulo any prime
ideal ¢ < O such that « ¢ q. This is the reason why we allow A\ to vary in the
definition of a coherent family in the finite case (see Section 4.1).

E—— L)

[

O s O —— Oy —= 0, 2244

[Fx

6.1.2. Examples. Our arguments will apply to families of sheaves of Z[(y]x-
modules whose reductions form a coherent family:

Proposition 6.3 (Multiplicative characters). A family (L)) of Kummer sheaves
of Fx-modules, with deg(f) bounded uniformly, is coherent.



6.2. Accuracy of the model 113

Proof. This is Propositions and . O

Proposition 6.4 (Kloosterman sums). Let n > 2 be fized and let (Kly,) be a
family of Kloosterman sheaves of IFy-modules of rank n over F,, where \ lies
above a prime £ », 1 with £ =1 (mod 4) and (n,[Fy : F¢]) = 1 (as in Theorem

). Then the family is coherent. The same result holds true without restriction

on ¢ (mod 4) if p=1 (mod 3) or if n is odd, with O = Z[{p].

Proof. This is Proposition (construction) and Theorem (monodromy
groups), the independence of shifts being proven as in Proposition . O

Proposition 6.5 (Point counting on families of hyperelliptic curves). Let f €
Z|X] be a squarefree polynomial of degree 2g = 2. A family (F) of sheaves of
Zyp-modules with respect to the reductions of f as in Proposition 18 coherent.

Proof. This is Propositions and , the argument for the independence of
shifts being as in Proposition . O

Note that this setup also applies to hypergeometric sums (Proposition )
and general exponential sums (Section ), as sheaves of Fy-modules, but we did
not compute their finite monodromy groups (see Remark ). If we showed that
they are still classical groups (or more particularly special linear and symplectic
groups), the results would hold as well.

6.2. ACCURACY OF THE MODEL

Let F be a sheaf of Fy-modules over F,, with monodromy groups G, =
Ggeom(F) = Garith(F), corresponding to a representation p : w4 — GL,(Fy),
and with trace function ¢ : F;, — F). Recall from Chapter 4 that for any I < I,
of cardinality L > 1, we model the random vector

<p(FrObJ:+a)aeI>

zely

(see also Convention 1.1) by the random vector (Yi,...,Y7), where the Y; are
independent uniformly distributed in the set Gi of conjugacy classes of G. The
random vector

(¢t +aeer) .,

is then modeled by (Z1,...,Z1), where Z; = trY;.

We now prove that this model is accurate in the sense of convergence in law
(with respect to some ranges of the parameters).

6.2.1. Statements.

DEFINITION 6.6. For G a finite group and m > 1 an integer, we let dp,,(G) =
er@(dim x)™, where G is the set of characters of irreducible complex represen-
tations.

Theorem 6.7. We assume that F as above is part of a coherent family. Let
I c Fy of cardinality L and h : (Gg\)L — R any function. If F is I-compatible,
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then

E(h(p(Frobm))ad) —E(h(Yi,...,YL)) + O(L||h]|ooq*1/2E(G,\, L)),

where
By | LB+ (GN+26-(GN) 2 classical case
E(Gy,L) =< d- . cyclic simple case
db+t . Kummer case,
with B4 (G)y) = (dim Gy + rank G))/2 given in Table 0.1. Moreover, if h takes

values in Rsq, then
E(h(p(Frobssa)) g ) = E(h(Y, ., ¥2)) (1+ O(Lg PE(Gy, L) ),

Remark 6.8. Again, we recall that the I-compatibility of F is a restriction only for
Kummer sheaves L,y with f # X, and holds if I = [1...p/deg(f))* c F, = T}
by Example

Remark 6.9. When I = {0}, this is Chebotarev’s theorem as it appears for example
in | |.

G dimG rankG a(G) B+(G)  B-(G)

SL, n2-1 n-1 21 win=z  nnD)
n(n+1 n n(n+2 n(n+2 n2

P (1 even) §2+1; 51 (28+1) ( +(1)( )1) ( :)2

SOJ:L (n odd) AR N T:(Lnsg_r » 1 .
SO; (n even) | =5— z % n’ :

Table 6.1: Constants for the groups considered.

Corollary 6.10. Under the hypotheses of Theorem 0.7, for any function h : Ff —
R, we have

E(h(t(m + a>)ad) —E(h(Z,...,21)) + O(LHhHOOq*l/?E(GA, L))).
and if h takes values in Rsy,
}E(h(t(x + a))ad) —E(WZ,...,71)) (1 + O(Lq_l/QE(GA,L))) .
Proof. Apply the previous result with h o tr. O

Remark 6.11. Note that we must in particular take L < ¢'/? to have E(G)y, L)L =
0(¢'/?) as ¢ — +c0.

6.2.2. Proof of Theorem . For I ={ai,...,ar} c Fy, we write
1 D(v
p > h(p(Frobyiay), ..., p(Frobyia,)) = ] h(v)’ ; )
zeF, ve(Gu/\)L

where
D(v) = {z €, : p(Froby1s,) = v; (1 <i <L)}
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Lemma 6.12. Under the notations above, we have

D(v .L_ V; L
| E] )| H|IG1I|LZ| 1+ > <sz (vi ) = > [ [xito(Frobata)) |
g X1y XL €Gy  Ni=1 xqui:I
not all trivial

where |v| denotes the size of a conjugacy class v € Gﬁ/\.

Proof. By the second orthogonality relations in the finite group G,

’ng” = - Z H(S (Frobz+a;)

J:Ele

_ ;Z H X X)) (0

el i=1 XGGA

w Z 2 HXZ FI“Obx_,_a ))Xz(vz)

X1, XLEGA a:eIqu 1
O
Since
1 L
E(h(Y1,...,YL)) = eNE Z (H \%") h(v)
ve(G)L  \i=l
v=(v1,...,0L)
it suffices to show that the error term in Lemma is small. Under the hypothesis
of coherence (and compatibility for Kummer sheaves), Proposition gives that
Z - Z HXz FTOberaz i ) « Lqg~ 1/2d (G)\)L 1d (G )1+57
X1, XLEG erqu 1
not all trivial
with 6 = 1 in the Kummer case, 6 = 0 otherwise. Theorem then follows from
Lemma below.

6.2.3. Upper bounds for group constants.

Lemma 6.13. For any finite group G, di(G) < |G|Y?|GH2, do(G) = |G| and
for every m = 3, d,(G) < |G|"™?|GY|. Moreover:

(1) If G is abelian, dpy,(G) = |G| for every m = 1.

(2) If G < GLy(k) is a finite classical group of Lie type over the finite field k,
we have d1(G) <o [k * 5, dy(G) = O, (KA E), |GF] = @, (k< E),

m dllll(G)+2 rank(G)

and dp(G) <y, |k for every m > 3.

(3) If G = SL,(k) or Sp,(k) (n even), the upper bounds can be improved to
m dim(G)+(2—m) rank(G)

A (G) <y |K| 2 for every m > 1.
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Proof. The relations for finite and finite abelian groups are well-known (see e.g.
[ , Proposition 5.2|), the ones for classical groups follow from the former,

and | , Corollary 24.6, Corollary 26.10], while the ones for SL,, and Sp,, are
| , Proposition 5.4] (using Deligne-Lusztig theory). O
Remark 6.14. According to Remark , we do not keep track of implicit con-

stants depending on the rank of the monodromy group in the classical case.

6.2.4. Comments on the ranges. Let us consider the above in the context
of Section and Remark , i.e. when the sheaf of Fy-modules over [, from
Theorem arises from the reduction of a sheaf of Z[(4]y-modules, allowing to
study the reduction of a trace function ¢ : F; — Z[(4] modulo various ideals.

By Remark 6.1, recall that if )y is the residue field of Z[(4]) at some prime

ideal above £, then
d < |F)\| _ eord(ZG(Z/d)X)‘

Choice of the parameters. Thus, we may want to choose our parameters (g, £, A, d)
so that
d < |Fal < |Fq| = p°.

Given p, £ and d, this is holds true for any A above { if e > ‘p({io);;ge.
Limitation. Together with the condition
logg . :
I« {%OgllFxl : G classical
O
eed 1 Gx=pa(Fy)
from Theorem 0.7, the relation d < |F,| implies that L « e if G) is classical

and d = p (e.g. for Kloosterman sums). Hence, we must in this case take e
large enough with respect to L, which is a limitation of the method to keep in
mind. Note however that it is not unusual to encounter results stated in fixed
characteristic with the degree e going to infinity (see e.g. | , Chapter 9] and
| , Chapter 3]).

6.3. COMPUTATIONS IN THE MODEL

In this section, we carry out preliminary computations and observations in the
probabilistic model.

Throughout, we let G < GL,(F)), X1, ..., X independent random variables
uniformly distributed in G, Y; = n(X;) for 7 : G\ — Gﬁ)\ the projection, and
Z; = trY;.

6.3.1. Random walks in monodromy groups.

Proposition 6.15. For all A c Fy and L = 1, the probability P(Z1+---+Zy, € A)
s given by

" L
u + O | max
FAl 0 peR

> v(—a)

acA

‘|G1\ Z P(trx)

(EEG)\
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In particular, for a € Fy,

1
PZy+ -+ Zp=aqa)= ]IE‘/\]+O Ogﬁa;
SN

1
N D (tra)

Proof. By the second orthogonality relations in Fy,

v = (v1,...,v0) € GL i tr v, =a
|Gl

PZi+---+Zp=a) =

= |G>\|L Z 6tr2vl—a

veGE

L
1
|1F,\|Z¢(_a)< Zwtrv>
(IS

|
=
>
—_
_|_
o1
@
/\
M
@
E{
G
\/
~

The first statement follows from summing the previous equation over a € A. [

Gaussian sums. For 1 a nontrivial character of IF, the sum ﬁ ZvecA P(trv) is
a “Gaussian sum over G,”, which we expect to be small uniformly with respect to

¥, say
Z Y(trv) « [Fy| G (6.1)

| >\| ’UEG)\

with a(G)) > 0 and square-root cancellation corresponds to a(G)) = ;?fgﬁd'.
Alternatively, we can also write

D w(trv) « |GA¥ O with o/ (G)) < 1. (6.2)

UEG)\

Similarly, if A is “well-distributed” in Fy, we expect

Z Y(—z) « |Fy|70A (6.3)

mEA
for some a(A) > 0, uniformly with respect to ¢ € Fy. The trivial bound corre-
sponds to a(A) = 0.

