
Exponential sums over finite fields and the large sieve

Corentin Perret-Gentil

Abstract. By using a variant of the large sieve for Frobenius in com-
patible systems developed in [Kow06a] and [Kow08], we obtain zero-
density estimates for arguments of ℓ-adic trace functions over finite fields
with values in some algebraic subsets of the cyclotomic integers, when
the monodromy groups are known. This applies in particular to hyper-
Kloosterman sums and general exponential sums considered by Katz.

Contents

1. Introduction 1
2. The large sieve for Frobenius in compatible systems 5
3. Traces of random matrices and Gaussian sums 9
4. Zero-density estimates for trace functions in algebraic subsets 12
5. Examples 17
References 26

1. Introduction

1.1. Exponential sums and trace functions. We consider exponential
sums over a finite field Fq of characteristic p ě 5 such as:

(1) Hyper-Kloosterman sums of rank n ě 2 given by

Kln,qpaq “
p´1qn´1
qpn´1q{2

ÿ

x1,...,xnPF
ˆ
q

x1¨¨¨xn“a

e

ˆ
trpx1 ` ¨ ¨ ¨ ` xnq

p

˙
, (1)

for a P Fˆq , tr : Fq Ñ Fp the trace map, and epzq “ expp2πizq for
any z P C. More generally, we also have hypergeometric sums as
introduced in [Kat90, Chapter 8];

(2) General exponential sums of the form

´1
q1{2

ÿ

yPFq

fpyq, gpyq, hpyq‰8

e

ˆ
trpxfpyq ` hpyqq

p

˙
χpgpyqq, (2)

for x P Fq, f, g, h P QpXq rational functions and χ a character of

Fˆq . For example, we have Birch sums q´1{2
ř
yPFq

e
`
trpxy ` y3q{p

˘
,

cubic exponential sums studied in particular by Livné [Liv87] and
Katz;
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2 Exponential sums over finite fields and the large sieve

(3) Functions counting points on families of curves such as

q ` 1´ |XzpFqq|
q1{2

pz P Fq, fpzq ‰ 0q, (3)

where Xz is the smooth projective model of the affine hyperelliptic
curve y2 “ fpxqpx ´ zq over Fq, for f P ZrXs fixed squarefree of
degree 2g ě 2.

1.1.1. Exponential sums as algebraic integers. Note that the three examples
above all take values in the localization Zrζ4psq1{2 (by the evaluation of qua-

dratic Gauss sums), or less precisely in the cyclotomic field Qpζ4pq.
It is an interesting question to investigate their properties as elements of

these sets, as done by Fisher [Fis92, Fis95] or recently by the author [PG17a]
for the distribution of their reductions modulo a prime ideal and short sums
thereof.

1.1.2. Trace functions. Examples (1)–(3) are specific incarnations of trace
functions t : Fq Ñ C arising from constructible middle-extension sheaves

of Qℓ-modules on P1{Fq, for ℓ a prime distinct from p, as constructed in
particular by Deligne [Del77] and Katz [Kat90].

Very powerful tools are then available to study various aspects of these
functions, such as Deligne’s extension [Del80] of the Riemann hypothesis
for varieties over finite fields to weights of étale cohomology groups of such
sheaves.

For example, Katz [Kat88] obtained a “vertical Sato–Tate law” for the dis-
tribution of Kloosterman sums, through a general equidistribution theorem
of Deligne, and similar results [Kat90] for families of the type (2) or (3).

1.2. Zero-density estimates. The goal of the present article is to obtain
general zero-density estimates of the form

P
`
tpxq P A

˘
:“ |tx P Fq : tpxq P Au|

q
“ op1q pq Ñ `8q (4)

where:

– t : Fq Ñ E is the trace function associated to a coherent family of
sheaves over Fq (Definition 2.1), for E a number field.

– A Ă E is an “algebraic” subset such as the set of m-powers (m ě 2),
the image of a polynomial, or more generally a set defined by a first-
order formula in the language of rings.

This will apply in particular, with E “ Qpζ4pq, to Kloosterman sums (1)
and exponential sums of the form (2).

1.2.1. Families of curves. The large sieve for Frobenius in compatible sys-
tems was developed by Kowalski in [Kow06a] and [Kow08] to obtain results
of the type of Chavdarov [Cha97] on zeta functions of families of curves, such
as the probability that the numerator has Galois group as large as possible.
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In the notations of Example (3) above, Kowalski gets for example (see
[Kow08, Section 8.8]) that

P
´
fpzq ‰ 0, |XzpFqq| P Nˆ2

¯
:“ |tz P Fq : fpzq ‰ 0, |XzpFqq| P Nˆ2u|

q

! gq1´p4g
2`2g`4q´1

log q,

for Nˆ2 the set of squares of integers.
The large sieve bound ultimately relies on estimates of exponential sums

obtained through Deligne’s generalization of the Riemann hypothesis over
finite fields.

Note that in the setting above, we have E “ Q.

1.2.2. Examples of results for Kloosterman sums. In the case of hyper-Kloosterman
sums (1) of rank n ě 2, our main results are the following:

Proposition 1.1. Let n ě 2 be an integer and ε ą 0. For m ě 2 coprime
to p, we have

P
´
Kln,qpxq P Qpζ4pqm

¯
!n,m,ε

pε log q

Bnq1{p2Bnq
Ñ 0

when q “ pe Ñ `8 is coprime to n with e ě 16Bn, where

Bn “
#

2n2`n´1
2

: n odd
2n2`3n`4

4
: n even,

(5)

and Qpζ4pqm is the set of mth powers in Qpζ4pq. The implied constant de-
pends only on n, m and ε.

More generally:

Proposition 1.2. Let n ě 2 be an integer and ε ą 0. For

– almost all1 monic polynomials f P ZrXs of fixed degree d ě 2, and
– all f P ZrXs of degree d ě 2 such that the Galois group of fpXq´y P
CpyqrXs is equal to Sd,

we have

P
´
Kln,qpxq P fpQpζ4pqq

¯
!n,f,ε

pε log q

Bnq1{p2Bnq
Ñ 0

when q “ pe Ñ `8 is coprime to n with e ě 16Bn, for Bn as in (5). The
implied constant depends only on n, f and ε.

Remarks 1.3.

(1) The bounds are uniform in p, thanks to the determination of the finite
monodromy groups in [PG18], over a field of characteristic ℓ "n 1.

(2) This can further be extended to definable subsets of Qpζ4pq (i.e. de-
fined by a first-order formula in the language of rings), under some
technical conditions (Proposition 5.1 later on).

(3) The same bounds hold for unnormalized Kloosterman sums.

1Throughout, this will mean “for all but ophdq such polynomials of height at most h,
as h Ñ `8”.
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(4) Under the general Riemann hypothesis (GRH) for the Dedekind zeta
function of Qpζ4pq, one may take ε “ 0 and e ě 4Bn ` 1.

(5) By relying on the determination of the monodromy groups over Qℓ

by Katz and the results of Larsen–Pink (see Section 5.2), instead of
[PG18], these results would only hold when p is fixed and e Ñ `8,
with an implied constant depending on p.

1.3. Strategy. The general idea to obtain zero-density estimates of the type
(4) is the following: in the setting of Section 1.2, let O be the ring of integers
of E. It turns out (by definition of a coherent family) that there exists a set
Λ of valuations of O (equivalently, of prime ideals) such for every λ P Λ, the
function t : Fq Ñ E coincides with the trace function tλ : Fq Ñ Oλ arising
from a constructible middle-extension sheaf of Oλ-modules on P1{Fp. By
reduction, we obtain a trace function t̃λ : Fq Ñ Fλ, where Fλ is the residue
field at λ.

Thus,

P
`
tpxq P A

˘
ď |tx P Fq : t̃λpxq P Aλ @λ P Λu|

q
,

where Aλ “ pAXOλq pmod λq Ă Fλ. A variant of Kowalski’s large sieve for
Frobenius in compatible systems, handling sheaves of Oλ-modules instead of
sheaves of Zℓ-modules, can then be used to bound this quantity in terms of
local densities in the sets Aλ.

1.3.1. Technical tools. More precisely, the first part of the approach requires:

– The construction by Deligne and Katz of examples of the form (1)
and (2) as trace functions of sheaves of Oλ-modules.

– Information on monodromy groups:
– When available, the determination of integral monodromy groups

for a density one subset of the valuations, not depending on p.
– Otherwise, results of Larsen and Pink [LP92, Lar95] to handle

sheaves whose monodromy groups are known over Qℓ (e.g. by
the works of Katz [Kat88, Kat90]), but not over Fλ.

– For sheaves associated with exponential sums of the form (2),
conditions and/or normalizations so that arithmetic and geo-
metric monodromy groups coincide.