Thus, we can rewrite Proposition as:

Corollary 6.16. Let A < Fy. If the bounds (6.1) and (6.3) hold, then

1A[ 1
P(Zy+--+ZpeA) = N 1+0 ) [LaGn a1

for all L = 1. In particular,

1 1
PZy+ -+ Zp=nqa)= ]IF,\] <1 +0 (’FA’LQ(GA)_1>>

uniformly for all a € ).
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Author(s) Nontrivial if
Korobov (1989) d = (1/2+e
Shparlinski (1991) d = 037+
Heath-Brown and Konyagin (2000) d > (\/3+e
Konyagin (2002) d = (V/4+e

Bourgain-Glibichuk-Konyagin (2006) d=

Table 6.2: Bound on exponential sums over subgroups of F; of size d.

It is insightful to distinguish the following cases to analyze the ranges of the
parameters in Corollary

(1) If either

- a(Gy) > 1, or
- a(Gy) <land L > 1/a(Gy),

we have asymptotic equidistribution of Z7 + --- + Z, in ).
(2) If a(Gx) < 1 and L < 1/a(G)), then we have
P(Zi+ -+ Zp = a) < |Fy| LG,

which shows that Z7 +-- -+ Zp is “not too concentrated” at any point a € .

Ezample 6.17. We will see that for G, = SL,(Fy) or Sp,(F)), we always have
a(G)y) > 1. On the other hand, a(puq(Fy)) < 1.

6.3.2. Gaussian sums in G). Let us investigate bounds of the form (6.1) (or
(6.2)) for the monodromy groups G we are interested in: roots of unity and
classical groups over finite fields.

Roots of unity: exponential sums over subgroups of FY. We assume that Fy con-
tains a primitive dth root of unity. For G\ = puq(Fy) < FY, the sum (6.1) is a
“character sum with exponentials”

d
D) = D e,

vepq(Fy) i=1

or equivalently a sum over a subgroup of F5 .

For Fy = [Fy, the latter appear in works of Korobov, Shparlinski, Heath-Brown-
Konyagin, Konyagin, Bourgain-Glibichuk-Konyagin and others, which give non-
trivial bounds for d not too small compared to ¢ (see Table (.2). Square-root
cancellation corresponds to a(G)) = ;ﬁ’fgdg, and {zi ;f < 1since £ =1 (mod d).

We first review the results of Shparlinski and Heath-Brown-Konyagin which
give explicit bounds for d at least of the order of £1/3.

Theorem 6.18 (| , Theorem 2|). Let H < F; be a subgroup and ¢ be a
nontrivial additive character of Fy. We have

Z ¢($) « |H|_7/12£1/4

1
|H| zeH
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uniformly with respect to . Thus (6.1) for Gy = uq(Fy) holds with a(G)) €
(0,1/12) if we restrict d » £3/4+120(GA)/4,

Theorem 6.19 (| , Theorem 1]). Let H < F; be a subgroup and v be a
nontrivial additive character of Fy. We have the nontrivial bounds

CUBIH |38 if 0Y3 < |H| « 012
D) « { A H|TS if 02 < |H| « 23
vl 2 HITY if 2B < |H| « !

1
|H|

uniformly with respect to 1. Thus (6.1) for Gy = pua(Fe) holds with a(Gy) = a >0
in the following cases:

d>» /34803 0 < 1/16
d» 25485 0 < 1/6
d>» 02+ L a<1)/2

On the other hand, the results of Bourgain and others give (non-explicit)
bounds for d as small as desired:

Theorem 6.20 (| , Theorem 2.1|). Let x,y € F; and d = ord(y € F;). For
every 6 > 0, there exists a = a(8) > 0 such that if d = 07, then

d
Z V(y'x) « di™
i=1

uniformly for all nontrivial 1 € I@g, with an absolute implicit constant. Thus, (6.1)
for Gy = pa(Fy) holds with a(Gy) = v if d = £°.

Remark 6.21. The «(0) arising from Theorem are not estimated explicitly in
[ |, but one typically expects them to be very small.

The situation is more complicated when IF) has nonprime order.

By using the formalism of trace functions (or the properties of general Artin-
Schreier sheaves in the case of additive characters), we can get a result valid in
the range of Korobov’s:

Proposition 6.22. Let H be a subgroup of Fy of index k and t : Fy — C be a
trace function corresponding to a geometrically irreducible £-adic sheaf F over [Fy.
If either rank(F) > 1 or if the function x — t(x*) is not constant on F,, then

Z t(z) « cond(F)?/q.

zeH

Proof. Since F is cyclic, we have H = {2V ze Fx} and

S ta) = % )

zeH :EEJF;

'This could be done with some effort using e.g. | | (see also | D.
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The sheaf 7/ = [z — 2*]*F (see Proposition ) is geometrically irreducible
and by Corollary ,
d(F’
Z t(x) < (301’17()\/67
k
zeH

unless F' is geometrically trivial, which is excluded by hypothesis (see Proposition
). It remains to observe that cond(F’) « kcond(F)? by Proposition . O

Corollary 6.23. The bound (6.1) for G\ = pa(Fy) holds uniformly with respect
to all nontrivial 1 € Fy with a(Gy) = a € (0,1/2) whenever d = |[Fy|"/2+e.

Remark 6.24. Alternatively, one could also proceed by completion as in | |.

By | |, the strong results of Bourgain and others (Theorem ) generalize
to all finite fields, up to adding an assumption involving subfields:

Theorem 6.25 (| , Theorem 2|). For every 6 > 0, there exists « = a(d) > 0
such that (6.1) for Gx = pa(Fy) holds with a(G)y) = « if
d
e > [Ty |° (6.4)
(d, [F])

for every subfield F' € Fy with log, |F| dividing log, |Fy|.

Remark 6.26. Note that Condition (6.4) amounts to d > |F|? in the following
situations:

— d is prime and F) = Fy(pq), or

— logy [Fy| is equal to 1 or is prime (e.g. Fy = Fy, recovering Theorem )s
or

— 6 > 1/2 (recovering Corollary ).

Classical groups. Let us now assume that GG is a finite classical group of Lie type
in GL,(F)). By Lemma )

log |G|
log [IF,|

1
=di n\37_ 1o 1 ]
G+ O (1Og|FA>

so square-root cancellation corresponds to a(G)y) > dim(Gy)/2.

Proposition 6.27. Let F) be a finite field and n = 2 be an integer. The bound
(6.1) holds for

G Oé(GA) >0
SL,(Fy) L
Sp,(Fy), SO;, (Fy) (n even) w
SO, (Fy) (n odd) et
SO (Fy) (n even) ”(n8_2)
Remark 6.28. Hence, by the dimensions given in Table , there is square-root

cancellation in the special linear case, but not for the others.
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Remark 6.29. By using Deligne’s analogue of the Riemann hypothesis over finite
fields for the restriction of a Lang torsor on A™ /Fy (sce | , Example 7.17])
to Gy, we could get

D bltr(g)) « [y A2

9eGx
up to obtaining bounds on sums of Betti numbers (see Remark , and | ,
Section II| for such bounds). Hence, Bound (6.1) would hold with a(Gy) = 1/2 by
Lemma . Proposition improves that estimate (in particular as n grows).

Proof. We use the explicit evaluation of Gaussian sums over finite classical groups
carried out in | I, | | and | | using the Bruhat decomposition.
Let a € FY corresponding to v through the isomorphism Fy = F).

(1) By | (,E‘)heorem 4.2], the Gaussian sum (6.1) for GL,(IF)) is equal to
(=1)"[FAl" =
(2) By | , Corollary 5.2, Deligne’s bound for hyper-Kloosterman sums
(Corollary ) and Lemma , the Gaussian sum (6.1) for SL,(F,) is
equal to
(n) n n“—n , n— —n
[FA[*2” Kl (a") L |Fy| T4 ol _ |IE‘)\|%
|Gl
(3) By | ; Theorem A], the Gaussian sum ,,cq, (g, ?¥(trv) is equal to
, . lm2l m\ "
Lm -1 LT(T’+1) L2i71 -1
2 o) 1T )
r=0 =1

|m/2]—r+1
« 2 Ll K]Q (a2>m—2r+2—21
=1

x Y (L =1). (D - 1)

J1seedi—1

for L = |Fy|, where the last sum is over integers 2 — 3 < j; < m — 2r — 1,

N—5<jo<j1—2, ....1<jj_1 <Jjio—2and
r—1 5
<m> 1] LT =1 prlmen),
)L o L1 -1
Using that

T

[J@* ' 1)< L™ and

i=1
Kly(a®)2720 M (L —1) .. (L = 1) «, LEDE0ED)
J1seesJli—1
for t = m —2r (see | , Remark (1) p. 65] for the second one), we find
that the Gaussian sum is
|IF)\|3MZ% 1 m even 3m? tm
€m 2m?4+m—1 <|Fal 2
[Fx|” 2 :modd

and the result follows by Lemma
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(4) By | , Theorem A],

Y wto) =) Y (o),

v€SO2m 41 (F») V€SP, (Fa)

the result follows by the previous bound and Lemma

(5) Similarly, by | , Theorem 4.3|,

Y ) =[F Y ().

veS0Y, (Fy) vESPy, (F)

(6) The is analogous to (3), using | , Theorem A].

O

6.3.3. Gaussian sums in F). We now look at Gaussian sums (0.3) in Fy,
namely sums of the form

1
m Z Y(—x)

€A

for some A c Fy and ¢ € F \ nontrivial.

Squares. Let A = F;Q be the subgroup of squares in Fy. If Fy = Fy, we can use
the Legendre symbol to write, for y € F//,

Sotay) = 145 Y (14 (5)) v

reA IEFZ

)T (5) v

X
z€elF,

I
O |
—_
+
7N
|
~Id

where ¢(x) = e(x/l) (z € Fy). By the evaluation of the classical quadratic Gauss
sum,

Z P(—zy) = % (1 + e <—€y> \/Z) <V (g€ {l,i}),

€A

uniformly with respect to y. Hence (6.3) with a(A4) = 1/2, corresponding to
square-root cancellation since |A| = (¢ —1)/2.

Multiplicative subgroups. More generally, if H < F/ is a multiplicative subgroup,
the results presented in Section give a nontrivial bound (6.3) being given
that |H| is large enough (but can still be chosen arbitrarily small by the results
of Bourgain).

When H < FY with Fy non-necessarily of prime order, Corollary gives a
nontrivial bound (6.3) with a € (0,1/2) if |[H| > |Fy|"/2+e.
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Definable subsets. For R a ring and ¢(x) a first-order formula in one variable in
the language of rings, we define

©(R) ={a € R : ¢(a) holds}.
In particular, we can consider the subsets ¢(FFy) of F.