To compute local densities in the sets Aλ, we will need bounds on “Gauss-
ian sums” (see Section 3) over:

– Linear algebraic groups over Fλ; these follow either from Deligne’s
generalization of the Riemann hypothesis over finite fields [Del80] and
bounds of Katz on sums of Betti numbers [Kat01], or from explicit
computations of D.S. Kim for certain finite groups of Lie type.

– Subsets of Fλ such as powers (Bourgain and others, e.g. [BC06]) or
more generally definable subsets (Kowalski [Kow07], using the work
of Chatzidakis–van der Dries–Macintyre [CvdDM92]).

The implied constant in a bound of the form (4) will depend on p (forcing
to fix p and take q “ pe, e Ñ `8) when we rely on the results of Larsen–
Pink, and will be absolute when more precise information about integral
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monodromy groups is available.

When we want results with absolute implied constants, we will also employ
uniform estimates in Chebotarev’s density theorem (e.g. [May13]), since E
may depend on p.

1.4. Organization of the paper. In Section 2, we lay out the technical
setup of trace functions of sheaves of Oλ-modules over finite fields, define
coherent families, and show that (1) and (3) arise from such families. Finally,
we state a variant of the large sieve for Frobenius in compatible systems
(Theorem 2.7).

In Section 3, we get results on the Gaussian sums mentioned above, which
will be used to compute the local densities in the sieve.

In Section 4, we apply the large sieve of Section 2 to obtain bounds of
the type (4), by using the estimates from Section 3 and uniform bounds in
Chebotarev’s density theorem.

In Section 5, we start by explaining how this leads to the results for
Kloosterman sums given in Section 1.2.2 above. Then, we work towards
obtaining similar zero-density estimates for general exponential sums of the
form (2), showing that coherent families can still be obtained through the
results of Larsen and Pink (in particular with Theorem 5.3).

Acknowledgements. The author would like to thank Emmanuel Kowalski
and Richard Pink for helpful discussions, as well as the anonymous referees
for very valuable comments. This work was partially supported by DFG-SNF
lead agency program grant 200021L_153647 and by the National Science
Foundation under Grant No. 1440140, while the author was in residence at
the Mathematical Sciences Research Institute in Berkeley, California, during
the Spring semester of 2017. Some of the results also appeared in the author’s
PhD thesis.

2. The large sieve for Frobenius in compatible systems

We start by recalling the technical setup of trace functions over finite
fields, before stating a version of the large sieve for Frobenius adapted to our
needs.

Throughout this section, a number field E with ring of integers O is fixed,
as well as a finite field Fq of characteristic p.

2.1. Trace functions over finite fields.

2.1.1. Definitions. Let λ be an ℓ-adic valuation corresponding to a prime
ideal l of O, Eλ and Oλ the completions, and Fλ – O{l the residue field.

Let A “ Qℓ, Oλ or Fλ. We recall that a constructible middle-extension
sheaf of A-modules over P1{Fp (or sheaf of A-modules over Fp for simplicity)
corresponds to a continuous ℓ-adic Galois representation

ρF : π1,p :“ Gal pFppT qsep{FppT qq Ñ GLpFηq – GLnpAq,
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for η a geometric generic point and FppT qsep the corresponding separable
closure. The associated trace functions are, for every finite extension Fq{Fp,

tF “ tF ,q : Fq Ñ A

x ÞÑ tr
´
ρF pFrobx,qq | FIx

η

¯
,

where2 Frobx,q P pDx{Ixq7 – GalpFq{Fqq is the geometric Frobenius at x P
Fq, for Ix E Dx ď π1,p the inertia (resp. decomposition) group at x. We will
denote by UF Ă P1 the maximal open of lissité of F .

We refer the reader to [Kat88, Chapter 2] for more details and references.

2.1.2. Monodromy groups. If F is a sheaf of A-modules over Fp as above,
the arithmetic and geometric monodromy groups of F are the groups

GgeompFq “ ρF
`
π
geom
1,p

˘
ď GarithpFq “ ρF pπ1,pq ď GLnpAq

if A is discrete, and

GgeompFq “ ρF
`
π
geom
1,p

˘
ď GarithpFq “ ρF pπ1,pq ď GLnpQℓq

if A “ Qℓ, where ¨ denotes Zariski closure, for πgeom1,p :“ GalpFppT qsep{FppT qq.

The works of Katz (see e.g. [Kat88, Kat90, KS99]) contain the determina-
tion of the monodromy groups over Qℓ of many sheaves of interest, such as
Kloosterman sheaves. An important input is the fact that, for pointwise pure
of weight 0 sheaves, the connected component of the geometric monodromy
group is a semisimple algebraic group by a result of Deligne.