Ezample 6.30. For p(x) = (Jy : © = y?), the set p(R) is the subset of squares,
which is the example of the previous section. More generally, we can take ¢(x) =
(Jy : x = g(y)) for any polynomial g € Z[Y].

Theorem 6.31 (Chatzidakis-van den Dries-Macintyre | ). For every
formula o(x) in one variable in the language of rings, there exists a finite set
C(¢) < (0,1] n Q such that for every finite field Fy

p(Fy)] = CO\,)|Fal + Ou(|FAY?) (6.5)
with C(\, @) € C(p), or
[o(FN)] <o [FAI7Y2

where the implicit constants depend only on .

When ¢(z) = (Jy : f(y) = z) for some polynomial f € Z[X], Theorem
also appears in | | (using the Weil conjectures for curves) as:

Proposition 6.32. If f € F)\[X] of degree d is such that f(X) —y € Fx(y)[X] is
separable with full Galois group &4 over Fy(y), then

d n+1
BN = (Z )um +0 (IF\"2).

Hence, (6.5) holds with C(p) € (0,1).
This is extended to f € Q(X) in | .

Remark 6.33. By | , Lemma 1], if f € Z[X] is such that the Galois group of
f(X)—y e C(y) over C(y) is equal to &4, then for all but finitely many primes ¢,
the reduction f (mod /) satisfies the hypotheses of Proposition . By | ,
p. 422|, the condition on f € Z[X] holds if disc(disc(f)) # 0, so it does for almost
all polynomials of fixed degree.

The following combined with Theorem shows that Gaussian sums over
definable subsets exhibit square-root cancellation:

Theorem 6.34 (| , Theorem 1, Corollary 12, Remark 19]). Let p(z) be a
formula in one variable in the language of rings such that |p(Fy)| is not bounded
as |Fx| — +oo0. Then, if ¢ € Fy is nontrivial, the bound (6.3) for A = o(Fy) holds
with a(A) = 1/2:

2 W(x) <, [Fy|7V2

1‘690 (Fx)
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6.4. EQUIDISTRIBUTION OF VALUES AND SHIFTED SHORT SUMS

As a first application of our probabilistic model in the finite case, we investigate
the distribution of shifted sums over a subset I < I, of a reduced trace function
t:F, — Iy, this is to say, we study the random variable

(St 1+ 1))z, = (Z Hy + x>>
z€lFg.

yel

This includes in particular the most natural case of the distribution of the values
(t(2))4er, by taking I = {0}. This particular case will also appear in the next
section.

6.4.1. Statement of the result.

Theorem 6.35. Lett:F, — ) be a trace function associated to a sheaf F in a
coherent family with monodromy group G. For a € Fy and I < [ of size L such
that F s I-compatible, let us consider the probability

P(S(t,I1+xz)=a) (6.6)
with respect to the uniform measure on IFy.

(1) If Gy is classical, then the probability (6.0) is equal to

1 1 L’FA’L5+(GA)+267(G)\)*1
+ o La(G 1/2 ’
1Y [y Ea(G) q"/

(6.7)

uniformly with respect to a, where a(Gy), B+(Gy) > 0 are given explicitly in
Table

(2) If Gy = pq(Fy), for every 6 € (0,1) there exists a = «(d) > 0 such that the

probability (6.0) is
1 1 Ldl+!
N +0 <‘FA‘LQ + q1/2|]F)\|min(La,1)> (6.8)

uniformly with respect to a, when Condition (6.1) holds for every subfield
F £ Fy with log, |F| | log, |Fx|. Moreover:

~ If 6 > 1/2, we can choose (8) = 6 — 1/2. If d is prime, the factor d*+!
can be replaced by d*.

— IfFy = Fy, then Condition (6.1) is d = 0% and explicitly, we can choose
P if e (1/3,1/2]

a(0) =< 22 if5e(1/2,2/3] (6.9)
§—2 ifde(2/3,1].
Proof. By Corollary and Proposition , we have for all a € F) that the
probability P (S(t,I + ) = a) is equal to
1 1 LE(Gy, L)
ﬁ +0 <|FA|L04(G,\) + ql/QIF)\’min(La(GA),l)> (6.10)

In the classical case, note that «(G,) > 1 by Table 6.1. O

2See also Remark
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6.4.2. Analysis of the ranges.

Case Gy classical. Since a(Gy) > 1, the error term of (6.7) is negligible with
respect to the main term (i.e. with a ratio that is o(1)) when

L|FA|L6+(GA)+257(GA) _ 0(q1/2)_

Note that:
~ When L = 1, this is [Fy| = o (¢ 4m(EV),

— When d = p (e.g. for Kloosterman sums), this implies that e > 2(L3; (G))+
28_(Gy)) (see Section ).

Case Gy cyclic. The error term of (6.7) is negligible with respect to the main
term when
L>1/a>1and Ld" = o(¢"/?).

In particular, 1 < 1/a < L < logq/2.
6.4.3. Examples.

Kloosterman sums.

Corollary 6.36 (Kloosterman sums). Forn > 2, and q < Z[C4p| a prime ideal
above a prime £ », 1 with £ =1 (mod 4) and (n, [Fq : Fe]) = 1, let

Klpg:Fg — Z[C4p]q(”_1)/2 — Z[Caplg/q = F

be the reduction modulo q of the Kloosterman sum over Fy. For any I < F, of
size L, the probability
P(S(Klyg, I + ) = a)

s given by
O F _Ln2—1 L"2+”’_2+n(n—1)—1 _1 .
1 n | [Fxl .+ |F, 2 q 2 if n odd
——
FAl

n(n+2) n(n+2) 2 .
Oy [ |Fy|7T 3 + [FalF T +n22q_é> if n even

uniformly for all a € Fy. In particular, the probability P (Kl, 4(x) = a) is given by

n2—n—4

n2-1 3 1
On | |FAl7 2 +|Fa| > q2> :n odd

1

—— 4
n(n+2) 2 —
LY On | [Fa|I” g ]FA]M T 2q_é) 1M even.

Remark 6.37. Replacing a by ag®1/2 and using the uniformity with respect to

a, these results hold as well for unnormalized Kloosterman sums.

Point-counting on families of curves. With ) = [y, the case n even of Corollary
also applies to the point-counting on families of hyperelliptic curves from
Proposition (normalized or not, see Remark )



126 Chapter 6. Trace functions with image in the cyclotomic integers

Multiplicative characters.

Corollary 6.38 (Multiplicative characters). Let d = 2 be an integer, q < Z[(4]
be a prime ideal,

X Fy = Z[Ca] — Z[Cal/q = F

be the reduction modulo q of a multiplicative character of order d, and f € Q(X)
with a well-defined reduction modulo q, whose zeros and poles have order not di-
visible by d. Let ¢ € (0,1) be such that

d
s = R
(d, [F])
for every subfield F € Ty with log, |F| | log, [F|.
Let I < F, be of size L. If deg(f) > 1, we assume that L = 1 or I
[1...p/deg(f))® = Fy =T, Then a = a(d) > 0 such that

P(S(xo f.I+2)=a) 1 f( 1 LdL+1

“ O (i * ) 61

uniformly for all a € Fy. In particular,

2
P(x(f(z)) = a) < |IE‘1|“ (1 + q‘f/2> : (6.12)

If d is prime, the factor d**! in (6.11) (respectively d* in (6.12)) can be replaced

by d* (resp. d). When § > 1/2, we can choose a(8) = 1/2 — §, and more explicit
pairs (6, ) are given by (6.9) when Fy = Fy.

Ezample 6.39. By Example , the condition on [ if f # X holds if I ¢
{1,..., L} with L < p/deg(f).

6.5. DISTRIBUTION OF FAMILIES OF SHORT SUMS

As a second application of the probabilistic model developed above, we gen-
eralize the results of | | on the distribution of residues of sums over partial
intervals of the Legendre symbol to the distribution of coherent families of sums of
reduced trace functions in coherent families. As we have seen in Section , this
includes multiplicative characters of any order, Kloosterman sums and functions
counting points on families of hyperelliptic curves.

6.5.1. Families of short sums.

Definition and examples.

DEFINITION 6.40. Let t : F, — F) be any function. A family of sums with respect
to t is a family

(st.zk)) (6.13)

kel

for a finite parameter space Z with an injective map Z — P(F,), k — Z(k).

3If Fa = IF¢ or if d is prime, this condition is simply d > |[Fx|°.
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Examples 6.41.
(1) (Intervals) When ¢ = p, we can study sums over the intervals
{Z(k)=[1...k] : keZ}
for a parameter set Z < [1...p], identifying F, with the latter interval.

(2) (Boxes) More generally, when ¢ = p®, F; = F,(a) = Fy, we can study sums
over the “boxes”

Tk)=[1... k] +[1.. . koJa+---+[1.. ko,
with k = (k1,...,ke) e Z < [1...p]"
(3) (Shifted subsets) For Z, E' < F,, we can consider the translates
I(x)=E+x={y+a:yec E}
of E by elements x € Z.

(4) (Combining families) Given Z; — P(F,) (i = 1,...,e), we can form the
family Z =7y x --- x Z, over F; = T}, defined by

I(kr,... ke) = [ [Zi(ks) < Fy.
=1

Distribution questions. We are interested in the distribution of the random vari-
able (6.13) (with the uniform measure on 7Z), asymptotically with respect to the
parameters ¢ and |Fy|. Thus, we are led to study the density

({keZ:S(tI(k)=all

®(t,Z,a) := ]

(a € ]F)\)

Example 6.42. Let ¢ = 2 be an integer and consider the family Z of Example

with t = (5) : F, — F, the Legendre symbol, a multiplicative character of

order 2. As we mentioned in Section , one of the main results of | | is

that )
1 { \2
®(t,Z,a) = 7 + 0 <<1ng> >

uniformly with respect to a € Fy. Therefore, the random variable (6.13) converges
in law to the uniform distribution on Fy if ¢ is fixed, p — 400, and more generally
we have ®(t,Z,a) ~ § if £ = o((log p)¥/3).

Our goal is to generalize this result in different directions: for other reductions
of trace functions (such as multiplicative characters of any order, Kloosterman
sums and point-counting functions on families of curves), for other families of
short sums, and in the case ¢ > p.

Ezample 6.43. The study of ®(¢,Z,a) for the family of Example is the
finite analogue of the distribution questions considered in Chapter

1Of course, one should not replace the sums over {[1...k] : 1 < k < p} by the sums over
{[1...k]:1<k<q}.
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6.5.2. Equidistribution on average/for shifted families. Given a rather
generic family Z — P(F,), we could expect the random variable (6.13) to converge
to the uniform distribution on . Albeit we cannot show that in this most general
setting, we have nonetheless a result on average over shifts.

DEFINITION 6.44. For a family Z — P(F,), we denote by 7' = 7 x F, — P(F,)
the shifted family defined by Z'(k,xz) = Z(k) + « and we let the families

IT+z=T(,z): T — PF,) for x € F,
T =T'(k, ) : F, — P(F,) for k € 7.

Hence, for a family Z — P(F,), we have Z =7 + 0 =Z'(-,0) and

®(t,7,a) 72 (t,Z + x,a) = Z(I)tlk, ), (6.14)
zeF |I| keZ
O(LT +1,0) — |{keI:S(t,|II(|k:)+x)Ea}] (z e Fy),
O(t Tpa) = |{xqu:S(t,§(k‘)+x)Ea}| (ke)

for any function ¢ : F; — ) and a € F).

DEFINITION 6.45. For a family Z — P(IF;), a real number o« > 0 and integers
n >0, d = 0, we define the quantities

_ _ _ 1 ogz(d)
Mz—]keUIﬂk)), mr = IO, Grleom) = g 3 S
1 hz(d
g2(d) = |{k € T+ [Z(k)| = d}]. faloon) = 17 33 52
d=1

hz(d) = ’{kl,kg €T : ky # ko, |Z(k1)AZ(ks)| = d}’.

Theorem 6.46. Lett:F, — Fy be a trace function associated to a sheaf F in a
coherent family with monodromy group Gy and I be a family of sums with respect
to t. We assume that F is | .z Z(k)-compatible. The averaged variance

2
V(g,G\I)= ) - Z( tI+x,a)—|F1/\|> (6.15)

a€clFy :pe]Fq

1s equal to

é' (1 40 (f/(q, GA,I)>>
with V(q, Gx,I) given by

My |]F>\|ﬂ+(G>\)MI+2B*(GA) : G\ classical
Hz(a(Gy),|F 1+ —=
7(a(G), [FAl) ( q/? {szJrl : Gy cyclic

for a(Gy), B+(Gx) > 0 given in Table
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Thus, V (g, Gx,Z) should be small as |Z| — +o0, and we have by the Cauchy-
Schwarz inequality

1

o(t,7',a) = o +O (V(q, GA,I)l/Q) (6.16)
A

uniformly with respect to a € Fy. Note that the bound on V' depends on the size

of Z and on the size/structure of the subsets Z(k).

6.5.3. Consequences. Using Theorem in Equation (6.16), we can obtain
results for unshifted “complete” (i.e. parametrized by F,) families by averaging
over an auxiliary family of appropriate size. This is the idea exploited in | |
for the family of Example

Shifts of small subsets. First, we consider shifts of subsets of moderate size fol-
lowing Example . The Gaussian distribution for complex-valued trace
functions from Chapter 5 becomes a uniform distribution when the latter are
reduced in Fy:

Proposition 6.47 (Shifts of small subsets). Let t : F, — Fy be a trace function
associated to a sheaf F in a coherent family with monodromy group Gy. Let
e, €(0,1/2), 6 € (0,1), and let E < F,. We assume that:

~ |Bg| < ¢"*7" and Bg < []5_,[0,6p) = I, = IFy, where Bg is the bounding
box’ of E.

~ If F = Ly is a Kummer sheaf, § < 1/deg(f).

— If Gy = pg(Fy) with Fy # Fy and d is nonprime, then Condition (6.1) holds
(e.g. if d = |Fy|V2* for some a > 0).

Then

1
O <q1/41_8/2 + (‘E“Oglﬂr*‘) 2) : G classical

1 log g

P(S(t,E-F.%)Ea):W‘F . dl
2 .
A 0] <q1/41_5/2 + (‘ ng‘)g > ) : Gy cyclic

uniformly for all a € Fy, where the implicit constants depend on e, €', §, and on
the type of G in the classical case.

Remark 6.48. This is nontrivial if
|E|log [Fa| = oflogq) (resp. |E|logd = o{log ).

Note that when the sheaf F of Fy-modules from which ¢ arises comes from the
reduction of a sheaf of Z[(4p]|r-modules (e.g. for Kloosterman sums), we must
thus take |E| = o(e) (see Section ).

Remark 6.49. The first condition about Bg in the statement can be included in
the second one by taking § < p /2

5See Lemma for a precise definition.
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By taking E = {0}, we get the following corollary, which should be compared
with the case I = {0} of Theorem

Corollary 6.50. Lett: F, — F\ be a trace function associated to a sheaf F in
a coherent family with monodromy group Gy and let € € (0,1/4). We assume that
if Gy = pa(Fy) with Fy # Fy and d nonprime, then Condition (6.1) holds (e.g.
d = [FA|'/2* for some a > 0). The density

_lweF, @) =a)
q

P(t(z) = a)

s given by

1
@) <q1/41_g/2 + <10g|FA|> 2> : G classical

1 log ¢

Fal 2
logd ) 2 .
A @) (qml_g/z + <%) ) : G\ cyclic

uniformly for all a € Fy, where the implicit constants depend on €, and on the type
of G in the classical case.

Example 6.51. Proposition and Corollary apply to Kloosterman sums of
fixed rank (normalized or not, see Remark ), multiplicative characters com-
posed with rational functions, and point-counting functions for families of hyper-
elliptic curves (normalized or not).

Partial intervals. The second example notably generalizes the result of | |
(see Example ) to all multiplicative characters:

Proposition 6.52 (Partial intervals). Let t : F, — Fy be a trace function asso-
ciated to a sheaf over Fy, in a coherent family with monodromy group Gy, and let
e, e’ > 0. We assume that if Gy = puq(Fy) with Fy # Fy and d nonprime, then
Condition (6.1) holds (e.g. d = |Fx|Y2* for some a > 0). The density

_ H1<k<p:S([l...k]) =a}
p

18 given by

1 1
1 log [Fa| 2 Fallogp 2 . _
1 ) <p1/48/2 + ( Ololgpx\) + 05(,F,) %0 (Llﬁg er) > : G\ classical
F 1 logd) 2 Fy|logp ) 2 .
13Y 0] <p1/45/2 + (12§p) + 55(,5,[%)#0 (%) : Gy cyclic

uniformly for all a € Fy, where the implicit constants depend on €, €.

Ezamples 6.53. (1) This applies to multiplicative characters of F of order d
composed with f € Q(X) whose zeros and poles have orders not divisible by
d, as in Corollary . When x is the Legendre symbol, this is the result
of | |. By the orthogonality relations, the third summand of the error
term vanishes if f = X.

(2) With d = 2 and F) = Fy, this also applies to the point-counting functions on
families of hyperelliptic curves from Proposition 6.5. See also | | for an
analogue of | | to the counting of points of a plane curve in rectangles.
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Remark 6.54. We will see that it is unclear whether this can be generalized to the

case e = 2 (see Example ) because of “diagonal” terms in the errors. Since

the case d = p, G classical forces to take e — 400 (see Section and Remark
), Proposition does not make sense for Kloosterman sums.

Even though Proposition does not extend to “boxes” in F, = F7 with
e = 2, we nonetheless have the following for a family of type from Example

Proposition 6.55 (Partial intervals with shifts of small subsets). Lett:F, — Fy
be a trace function associated to a sheaf F in a coherent family with monodromy
group Gy. Lete,e' € (0,1/2), 0 € (0,1), and let Es, ..., E. < F,. We assume that:

~ |Bg| < ¢"%7¢ and E;  [0,6p) for all 2 < i < e, where By is the bounding
box of E = Ey x -+ x E, in Fg1.

— If F is a Kummer sheaf L, 5y, 6 < 1/deg(f).

- If G\ = pg(Fy) with Fy # Fy and d is nonprime, then Condition (6.1) holds
(e.g. if d = [FA|Y2*® for some a > 0).

Then the density

{(z1,. . we) € TG = [1...p]°: S(t,[1.. 1] x [[i_o(Ei + ;) = a}

with respect to any F,-basis of F,) is equal to
4 y Iy q q

1
1 O <q1/415/2 + (|E|ll(())gg(|1ﬂ7>\\> 2) : G\ classical

Fal 2
E|logd 2 .
A 0 <q1/415/2 + (' l(|)g05; ) > : Gy cyclic

uniformly for all a € Fy, where the implicit constants depend on €, € and 6.

Ezxample 6.56. As for Proposition , this applies to Kloosterman sums of fixed
rank, multiplicative characters composed with rational functions, and point-counting
functions on families of hyperelliptic curves.

We will prove Theorem and its applications in the next sections.

6.5.4. Probabilistic model. Let F be a sheaf of F\-modules over F,, part of
a coherent family, with monodromy group G, < GL,(F)). We first apply the
probabilistic model from Section to study of the distribution of families of
short sums.

Again, we let X be a random variable uniformly distributed in G, and Z be
its image through the map G — G?\ 1, Fy. Moreover, let (Z;);en be a sequence
of independent random variables distributed like Z.

For a finite subset I < N, we define the random variable

S(I)=>17

el
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on the probability space GI/\;]. For a finite parameter space Z with a map 7 —
P#(N), we consider for all a € Fy the random variable

_ ke Z:5@k) =a}

D(Z,a) 7]

In this setting, Corollary gives information about the distribution of
®(t,Z,a) averaged over shifts of the family 7 by elements of F,:

Proposition 6.57. In the above setting, if F is | iz Z(k)-compatible, for any
function h : Fy — R and any a € F), we have

E(h(cb(t,z +a, a))) - E(h(@(z, a,))) (1 40 (MIEEJ?/;MI)» .

In other words, for all a € F the random variable (®(t,Z+x,a)).er, converges
in law (with respect to the parameters, ¢, |Fy|, Z) to the random variable ®(Z, a)
if the error term is o(1) as the parameters vary.

6.5.5. Expected value. We first consider the expected value of ®(Z,a), which
gives a preliminary version of Theorem and a motivation for the next section,
where the former will be improved by analyzing the variance. The improvement
will concern the quality of the error term, the uniformity with respect to a, and the
ability to obtain Proposition by removing the shifts for some specific families.

Computation in the model.

Proposition 6.58. For a € Fy, in the notations of Section , we have

E(®(Z,a)) = == + O (Gz(a(Gy), [Fa]))-

e
LY

Proof. By Corollary

)

1 1
E(®(Z,a)) = — LS [y W) )
( ( 7a)) ’FA’ + 0 <|I| kEI‘ )\‘

O]

Conclusion. By Propositions and , we get the following preliminary ver-
sion of Theorem

Proposition 6.59. Lett:F, — ) be a trace function associated to a sheaf in a
coherent family with monodromy group Gy and T be a family of sums such that F
is ez Z(k)-compatible. For all a € Fy,

B(@(T +2,a) = Y 0T +1,a) = = + 0(e(g, G, T)),

1
q zelfy |F}‘|
where
MzE(Gy, Mz)

£(q, Gy, I) = Gz(a(Gy), |FAl) + 4172
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As a corollary, we obtain as well a preliminary version of Proposition
about unshifted “complete” families:

Corollary 6.60. In the setting of Proposition , assume that for all a € Fy,
O(t,Zy,a) does not depend on k. Then

fzeFy: St Thx) =a)| 1

d(t, Iy, = + O(e(q, Gy, T)).