The determination of discrete monodromy groups is usually more difficult,
since they have far less structure.

2.2. Coherent families.

Definition 2.1. Let Λ be a set of valuations on O and let U Ă P1{Fp be
an open affine subset. A family pFλqλPΛ, where Fλ is a sheaf of Oλ-modules
over Fp with maximal open of lissité U , is coherent if:

(1) It forms a compatible system: if ρλ : π1,p Ñ GLnpOλq is the rep-
resentation corresponding to Fλ, then for every λ P Λ, every finite
extension Fq{Fp and every x P UpFqq, the characteristic polynomial

charpol ρλpFrobx,qq P OλrT s
lies in ErT s and does not depend on λ.

(2) There exists G P tSLm, Sp2mu such that for every λ P Λ correspond-
ing to a prime ideal l E O, the arithmetic and geometric monodromy

groups of rFλ :“ Fλ pmod lq coincide and are conjugate to GpFλq.
We call G the monodromy group structure of the family.

The conductor of the family is defined to be supλPΛ condp rFλq, where

condp rFλq “ n` | Singp rFλq| `
ÿ

xPSingp rFλq

Swanxp rFλq pλ P Λq

is the conductor defined by Fouvry–Kowalski–Michel (see e.g. [FKM15]).

2The set of conjugacy classes of a group G will be denoted by G
7.



Exponential sums over finite fields and the large sieve 7

Remark 2.2. Here, the prime p is fixed, and the bounds of type (4) would
concern the trace functions on Fq obtained for every power q of p. However,
it may also make sense to vary p (e.g. for Kloosterman sums of fixed rank,
exponential sums (2) coming from the reduction of integer polynomials, etc.),
and the conductor will allow to control this dependency. See also Remark
1.3.

If pFλqλPΛ is a compatible system as above, then in particular the trace
function t “ tFλ

: Fq Ñ Oλ (as the opposite of the coefficient of order n´ 1

in the characteristic polynomial) is independent from λ and takes values in
E. More precisely,

tpFqq Ă
č

λPΛ

Oλ X E “
č

lPΛ

Ol “ pSpecpOq ´ Λq´1O Ă E, (6)

where Ol is the localization at the ideal l corresponding to the valuation λ.

2.2.1. Fourier transforms and coherent families. The sheaves we will con-
sider arise by ℓ-adic Fourier transforms, as developed by Deligne, Laumon
and others (see [Kat90, Section 7.3], [Kat88, Chapter 5]), corresponding to
the discrete Fourier transform on the level of trace functions.

This often results in sheaves with large classical monodromy groups, which
is part of Condition (2) above.

Concerning Condition (1) and the conductor, we recall:

Lemma 2.3. Let us assume that Qpζ4pq ď E and let ψ : Fp Ñ C be a
nontrivial additive character. If pFλqλPΛ is a compatible system of Fourier
sheaves3 of Oλ-modules over Fp, then the family pFTψpFλqqλPΛ is compatible

as well and condpĆFTψpFλqq ! condp rFλq2, where FTψ denotes the normalized
Fourier transform with respect to ψ.

Proof. Let F “ Fλ and G “ FTψpFq. By construction, for every finite
extension Fq{Fp and every a P UGpFqq, the reverse characteristic polynomial
det p1´ Froba,q T | Gηq is equal to

2ź

i“0

det
`
1´ Frobq T | H i

cpUG ˆ Fp,F b Lψpaxqq
˘p´1qi`1

,

where Lψpaxq denotes an Artin–Schreier sheaf and H i
c the ith ℓ-adic coho-

mology group with compact support. By the Grothendieck–Lefschetz trace
formula [Del77, Exposé 2], this is exp

`ř
ně1 Spa, nqTn{n

˘
, where Spa, nq “ř

xPUGpFqn q
tF ,qnpxqψptrpaxqq has image in E and does not depend on λ by

hypothesis, whence the conclusion.
The assertion on the conductors can be found in [FKM15, Proposition

8.2], along with [Kat88, Remark 1.10]. �

2.2.2. Examples. For the examples below, we let E “ Qpζ4pq, with ring of
integers O “ Zrζ4ps.

3See [Kat90, 7.3.5] for the relevant definitions.
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Proposition 2.4 (Kloosterman sheaves). Let n ě 2 be a fixed integer co-
prime to p. For

Λn “ tλ ℓ-adic valuation on O : p ‰ ℓ "n 1, ℓ ” 1 pmod 4q, Fλ “ Fℓu,
there exists a coherent family pKln,λqλPΛn

of sheaves of Oλ-modules over Fp,
with monodromy group structure

#
SLn : n odd

Spn : n even,

conductor bounded by n` 3, and such that the trace function tKln,λ,q is equal

to the Kloosterman sum Kln,q on Fˆq .