(tT1.0) - - 7+ 0.6 D)

Proof. This follows by exchanging summations (see (6.11)). O
Ezxample 6.61. In particular, for the family Z of Example , we have for all
k € 7 that

{Z(k) +z:2eF} ={E+y+az:2eF} ={E+z:xeF,},

so for all a € Fy the density ®(¢,Z,a) does not depend on k. By choosing Z as
an “averaging set” of appropriate size, we would obtain a preliminary version of
Proposition

6.5.6. Approximate variance. Asin | |, we now consider the “approximate

( Z,a) = |I;>\|>2

in the sense that we replace the true expected value of the random variable ®(Z, a)
by the approximation given by Proposition . This corresponds to the quantity

<<I>(t,I, a) — |IF1A\>2’

and it is clear that bounding the latter gives a result about the distribution of
®(t,Z,a), uniformly with respect to a € Fy.

variance”

Computation in the model.

Proposition 6.62. In the notations of Section , we have
12 1

D IE(( T.a) - 5 |> ) i (1+O<Hz( (G A)a|FA|))>-

(ZGF)\ A
Proof. As in Proposition , we have by orthogonality that

2
1 \2
(reo-57) - [@EE I veEe-o
kel 05£1be F,\

- | B U0 Y (sEm)

0¢¢€ﬂ\7>\ kel
1 -
= W Z ) Y1(—a)va(—a)
011,26l

Z Y1 (S(Z(k1))) 2 (S(Z(k2)))-

k:1,k‘2€I
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Again by orthogonality, > (®(Z,a) — |]F>\|_1)2 is equal to

(IEFA

1R, 1 B(S(T (k1))
7| e TR

0#£9pely k;;;’jf,ff
Since

S(Z(k1)) — S(Z(k2)) = S(Z(k1)\Z(k2)) — S(Z(k2)\Z (k1))
with Z(k1)\Z(k2), Z(k2)\Z (k1) disjoint, we have by independence

E(1p(Z))FHE\ (k)]
Z E(¢(Z))Zk2)\Z (k1) "

2 E[w(s(ﬂkl)) —S(I(kg)))] .
et ki kaeT
k1#ko e

By the bound on Gaussian sums (6.1),

E(¢(2)),E (¥(—2)) < [F|7E)

uniformly with respect to 1, whence the result. O
Conclusion. Theorem then follows immediately from Proposition and
Proposition

6.5.7. Estimate and analysis of the error term. We now estimate and an-
alyze the error term

1 Hz(o,[Fy|) | Hz(a,|FA|)Mz E(Gy, M71)
V(g,G\,T) « — + +
IZ| IZ| 1| q'/?

(6.17)
in Equation (6.10), where a = a(G)).

FEstimates for V(q,Gx,T).
Lemma 6.63. In the notations of Definition , we have the bounds

Mz < [I|mg,
max(hz(d) : 1 < d < 2maxper |Z(k)]) < |Z]

Hz(a,n) <«

‘I|nCMAI = naAI’
where
1< Az = min |Z(k1)AZ(ks)| < 2M7.
k‘l,kQEI
k1#k2

The bound for Hz(a,n) can be improved for the following families:

(1) If T is totally ordered by some order < with (k1) < Z(ke) for ki1 < k2, and
if Z is determined by its cardinality, then

Hz(a,n) < v

In particular, this holds for the familyZ < [1...p], Z(k) =[1...k]¢ c F¢ =
F, of Example
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(2) For the family T of Example , we have

maXo<i<|g| ‘{y €Br:|En(E+y)|= d}}
naAI

Hz(a,n) <

where Bz = {y2 — ya2 : y1,y2 € T distinct}. In particular, if

e
Ic E[ij - gleagcxi], (6.18)
then
|Bx|
Hz(a,n) « s

where B is the bounding box F; > B = [ 5 [mingep z;, maxzep ;] 2 E.
This is an improvement over the previous bound if |Z| > |E|.

Proof. The trivial bound 1 < hz(d) < |Z|? gives the first bound for Hz(a).
(1) Under the first hypothesis,
hz(d) = 2|{k1 < ka : |Z(k2)| = |Z(k1)[ + d}].

for all d > 1. If Z(k) is moreover is determined by its cardinality, then
hz(d) < 2|Z].

(2) We have

hz(d) = |{y1,y2 € T distinct : |[En (E+ (y2 —y1))| = |E| — d/2}|
« |Z|-[{ye Br: |[En (E +y)| = |E| - d/2}

)

whence the first statement. If y € []_;[0,p — max,ep x;]® < Fy = Fy (to
avoid reductions modulo p), then Bp n (Bg +y) = @ if y ¢ Bg, which gives
the second assertion.

O
Remark 6.64. For Lemma , we may want to estimate

e Br:|B Bg +y)|=d
o2ty & P+ 1P 0 (e )l = )

more precisely than by |Bg|. If Condition (6.18) holds, then we can bound the

former by
max Te(d) €. max d° < |E|°

’

0<d<|E| 0<d<|E|
for any € > 0 (see | , Section 1.6]). However, if we keep track of the dependency
with e, this gives
1 em—1
max Te(d) <, |E|m(Clog|E]) ™
0<d<|E|

for some absolute constant C' > 0 and any m > 1. If e — +00, it is however less
convenient to deal with this better bound because of the exponential in e.
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Analysis of the parameters. The next lemma provides a general analysis of the
error term (6.17) that we will use to handle the various examples of Theorem
Lemma 6.65. We have V(q,Gx,T) = o(1) if the following three conditions hold:
(1) |Z| - +c0.
(2) Hz := Hz(a(G), [Fx]) = o(|Z]).

(8) The sum
2 (log(Mz/|Z]) + log Hx)

: (6.19)
log(|GAl|G;])
1s strictly smaller than
1l 28-(Gy) . ;
TG glta] ~ Ai(Gy) | G classical
%ggg -1 : G\ cyclic.
If we have
Mz = |Z| and log Hy < log(|G»||G4), (6.20)
this implies that
log |[Fy| = o(logq) : G\ classical
log d = o(log q) : Gy cyclic.
Remarks 6.66.
(1) By Lemma , Hr/|Z| < |F5|~®47, so the second condition holds if [F| —

+o0 or if Hr = O(1) (e.g. for the family of Lemma ).

(2) If log |Fx| = o(logq) and p < |F,|, note that we must take e — +00 (see
Section ).

Remark 6.67. The optimal size for M7 is therefore

_ 2elogq — log(|Ghl/IGE)
log (|G| G4 )

for some € € (0,1/2), giving

log(IGAIGA]) |1
log g ql/2—¢

V(g, G, T) <= (m + H(a(Gy), |]F,\|)>

6.5.8. Removing the shifts. The general setting to obtain asymptotic equidis-

tribution for unshifted “complete” families from Theorem is the following:
Proposition 6.68. Under the hypotheses of Theorem , assume furthermore
that:

(1) For some family Iy and functions f1 :Fq x T — Iy, fo : Fy — F)\ we have

ST (k,x)) = S(t, To(fi(2, k) + falz) (kel,zeF,).
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(2) There exists a function fs: T — Ry and a family I3 : Fg — P(F,) such that
forallaeFy and kel
HxeFq: St La(fi(x, k) =a}l| = |[{zelFy:S(tIs(x)) = al
+O(f3(k)).

In particular, if the set {Zo(fi(x, k)) : x € Fy} does not depend on k € I, then
this holds true with f3 =0 and Z3(x) = Za(fi(x, ko)) for any ko € I.

Then, if || f3||eo/q < 1

1 F 1/2
(t,Z3,a) = @ +0 (V(q,G,\,I)l/2 + <‘)\qu3‘|00> )

uniformly with respect to a € Fy.

In other words, we use Z as an “averaging family” to get asymptotic equidis-
tribution for the complete family 73, and the error term depends on Z. Note that
the averaging over a € F) gives some additional freedom in comparison with the
preliminary version from Corollary

Proof. Under Condition (1), Theorem gives
kel:S(tIy(fi(z, k) =a 1\?
1 Z <|{ |2;|1( ) =a}| |F>\|> « V(g Cr.T)

a€elF zeIF

by exchanging the summation over a and = and exploiting the averaging over a.
By the Cauchy-Schwarz inequality,

2
3 (1 g eTsemtmn =al L) 6z

a€lF q €l
By exchanging the summations over k£ and x, this is equal to

2
{z e Fy: S (M@ R) =a) 1
2 (\ & q rw)

aelF

Finally, by Condition (2),

2<|{x€F St Ty(x) =af| 1 +O(Hf3

q Y q

|OO)>2 <« Vi(q,Gx,T).

aEIFk

Example 6.69. For the family 7 of Example , we have by Example
that:

— Condition of Proposition holds with Zy = Z, fi(z,k) = k + = and
fa=0.

— Condition holds with f3 = 0 and Z3 = Zy = 7'(0,-), since {x + k : x €
F,} = F, for all k € F,.
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6.5.9. Applications of Proposition . In the following paragraphs, we use
Proposition to prove Propositions , and .

The general idea is to find an averaging family Z of size large enough to get
asymptotic equidistribution in (6.16), and the assumptions we make are precisely
to allow that, according to Lemma

Choice of the averaging family. When e > 1, we will have Z =77 x --- x Z, with
Z; of determined structure and whose size can be chosen freely in some range.
Since the final bound depends only on the size of Z, we need to choose the sizes
of the Z; to attain the optimal/desired size for Z. Note however that in the case

IZ| < 101§|g11%| and p < |Fy| (see Section ), we have
1/e 1/e
)M < ( log g ) = elle <1°gp ) <1,
log [Fy| log [IFy|
which shows that the choice |Z1| = - - - = |Z.| ~ |Z|"/¢ is impossible. More carefully,
we take |Z;| = - -+ = |Za| ~ |Z|"/* with 1 < a < e of optimal size given by:

Lemma 6.70. Let I = 1, p = 2, e = 2 be integers, and let 0 < § < 1. If
logI < (e —1)log(dp), there exist integers Iy € [1...0p] and 1 < a < e such that
It = I(1+ o(1)) for I large enough.

Proof. It suffices to take I} = [Il/aJ with a = [logI/log(dp)] = 1 so that I} €
[1...6p], a = o(IV®),

[f=1+0 (aﬂ*l/a) — 1 (1 + O(arl/a)) —I(1+o0(1)),
and the condition a < e holds if log I < (e — 1) log(dp) O

Ezample 6.71. The condition log I < (e—1)log(dp) is satisfied if I < log g = elogp
as in Lemma , up to taking p large enough if § < 1.

Shifts of subsets (Proposition ). We first consider the family of Example

: for Z,E c Fy, we let Z(k) = E + k (k € Z). Proposition can be applied
by Example

By Lemma , since mz = | E|, the sum (6.19) is

2(log |E| + log | Bg| — a(G ) Az|Fy\|)

< |7/|B| + ,i
log (|G /GA])

if Z < [[;_4[1l...p — maxzep x;]. By Lemma , we want that for some ¢ €
(0,1/2),

7| < 1 <2510gq —2log |E| —2log [Bg|  28-(G))
|E| B+(Gx)log |F,| B+(Gx)

+ 2a(GA)AI>

if G is classical, and

1 [2clogq—2log|E| —2log|Bg|
Tl < —
=< 1 ( logd ’

20(G) Az — 1)

if Gy = p1g(Fy).
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When the sheaf is of the form L, with f # X, we impose that Z <
[Lizi[1...p/deg(f) — maxzep x;), so that it is (.7 Z(k)-compatible by Example

Under the assumptions of Proposition , we can choose Z as large as possible
satisfying the above conditions by Lemma

Intervals (Proposition ). Let us now analyze the family Z < [1...p], k —
[1...k] of Example . For the Legendre symbol, this is the case of | |.

Condition of Proposition holds with Zo = Z, fi(x,k) = k + x and
fa(z) = S(t,Z(x)) since

St [L+a.. . k+z])=SEt[l...k+a])—SE[L...z])

forkeZ, zelF,.
Concerning Condition (2), we use the following:

Lemma 6.72. Forany f :N—C and ke N,

p
D fle+k) = Z (@) + O(K|| f]]o0),
rx=1

and the error term can be removed if f is p-periodic.

Proof. It suffices to write

P pt+k P k pt+k
foik) - S (2 o )f(x)

r=1 rz=1+k z=1 x=1 r=p+
= Z f(@) + Ok f]e0)-
]
Ezample 6.73. For f(x) = dg([1...4])=a, We have
f(@+p) = 0505, +5t[p+1.atpl)=a = O5(t[1..p))+S(t.[1..x])=as
and f is p-periodic if
S(t,[1...p]) =0 (6.21)
(i.e. orthogonality with constant functions).
Hence, Condition of Proposition holds with || f3]|cn < maxgez k, and

no error term if the trace function considered satisfies (6.21).
If the sheaf is a Kummer sheaf £,y we impose maxyez k < p/deg(f), so that
it is ez Z(k)-compatible by Example

We may then choose Z as large as permitted by Lemma ,le. |Z] ~ iggz,
noting that for Kummer sheaves as above, we have deg( 7y > EEZ for p large enough

(deg(f) being bounded independently from g).
If (6.21) is not satisfied, we need to add the error term

[FAIIZINY? [ [Fallogp "?
D plogd '

This concludes the proof of Proposition
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Remark 6.74. For Kloosterman sums, we have seen in Section that it is
necessary to take e — +00 so that V(q,Gx,Z) = o(1). Hence, Proposition
does not apply to them. Unfortunately, issues arise when we try to generalize the
proposition to e > 1. Indeed, for the family

e

Tefl...pl Z(k) = [ [[1.. K], k= (kx,... k) €T,

i=1
of Example , we have T'(k,z) = [[_{[1 + @i...z; + k;] for all z =
(x1,...,z.) € F, and as above, we can decompose [1 + x;...x; + k] = [1...2; +
Ei\[1...z;] and write
StT'(k2) = > (—DE=@TIS(E T((@ + aiki)i)).
ai,...,ae€{0,1}

However, there are now “diagonal terms” including z; and x; +k; (i # j), prevent-
ing us from applying Proposition with fi(x,k) = 2+ k and f3 = 0 as before.
On the other hand, using Lemma would give a large error ||f3||e ~ ep®!
because small intervals of size k; combine with large intervals of size p — k; into
large “diagonal” terms. This would give an error term
e—1
[Exlep™™ _ [Fale _
q p

in the final expression for the density, which is not acceptable when e — +o00.
These diagonal terms compensate each other if complete sums in one parameter
of the form S(t, Ey x -+ x E; x F x Ej9 x -+ x E,) vanish, for E; c F),. Being
defined as Fourier transforms of functions vanishing at 0, Kloosterman sums verify
S(Klyq,[1...p]°) = 0, but the former sums do not vanish in general.

Small intervals with shifts of subsets (Proposition ). To conclude this section,
we prove Proposition about a family of type of Example , which allows
to get a variant of Proposition for e > 1 (in particular for Kloosterman sums).
Let us write Z = 7y x Iy c ), x Iﬁ‘gfl and let £ = F5 x --- x E,. Then
My = ’ U [kl x (B + k)
(kl,kQ)EI
< | Ukl x ZlE < |Z)E
kleIl

and for any € > 0 we have for d > 1

hr(d) < D) |the Ky € To ik — KIEA(E + (ks — k)| = d}
kl,k’leIl
= 1T Y (ke Ky e To: [BA(E + (ke — k)| = d/d')
1<d'|d
< |T|1Bgl|Zo|r(d) <. (|Z]|Bg]) '+
if Zy < []5_[1,p — maxzep 5], by Lemma . As for Propositions and

, if the sheaf is a Kummer sheaf £, (), we impose maxyer, k < p/deg(f) and
Ty < [15_5[1, p/ deg(f)), to ensure | J7 Z(k)-compatibility.

The conclusion then follows by using Lemmas and as in Proposition
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6.6. APPLICATION OF THE LARGE SIEVE

Finally, we use the large sieve developed in | | and | | to obtain in-
formation about trace functions with images in the cyclotomic integers from their
reductions modulo various ideals. Here, we use the fact that in the examples we
consider, the trace function t : F;, — O, corresponding to a sheaf of Oy-modules
over [, actually has image in O, for some o € O\q (in O if we do not normalize)
and does not depend on A. This holds in particular when the family forms a
compatible system.

This will for example lead to zero-density estimates of the form

|z eFy: Kl (x) € A _
q

o(l) (¢ — +) (6.22)

for “algebraic” subsets A < Q((4p)-
The application of the large sieve to the families of hyperelliptic curves of
Proposition (and other curves over function fields) was the subject of | |

and | ].

6.6.1. The large sieve for Frobenius in compatible systems. First, we
state a version of the large sieve for Frobenius adapted to our needs.

Theorem 6.75. LetF, be a finite field of characteristic p, O be the ring of integers
of a number field E and A be a set of prime ideals q of O (or equivalently, valua-
tions X) which do not lie above p. For L = 1, we write A, = {qe€ A: N(q) < L}.

Let (Fx)xea be a coherent family, where Fy is a sheaf of Fx-modules over Fy,
corresponding to a representation py : w4 — GL,(Fy) with classical monodromy
group G\ € {SLy, Spay, }-

For every A € A, let Q\ < Gy be a conjugacy-invariant subset. Then for all
L>1,

|{z € Ur, (Fy) : pa(Frobs) ¢ O for all e Ar}| (1 N LB>

q Y2 ) P(L)’
where
Q Win=l Gy = SL,(F
P(L) = Z |GA| and B =4 52 L4 " ™
NeA, |G| SRR Gy = Sp,(Fa) (n even)
Proof. This is a variant of | , Proposition 3.3| (see also | , Chapter

8]). For A, N € A distinct, the product map

MT,q — GA(Fy) x Gy (Fy)

is surjective by | , Corollary 2.6] (a variant of Goursat’s Lemma), which
extends with no modification to the case where F) and Fy do not necessarily
have prime order (see | , Part III]). By Lemma , B =1+ dim(Gy) +
rank(G))/2. O

Remark 6.76. This cannot be applied to the case G = uq(Fy) because the mon-
odromy groups are isomorphic for all A € A, and we cannot exclude that the image
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of the product map is the diagonal subgroup. This is related with the fact that
the Kummer representation associated with a character of order d has image in

Z[Ca] < Z[Calx-

Remark 6.77. A point to keep in mind is that while Kowalski only needs to con-
sider sheaves which arise as reductions of sheaves of Z,~modules (associated to
families of L-functions), our sheaves are reductions of sheaves of Z[(;]x-modules.
In particular, the size of the residue field F) corresponding to a prime ideal
q < Z[¢4] depends on the multiplicative order of d modulo the prime ¢ above
which q lies (see Remark 6.1).

6.6.2. Zero-density estimates for values of trace functions in subsets.

Proposition 6.78. Let Fy, E, O and A be as in Theorem , and let (Fx)xe
be a family where F)y is a sheaf of Ox-modules over F,. We assume that the trace
function

t=1ty:F; — O,

has image in Oy and does not depend on X. By reduction modulo the mazimal
ideal of Oy, we obtain a family (.7?)\),\6/\ where .7?>\ is a sheaf of Fy-modules over
Fy, for Fy the corresponding residue field. We assume that this family is coherent,
with classical monodromy groups.

For A c E and X € A corresponding to an ideal q, we denote by Ay < Fy the
reduction of A n Oy modulo q. Then for any L > 1,

~ HweF,:t(x) e A}

P(t(x) € A) « (1 n LB) !
q q'/? |ALl (1—max,\eAL %)j

where B > 0 is as in Theorem . In particular, if
A
supM <1, (6.23)
aen |Fa
then )
P(t(@) € 4) <« [ with L = | 475 . (6.24)
L

Proof. For all A€ A, we let Q) = {g € G : trg ¢ Ay}, which is clearly conjugacy-
invariant. By Theorem ,

P(t(z)e A) <

[z e Fy:t(x) e Ay forall A e A} LB 1
P(L)’

1 -
q - q'/?

where

Py =Y I _ D (1_ ngGA‘:Gt;geAm)_

AeAp |G NeA s

By Corollary ,

_ 1A)] 1 [ Ax]
Plirge Ay = @ L+o |F>\|oc(G,\)+a(A>\)—1 « W’

even using the trivial bound a(A)) = 0, since a(G)) > 1 for classical groups (see
Table 6.1). O
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Remark 6.79. In Theorem , we replaced the original hypothesis that the family
forms a compatible system by the assumption that it is coherent. The “indepen-
dence of shifts” part is not needed, but it is quite generic anyway. On the other
hand, our definition of coherent families does not include an hypothesis of “inde-
pendence with respect to \” of the characteristic polynomial of the Frobenius, but
this is also true for all examples that arise in applications (see also Remark 6.2).