Proof. The construction of the Kloosterman sheaves is due to Deligne (see
[Kat88] for the construction via recursive Fourier transforms). As already
mentioned, the assertion on the integral monodromy groups over Fλ can be
found in [PG18]. They form a compatible system for n fixed by Lemma 2.3
applied recursively. �

Remark 2.5. As an illustration of (6), note that Kln,q : Fq Ñ Zrζ4psqpn´1q{2 .

The following example, when unnormalized (hence replacing Oλ by Zℓ),
was treated in [Kow06a] and [Kow08]:

Proposition 2.6 (Point counting on families of hyperelliptic curves). Let
f P ZrXs be a squarefree polynomial of degree 2g ě 2, and let Λ be the set of
ℓ-adic valuations of O with ℓ ě 3. For p large enough, there exists a coherent
family pFf,λqλPΛ of ℓ-adic sheaves of Oλ-modules over Fp, with monodromy
group structure Sp2g, conductor depending only on f , and such that tFf,λ,qpzq
is given by (3) when fpzq ‰ 0.

Proof. For the construction, see [KS99, Section 10.1], and normalize by a
Tate twist. Because of this normalization, [KS99, Theorem 10.1.16] and
[KS99, Lemma 10.1.9] show that the arithmetic and geometric monodromy
group preserve the same symplectic pairing. Finally, [Hal08, Theorem 1.2]
shows that the geometric monodromy group is Sp2g. �

2.3. The large sieve for Frobenius.

Theorem 2.7. Let Λ be a set of valuations (or equivalently prime ideals) on
O. Given L ě 1, we write ΛL for the set of valuations in Λ corresponding to
ideals of norm at most L. Let pFλqλPΛ be a coherent family, with monodromy

group structure G, where rFλ corresponds to a representation

ρλ : π1,p Ñ GLnpOλq Ñ GLnpFλq.
For every λ P Λ, let Ωλ Ă GpFλq be a conjugacy-invariant subset. Then, for
all L ě 1,

|tx P UFλ
pFqq : ρλpFrobx,qq R Ωλ for all λ P ΛLu|

q
!

ˆ
1` LB

q1{2

˙
1

P pLq ,
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where the implied constant depends only on the conductor of the family, and

P pLq “
ÿ

λPΛL

|Ωλ|
|GpFλq|

, B “
#

2n2`n´1
2

: G “ SLn
2n2`3n`4

4
: G “ Spn pn evenq. (7)

Proof. This is a variant of [Kow06a, Proposition 3.3] (see also [Kow08, Chap-
ter 8]). For λ, λ1 P Λ distinct, the product map π1,p Ñ GpFλq ˆ GpFλ1q is
surjective by [Kow06a, Corollary 2.6] (a variant of Goursat’s Lemma), which
extends with no modification to the case where Fλ and Fλ1 do not neces-
sarily have prime order (see [MT11, Part III]). By [MT11, Corollary 24.6],
B “ 1` dimpGq ` rankpGq{2. �

Remark 2.8. Note that in the case E “ Qpζdq of the examples of Section
1.1, the size of the residue field Fλ corresponding to a prime ideal l E Zrζds
depends on the multiplicative order modulo d of the prime ℓ above which l lies
(see [Was97, Theorem 2.13]). In particular, if d “ 4p, then |Fλ| depends on
p. This is a new phenomenon compared to the degree 1 case (i.e. Oλ “ Zℓ)
studied in [Kow06a] and [Kow08].

Remark 2.9. The case of orthogonal monodromy group structures (that
would appear in some variants of the examples in Section 5) is excluded
in the definition of a coherent family, because the argument above does not
apply in general: see the remark after [Kow06a, Corollary 2.6]. A similar
difficulty arises in Theorem 5.3 later on: see Remark 5.4(2).

3. Traces of random matrices and Gaussian sums

In the next section, we will apply Theorem 2.7 to Ωλ “ tg P GpFλq :

trpgq R Aλu, for some Aλ Ă Fλ. In this section, we get estimates on the
densities

P ptrpgq R Aλq :“
|Ωλ|
|GpFλq|

.