To apply Proposition , we need lower bounds on |Ay| and the local densities
assumption ( ). We treat these aspects in the next two sections.

6.6.3. Lower bound on |Az|. For our applications, we will mainly consider A
to be either:

Ezamples 6.80. (1) The full set of prime ideals of O which do not lie above p.

(2) For m =2 and C < (Z/m)*, the set of prime ideals q of O not lying above
p such that [Fq| e C.

(3) The restriction of these to ideals having degree 1 over Q.
In a more general setting, we recall:

Theorem 6.81 (Chebotarev density theorem). Let F//E be a fized finite Galois
extension of number fields with Galois group G, and let C < G be a conjugacy-
stable subset. For

A(C) = {q D E prime, not ramified in F : Froby € C'}, (6.25)
A (C) = {qe A(C) degree 1 over Q},

we have [A(C)p| ~ |A1(C)] ~ %ﬁ as L — +o0.

Example then corresponds to E = F (and the theorem is Landau’s
prime ideal theorem), while corresponds to F' = E((n), G = (Z/m)*.

Hence, if F' and E do not depend on p, then

¢l L
AC)L| = |AL(C T L— 6.26
A= MOl > Gy (L= +) (6.26)
with an absolute implicit constant, and (6.241) is thus
1
P(t(z) € A) <c Og? -0 (¢g— +0). (6.27)
BqzE

If £ and/or F' depend on p (e.g. for Kloosterman sums, where E = Q((4p)), we
must either fix p or deal with uniformity with respect to E and F in Theorem
. We discuss this situation in the following paragraphs.

Uniformity in the prime ideal theorem. The most direct result is the lower bound
of Friedlander | | for the number of prime ideals, obtained by extending Cheby-
shev’s method: for E/Q in a tower of normal extensions, there exists an effective
constant ¢ > 0 such that

L

mp(L) =|{q < E:N(q) <L}| ZM

_1’
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for Ap = |discg(E)|. If E/Q is normal, this can be improved to

L

(L) »
: log(2L)1+5A}E/2+’3

for any e > 0 if np = [E : Q] »¢ 1, by using more a precise version of Stark’s
estimates on the residue at 1 of /the Dedekind zeta function of E. The latter is
nontrivial only when L >» A}E/Zﬁ for some &’ > 0.

Uniformity in Chebotarev’s density theorem. The best unconditional result is due
to Lagarias-Odlyzko and Serre (see | , Section 2.2|), showing that (6.26) holds
with an absolute implicit constant under the restriction log L » ng(log Ag)?.

Assuming the generalized Riemann hypothesis (GRH) for the Dedekind zeta
function of E, this range can be improved to L » (log Ag)?*¢ for an arbitrary
e >0 (see | , Section 2.4]).

Cyclotomic fields. If E = Q({y), F = E((n) are cyclotomic fields, it is possible
to improve the unconditional uniform range in Chebotarev’s density theorem by
relying on estimates for primes in arithmetic progressions.

Lemma 6.82. For d,m > 1 coprime integers, let E = Q({y) and F = E((y). In
the notations of Theorem , for C c Gal(F/E) = (Z/m)*,

IAC)L| = [A1(C)r] = @(d) | Y. (e, dm, L) — w(d)
ceC

Proof. Since every unramified rational prime of ramification index f; = ord({ €
(Z,/d)*) gives rise to o(d)/f, primes ideals with norm £f¢,

¢ < LY prime 0t Ap, fo=f, tfeC
Al = @) Y1 Poboff 20
fle(d)
> @(d){¢ < L prime : {{Ag, {=1 (modd), LeC}|.

If (d,m) = 1, then by the Chinese remainder theorem

A(C)z] = @(d) | Y, wl(e.dm, L) — w(Ap) |
ceC

where 7(a,d, L) = [{¢{ < L prime : ¢ =a (mod d)}| for a € (Z/d)*. O

By Dirichlet’s theorem on primes in arithmetic progressions (a particular case
of Theorem ), we have m(a,d,L) ~ m as L — +oo, when d is fixed.
Uniformly, one may expect

L
m(a,d, L) >
¥

(d)dlog L (6:28)

for some § > 0, under a restriction on the range, e.g. L » d¥ for some F > 1.
Indeed:

(1) The Siegel-Walfisz Theorem gives (6.28) with § = 0 if p(d) « (log L)? for
some A > 0 (with ineffective implicit constants depending on A).
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(2) The generalized Riemann hypothesis would give (6.28) with 6 = 0, and any
E > 2. This holds for all a for almost all d by the Bombieri-Vinogradov
theorem (and when a is fixed, for almost all d < LY2*°(1) by Bombieri-
Friedlander-Iwaniec and Fouvry).

(3) A conjecture of Montgomery would give (6.28) with 6 = 0 and any E > 1.
By Barban-Davenport-Halberstam, Montgomery and Hooley, this holds true
for almost all d and almost all a.

(4) The best unconditional result for our needs can be found in Maynard’s recent

article | , Theorem 3.3|. Using Linnik-type argument in the explicit
formula for 7m(a,d, L), it is shown that (6.28) holds with any ¢ > 0 and
E =38.

Therefore, by Lemma ,

ICIL

IAC)L] = [A(C)r] » (dm)°p(m)log L

for L large enough depending on m,d, as indicated in Table 6.4. Thus, in return
of a loss in the lower bound (when § > 0), we get an improvement on the previous
ranges, summarized in Table

Consequence for Proposition

Proposition 6.83. Under the hypotheses of Proposition and ( ), with
E/Q normal, F/E a finite Galois extension with Galois group G, C < G a
conjugacy-invariant subset and A = A(C) or A(C) as in (6.25), we have for
any € > 0:

(1) If F = E is normal,

A (log g)t+e
Blteql/(2B)

P(t(z) € A) <.

which is nontrivial when Ag%/ = o(q) for some ' > 0.
(2) Under GRH, if ¢ » (log Ag)*B*e,

log q

m
P(t(.’l}) S A) Le W <<m7C I

L
q2B

(8) Assume that E = Q((q) and F = Q(y) with (d,m) = 1. If e » (dm)®8,
then
m(dm)c log q d®loggq

“TClBgeB M g

P(t(z) e A) «

The case E = Q(Cap). For exponential sums, we are interested in the case £ =
Q(C4p), With np = 2(p — 1) and Ap = 4%P73p2(P=2) The restrictions ¢ » g(E)
(for some g(E) = g(ng,Ag) = 1) of Proposition impose limitations on the
range of e, p when ¢ = p® — 400, given in the last column of Tables and

The best results are:
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Reference Range Limitation in (6.21)
Friedlander L>» Af (¢>0) e»p
Friedlander (F/Q normal) L>» A}E/Q e»p
Lagarias-Odlyzko | log L » ng(log Ag)? e » p?logp
Lagarias-Odlyzko (GRH) L >» (log Ag)*te e>=>2B(2+¢)

Table 6.3: Uniformity in the prime ideal theorem and/or Chebotarev’s density
theorem, and the corresponding limitations in (6.24) for E' = Q((4p).

Reference o Range Limitation in (6.21)
Siegel-Walfisz 0 (log L) » @(d)p(m) e »a (p—1)*/logp
Maynard | Any § > 0 L > (dm)® e>16B
GRH 0 L » (dm)**¢ e>4B(2+¢)
Montgomery’s conj. 0 L >» (dm)'*e e>2B(1+¢)

Table 6.4: Uniformity in Chebotarev’s density theorem for £ = Q({sp) and F' =
E((p) for (d,m) = 1, with the corresponding limitations in (6.24).

Corollary 6.84. Under the hypotheses of Proposition with E = Q(C4p) and
F = Q(¢n) with (m,4p) = 1, we have

m(pm)©logq p°logq .
P(t(ﬂf) EA) Ke |C|Bq/2B) Lm,C Bq% -0 (¢g=p°— +o)

when either
(1) e >0 and e = 16B, or (2) under GRH, ¢ =0 and e > 4B.

Remark 6.85. Had we not taken advantage of the fact that E is a cyclotomic field,
the best unconditional results would have forced to take ¢ = p¢ — +00 with e » p
(see Table 6.3), which is not a very natural condition.

6.6.4. Local densities. In this section, we finally give examples of sets A ¢ E
for which the local densities assumption (6.23) holds.

Powers/finite index subgroups.

Proposition 6.86. Let £, O be as in Proposition and for m = 2, let
A={q<O:[Fyl=1 (modm)}

be the set of Example . Then (6.23) holds for A= E™ c E.

Proof. We have Ay =Y, and for |Fy| > 3,

|AA|—<1 1) S S A
IFAl Fxl) (|FX|,m) [Fal ~m  [Fal
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Definable subsets.

Proposition 6.87. Let E, O and A be as in Proposition and let p(x) be
a first order formula in one variable in the language of rings (see Section )
such that:

(1) Neither |p(Fy)| nor |[—@(Fy)| is bounded as |Fy| — +c0.
(2) For all A€ A corresponding to an ideal q, p(E) n Oq (mod q) < o(Fy).
Then (6.23) holds for A= p(E) < E

Proof. Condition implies that Ay < ¢(F,) for all A € A, so that by Theorem

)

A
lim sup A <maxC(p) < 1.
IFx|—+c0 [FAl

Remark 6.88. Condition of Proposition holds if both
(a) p(E) N Oy < 9(0,),  and (b) ©(Oq) (mod q) < ¢(Fy)
hold. Note that:

— Condition holds when char(Fy) »¢ 1 if () = (Jy : f(x) = y) for some
f e Z|X]. Indeed, for z € E, we have A(p(z)) = deg(v)A(z) if no coefficient
of ¢ is divisible by char(F}).

— Condition hold if ¢ contains no negations or implications. On the other
hand, for ¢(z) = —(y : © = y?), the reduction of a nonsquare in O may be
a square in [Fy.

FEzample 6.89. Consider the case ¢(x) = (Jy : f(z) = y) for f € Z[X]. Then:

— By Proposition , Condition of Proposition holds for almost all
f of fixed degree.

— Condition holds if char(IFy) »¢ 1 by Remark

Hence Proposition applies for almost all f of fixed degree.

6.6.5. Application to Kloosterman sums. Let n > 2 and ¢ be fixed. The
family (Kl,)xen of Kloosterman sheaves of Z[(4p]r-modules over F, satisfies the
hypotheses® of Proposition , for

A = {q < Z[(4p] degree 1, above £ »,, 1, ¢ # p}
< {q 9 Z[{s) above £ >, 1, £ =1 (mod 4), (n,[Fq:F¢]) =10+ p}

Hence, we can apply Corollary with the sets of Section

6 Actually, they more precisely form a compatible system, see [ , Section 8.9].
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Powers/finite index subgroups. By Proposition , we get:
Corollary 6.90. Forn =2, m = 2 coprime to p and € > 0, we have

p°logq
B,,q'/(2Bn)

— 0,

P(Klng(2) € QCap)™) <me

when q = p¢ — +00 with e > 16B8,,, where B, = %2"_1 if n is odd and B, =

2 o
2”%3’”4 if n is even.

Remark 6.91. Note that if Kly, 4(z) € R n Q({sp) is a square, then it is positive.
However, we would need a lower bound on the above density to conclude something
about signs of Kloosterman sums.

Definable subsets. Similarly, Proposition yields:

Corollary 6.92. Let p(x) be as in the first part of Proposition (e.g.
contains no negations or implications). Then, forn =2 and e > 0,

plogq
P(King(e) € o(QCw))) <o 5 ramy 0

when q = p® — 4+ with e = 16B,,, for By, as in Corollary
Finally, by Example

Corollary 6.93. Let n > 2 be an integer and let € > 0. For almost all f € Z[X]
of fized degree, then

p°logq
P(Khna(e) € @Cw))) <pe 5 oy — 0

when q = p® — +w0 with e = 16B,,, for By, as in Corollary

Remark 6.94. Replacing A by ¢»1/24 in Proposition , these results also
hold for unnormalized Kloosterman sums.

Remark 6.95. The determination of the integral monodromy groups when ¢ is
large enough depending only on the rank (Theorem3.27) is vital to obtain results
uniform in p. The results of Gabber and Nori would have forced to take p fixed.

Galois actions. When considering densities of the form (6.22), it is interesting to
take into account the following Galois actions:

(1) For all o € Gal(F,/F,) =~ Z/e and x € F,
Kl 4(x) = Kl 4(o(x)).

The orbit of = has size deg(z) € [1...e]. Fisher | , Corollary 4.25| has
actually shown that if p > (2n?¢ + 1)2, the Kloosterman sums are distinct
up to this action.
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(2) For o € Gal(Q(¢p)/Q) = FF,\ corresponding to c € F); and z € T, we have

0Kl 4(2)) = Kl 4(c"z).

Moreover, orbits have size [{c" : ce F}| = p711n) [(p—1)/n...p—1].
In the setting of Proposition , let A, = (Q(Cap)). Since o(A4,) = A, for

all 0 € Gal(Q((y)/Q), we can define an equivalence relation ~ on
{reF; :Kly,(z) e Ap}
generated by x ~ ¢"x for all ce ]F;, zeFy, and we have

{a e Fg : Klng(2) € Ap}[(p — 1, 1)

HzeF; :Kluyg(r)e A}/ ~| =

p—1
o MeeFy :Klig(z) e 4.}
By Corollary )
1-1/(2B) |
q 0gq
{zeFy : Klyg(z) € Ap}/ ~ | e Bpi—=

Remark 6.96. For any & > 0, the right-hand side is

Lo pe(lfl/(QB)JrE/)*l‘FE,

which goes to 0 when p — +o0 and e < (1 —¢) (1 — 55 + E')_l. Since 525~ €
(1,2), the latter can hold only when e = 1. Unfortunately, our estimate on the
number of primes ideals in Q({sp) from Section requires to take e > 1. If the
result could be extended to e = 1, the above would show that for p large enough,
there is no z € )y such that Kl,, ,(z) € 0(Q(C4p))-

Remark 6.97. To take into account the first action, we should evaluate the weighted

sum
1 Z 5Kln YKly q(z)eA (z)
deg(z

xEIF

but it is not clear how to handle that with our formalism.






APPENDIX A
Sums of products and polynomial bounds

In Proposition 4.4, we proved that if F is a geometrically irreducible ¢-adic
sheaf over F, of rank r and conductor ¢ associated to a trace function ¢ : F;, — C,
then for all L > 1 and a1, ...,ar € F; we have

Dt +ar).. tx+ag) = tr(Froby | HZ (A" x Fy, Fr)) + O(r" Ly /q)

zeF,

for 71 = @ <i<p[+ai]* F. Note that the error term is exponential in L, unless
r=1.

In Remark 4.5, we were wondering whether it is possible to obtain an error
term polynomial in L when r > 1, using the same technique as for Proposition
(applying the Grothendieck-Lefschetz trace formula and Deligne’s estimate (The-
orem ). We show in this appendix that the answer is negative.

First reduction. First we need to avoid the exponentials in L arising from the
passages:

— from the products of trace functions to the trace function of the product of
the sheaves (see (1.0)).

— from the sum over Ug, (F;) to the sum over F,.

To do so, we need to assume that F is lisse on Al x F,, and we have

Yt +ar).. .tz +ag) = tr(Froby | HZ(A' x Fy, F1,)) + O(h1(L)y/q)

xeFq

for h;(L) = dim H{(A' x F,, F1). Hence the question becomes: when do we have
a bound

hi(L) < fre(L)

with f, . polynomial in L, assuming that F is lisse on Al x F, ?

Remark A.1. A variant of the question would be to ask for an error term of
the form g (L) + frc(L)\/q with f,. polynomial in L (but not necessarily g, ).
However, this is more difficult to treat, since we cannot anymore assume that F
is lisse on A1, and thus has a rather rigid structure (see below).

Lisse /-adic sheaves on the affine line. First, we gather some properties of a
geometrically irreducible f-adic sheaf F over [, that is lisse on Al x Fy.

Lemma A.2. (1) If Swany,(F) =0, then F is geometrically trivial.

(2) If Swans, (F) = 1, then F is geometrically isomorphic to a nontrivial Artin-
Schreier sheaf L.

151



152 Appendiz A. Sums of products and polynomial bounds

(3) If F is nontrivial, then Swany, (F) = rank(F) with equality if and only if F
is geometrically isomorphic to a nontrivial Artin-Schreier sheaf Ly,.

Proof. The first two results follow from Lemma ,(4), and the third one
from | , Lemma 5.4(1)], also using the Euler-Poincaré formula (Theorem
)- O

Lemma A.3. F has a unique break at co.

Proof. This argument appears in | , Lemma 5.4]: the geometric étale fun-
damental group w%if ™ is topologically generated by the inertia subgroups I, for
z € PY(F,). Since F is lisse on A! x Fy, the restrictions of the corresponding
representation to the inertia subgroups I, for x € A'(F,) are trivial. Since F
is irreducible, it follows that it is irreducible as a representation of the inertia

subgroup I,,. Hence, it has a unique break at oo. O

Hence, we let t € R5¢ be the unique break of F at co.

Lemma A.4. (1) Ift <1, then F is geometrically trivial.

(2) We have Swany, (F) = 1 if and only if t = 1, if and only if F is geometrically
isomorphic to a nontrivial Artin-Schreier sheaf Ly, .

Proof. (1) If t = 0, this is Lemma . More generally, for ¢t < 1, this is
Lemma
(2) By Lemma , Swane, (F) = 1 if and only if F is geometrically iso-

morphic to a nontrivial Artin-Schreier sheaf, which holds true if and only if
t =1 by Lemma
O

Conclusion. By Lemma , we can assume that Swane(F) = 2 and ¢ > 1.
Note that the break decompositions at c of [+a]*F have the same breaks and
multiplicities for all a € F,.

For every L > 1, we decompose F; = F®L as a sum of geometrically irre-
ducible components G; lisse on A'. We distinguish several cases, using Lemma

(1) Swane(G;) = 0 with unique break 0. Then G; is geometrically trivial.

(2) Swany(G;) = 1 with unique break 1. Then G; is geometrically isomorphic
to a nontrivial Artin-Schreier sheaf.

(3) Swane(G;) = 2 with unique break s > 1. By Lemma A .2, we have Swanq, (G;) =
rank(G;) + 1, ie. s> 1+ Wl(g) We furthermore distinguish the cases:

a) 1 <s<t,
b) s =t.

We have the geometric
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(L)

where 1 is the trivial representation, £, is a nontrivial Artin-Schreier sheaf,
QZ-(LL) is of type (3a) and gl.(“) is of type (3b). For j = 1,2 and 1 < i < m;(L),
let d;(L) = Z?@:jl(L) dim QZ.(]’L) and SEL) > 1 be the unique break of Qi . We have

ml(L
Swane(Fr) = ni(L)+ Z s\ dim ¢ + tdy (L)

= ()-i-d )+td2( )

Since r¥ = rank(Fz) = ha(L) + ni(L) + X7_; d;(L), it follows by the Euler-
Poincaré formula (Theorem ) that

hl(L) = hg( )—7" +Swanoo(.7:L)
2

= Swang (Fr) —n1(L Zd]
7=1

> (t—1)dy(L)

If fre(L) = hi(L) for f.. polynomial in L, this implies that do(L) = o(r%), or
equivalently nq(L) + di(L) + ha(L) ~ r. But at rank L + 1 we have

L1 2 my(L) .
Frin = (P @ | @ (£ e F) @(@ (gffv”w))
i=1 j=1 i=1

and note that by Proposition

— F has unique break at ¢, so it is of type (3b).
2 ® F has unique break at t, so it is of type (3b).
— Qi(l’L) ® F has unique break at t, so it is of type (3b).

- gz.(“) ® F has all breaks <t

Therefore
ho(L + 1) +ni(L+ 1)+ di(L+1) <rda(L),
SO
121 ni(L+1)+di(L+1)+ho(L+1) | rda(L)
L— 7“L+1 = L— T’L+1
do(L
— lim 2(L ) _ 0,
L—ox T

a contradiction. This shows as desired that we cannot have a bound hy(L) <
fre(L) with f polynomial in L and F lisse on Al, unless rank(F) = 1 or F is
geometrically trivial.

Remark A.5. The hypothesis that F is irreducible is important. For example, take
F = Ly, ® Ly, for 1 # g two additive characters of Fp,, say 1;(z) = e(bjx/p)
for b; € Fp,. Then, from the decomposition

L o/r o @L 2 L
FL = @ (a>£ @ (a) e((ab1+(L—a)b2)z/p)>

a=0 a=0
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we find that rank(F7) = 2& and

L
L
Swaney (Fr) = Z<a>5“$bmf (mod p)’
a=0 1=
Lo/L
ho(L) = Z(CL)&Q%L? (mod ) Pt

)
Il

>
—~ O

hi(L) = ho(L)—rank(Fr) + Swany(Fr) = 0.
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