By the orthogonality relations in Fλ, we get the following:

Proposition 3.1. Let G ď GLnpFλq be a subgroup and A Ă Fλ. Then

P ptrpgq P Aq :“ 1

|G|
ÿ

gPG

1Aptrpgqq

“ |A|
|Fλ|

`O
˜

max
1‰ψPF̂λ

ˇ̌
ˇ̌
ˇ
1

|G|
ÿ

gPG

ψptrpgqq
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
ÿ

xPA

ψp´xq
ˇ̌
ˇ̌
ˇ

¸
.

We expect, for nontrivial ψ P F̂λ,
1

|G|
ÿ

gPG

ψptrpgqq ! |Fλ|´αpGq (8)

for some αpGq ą 0, and similarly, if A is “well-distributed” in Fλ, we expect

1

|A|
ÿ

xPA

ψpxq ! |Fλ|´αpAq (9)
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for some αpAq ą 0. In both cases, the bounds should be uniform with respect

to all nontrivial ψ P F̂λ.
Under (8) and (9), Proposition 3.1 becomes

P ptrpgq P Aq “ |A|
|Fλ|

´
1`O

´
|Fλ|´αpGq´αpAq`1

¯¯
. (10)

3.1. Gaussian sums in linear groups (8).

3.1.1. General result. We start by a result that applies more generally to
algebraic varieties in GLn.

Proposition 3.2. Let V “ V pFλq for V Ă GLn an algebraic variety over
Fλ. The bound (8) holds with αpV q “ 1{2, uniformly for all nontrivial

ψ P F̂λ, unless tr : V Ñ Fλ is constant.

Proof. Let ℓ1 ‰ charpFλq be an auxiliary prime and let us consider the restric-

tion L of the Lang torsor Lψ˝tr on An
2{Fλ to V (see [KR15, Example 7.17]),

as sheaf of Qℓ1-modules. By the Grothendieck–Lefschetz trace formula,

ÿ

gPV

ψptrpgqq “
2 dimVÿ

i“0

p´1qi tr
`
FrobFλ

| H i
cpV ˆ Fλ,Lq

˘
.

By Deligne’s generalization of the Riemann hypothesis over finite fields
[Del80],

tr
`
FrobFλ

| H i
cpV ˆ Fλ,Lq

˘
ď |Fλ|i{2 dimH i

cpV ˆ Fλ,Lq
for 0 ď i ď 2 dimV , and by the coinvariant formula,

tr
´
FrobFλ

| H2 dimV

c pV ˆ Fλ,Lq
¯
“ 0

unless L is geometrically trivial, in which case tr : V Ñ Fλ would be constant.
Hence ˇ̌

ˇ̌
ˇ
ÿ

gPV

ψptrpgqq
ˇ̌
ˇ̌
ˇ ď |Fλ|

dimV ´1{2
2 dimV ´1ÿ

i“0

dimH i
cpV ˆ Fλ,Lq.

By [Kat01, Theorem 12], we find that
ˇ̌
ˇ̌
ˇ
ÿ

gPV

ψptrpgqq
ˇ̌
ˇ̌
ˇ ď 3|Fλ|dimV ´1{2p2` dqn2`r

if V is defined by r polynomials of degree at most d. The conclusion follows
by [MT11, Corollary 24.6]. �

3.1.2. Classical finite groups of Lie type. Using the Bruhat decomposition,
D.S. Kim actually explicitly evaluated the Gaussian sums (8) for classical
finite groups of Lie type (see e.g. [Kim97, Kim98]). The expressions involve
hyper-Kloosterman sums, and applying Deligne’s bound yields the following,
which greatly improves Proposition 3.2, in particular as n grows:

Proposition 3.3. For n ě 1 and G “ GLnpFλq, SLnpFλq, Sp2npFλq, SO˘2npFλq
and SO2n`1pFλq, the bound (8) holds with αpGq ě 1 given in Table 1.
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G αpGq
GLn

npn´1q
2

SLn
n2´1
2

Spn, SO
´
n (n even) npn`2q

8

SOn (n odd) n2´1
8

SO`n (n even) npn´2q
8

Table 1. Cancellation for Gaussian sums over finite groups
of Lie type.

Proof. See [PG17a, Proposition 6.28]. �

3.2. Gaussian sums in Fλ. Let us now consider Bound (9) for various
subsets A Ă Fλ.

3.2.1. Squares. Let A “ Fˆ2ℓ be the subgroup of squares in Fˆℓ with ℓ ą 2.
Using the Legendre symbol and the evaluation of quadratic Gauss sums, we
get that (9) holds with αpAq “ 1{2, uniformly for all nontrivial ψ P F̂ℓ,
corresponding to square-root cancellation since |A| “ pℓ´ 1q{2.

3.2.2. Powers/Multiplicative subgroups. More generally, we have:

Proposition 3.4. For α P p0, 1{2q, Bound (9) holds for any subgroup H ď
Fˆλ such that |H| ě |Fλ|1{2`α, uniformly for all nontrivial ψ P F̂λ.

Proof. This follows for example from the bound
ř
xPH ψpxq ! |Fλ|1{2 that

is deduced from Deligne’s extension of the Riemann hypothesis over finite
fields (see [PG17a, Proposition 5.7]). �

Example 3.5. For m ě 2 fixed and H “ Fˆmλ the subgroup of mth powers,

the condition |H| ě |Fλ|1{2`α holds as soon as |Fλ| is large enough, since

|H| “ |Fλ|´1
pm,|Fλ|´1q

.

Remark 3.6. When |H| is arbitrarily small (say |H| ě |Fλ|δ for some δ ą 0),
the works of Bourgain and others (see e.g. [BC06]) give (9) for some α “
αpδq ą 0, up to some necessary restrictions if δ ď 1{2 and Fλ ‰ Fℓ.

3.2.3. Definable subsets. For R a ring and ϕpxq a first-order formula in one
variable in the language of rings, we define ϕpRq “ ta P R : ϕpaq holdsu.

Example 3.7. For ϕpxq “ pDy : x “ y2q, the set ϕpRq is the subset of squares,
as in the previous section. More generally, we can take ϕpxq “ pDy : x “
fpyqq for any polynomial f P ZrY s.

We recall:

Theorem 3.8 (Chatzidakis–van den Dries–Macintyre [CvdDM92]). For ev-
ery formula ϕpxq in one variable in the language of rings, there exists a finite
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set Cpϕq Ă p0, 1s XQ such that for every finite field Fλ,

|ϕpFλq| “ Cpλ, ϕq|Fλ| `Oϕp|Fλ|1{2q (11)

with Cpλ, ϕq P Cpϕq, or

|ϕpFλq| !ϕ |Fλ|´1{2. (12)

The implied constants depend only on ϕ.

The following combined with Theorem 3.8 shows that Gaussian sums over
definable subsets exhibit square-root cancellation:

Theorem 3.9 ([Kow07, Theorem 1, Corollary 12, Remark 19]). Let ϕpxq be
a formula in one variable in the language of rings such that |ϕpFλq| is not

bounded as |Fλ| Ñ `8. Then, if ψ P F̂λ is nontrivial, the bound (9) for
A “ ϕpFλq holds with αpAq “ 1{2, with an implied constant depending only
on ϕ.

3.2.4. Images of polynomials. When ϕpxq “ pDy : x “ fpyqq for some poly-
nomial f P ZrXs, Theorem 3.8 also appears in [BSD59] (using the Weil
conjectures for curves).

Proposition 3.10 ([BSD59, Theorem 1, Lemma 1]). Let f P ZrXs be of
degree d ě 2 and such that the Galois group of fpXq ´ y P CpyqrXs over
Cpyq is equal to Sd. Then (11) for ϕpxq “ pDy : x “ fpyqq and a finite field
Fλ of characteristic ℓ "f 1 holds with

Cpλ, ϕq “
degpfqÿ

n“1

p´1qn`1
n!

P p0, 1q.

This is extended to f P FλpXq in [Coh70].

Remarks 3.11. (1) See [BSD59, p. 422] for sufficient conditions to verify
the hypothesis of Proposition 3.10.

(2) By [vdW34] or [Gal73], the hypothesis of Proposition 3.10 holds for
almost all monic f P ZrXs of degree d ě 2, with respect to the
terminology of Footnote 1, p. 3.

4. Zero-density estimates for trace functions in algebraic

subsets

We continue to fix a number field E with ring of integers O.

4.1. General result.

Proposition 4.1. Let Λ be a set of valuations on O and let t : Fq Ñ E be
the trace function over Fq associated to a coherent family pFλqλPΛ of sheaves
of Oλ-modules over Fp, with monodromy group structure G. For A Ă E and
λ P Λ corresponding to a prime ideal l of O, we denote by Aλ Ă Fλ the
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reduction of AXOl modulo l. Assume that

sup
λPΛ

|Aλ|
|Fλ|

ă 1. (13)

Then

P
`
tpxq P A

˘
! 1

|ΛL|
with L “

Y
q

1

2B

]
, (14)

where B ą 0 is as in Theorem 2.7, with an implied constant depending only
on the conductor of the family and on the left-hand side of (13).

Proof. For every λ P Λ, we may reduce t : Fq Ñ Ol ď Oλ to t̃ : Fq Ñ Fλ, so
that

P ptpxq P Aq ď |tx P Fq : t̃pxq P Aλ for all λ P ΛLu|
q

.

By Theorem 2.7 with

Ωλ “ tg P GpFλq : tr g R Aλu pλ P Λq,
which are clearly conjugacy-invariant, we get

P ptpxq P Aq !
ˆ
1` LB

q1{2

˙
1

P pLq ,

where P pLq “ ř
λPΛL

P ptrpgq R Aλq. By (10) (Proposition 3.1),

P ptrpgq P Aλq “
|Aλ|
|Fλ|

ˆ
1`O

ˆ
1

|Fλ|αpGq`αpAλq´1

˙˙
! |Aλ||Fλ|

,

since αpGq ě 1 by Proposition 3.3. Therefore, we get that for any L ě 1,

P
`
tpxq P A

˘
!

ˆ
1` LB

q1{2

˙
|ΛL|´1

ˆ
1´max

λPΛL

|Aλ|
|Fλ|

˙´1
.

�

Remark 4.2. If we assume more generally that the monodromy group of rFλ is
GpFλq for G ď GLn any linear group over Fλ, the results hold if αpAλq ě 1{2
for all λ P Λ, by Proposition 3.2. Interestingly, in the case of SLn, Sp2n and
SO˘n , Proposition 3.3 gives much more cancellation, so that we do not need
information about the αpAλq.

To apply Proposition 4.1, we need the local densities assumption (13) and
lower bounds on |ΛL|. We treat these aspects in the following subsections.

4.2. Lower bounds on |ΛL|. For our applications, we will mainly consider
Λ to be either:

Examples 4.3. (1) The full set Λ0,p of valuations on O not lying above
the p-adic valuation.

(2) For m ě 2 and C Ă pZ{mqˆ, the set of valuations λ P Λ0,p such that
|Fλ| P C.

(3) The restriction of these to ideals having degree 1 over Q.
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More generally, let F {E be a fixed finite Galois extension of number fields
with Galois group H, C Ă H be a conjugacy-stable subset, and

ΛpCq “ tl E E prime, not ramified in F : Frobl P Cu (15)

Λ1pCq “ tl P ΛpCq of degree 1 over Qu.
Example 4.3 (1) then corresponds to E “ F , while (2) corresponds to F “
Epζmq with H – pZ{mqˆ.

By Chebotarev’s density theorem, if E and F are fixed,

|ΛpCqL| ě |Λ1pCqL| "
|C|
|H|

L

logL
pLÑ `8q (16)

with an absolute implied constant. Hence, if F and E do not depend on p,
(14) is

P
`
tpxq P A

˘
!C,H

log q

Bq1{p2Bq
Ñ 0 pq “ pe Ñ `8q. (17)

If E and/or F depend on p (e.g. for Kloosterman sums, where E “ Qpζ4pq),
we must either fix p or deal with uniformity with respect to E and F . We
discuss this situation in the following paragraphs.

4.2.1. Uniformity in the prime ideal theorem. By [Fri80] (extending Cheby-
chev’s method to number fields), if E{Q is normal4, then

πEpLq “ |tl E E prime : Nplq ď Lu| "ε
L

logp2Lq1`ε∆1{2`ε
E

for ∆E “ | discQpEq|, and any ε ą 0 if nE “ rE : Qs "ε 1. This is nontrivial

only when L " ∆
1{2`ε1

E for some ε1 ą 0.

4.2.2. Uniformity in Chebotarev’s density theorem. The unconditional re-
sults due to Lagarias–Odlyzko and Serre (see [Ser81, Section 2.2]) show
that (16) holds with an absolute implied constant under the restriction
logL " nEplog∆Eq2.

Assuming the generalized Riemann hypothesis (GRH) for the Dedekind
zeta function of E, this range can be improved to L " plog∆Eq2`ε for an
arbitrary ε ą 0 (see [Ser81, Section 2.4]).

4.2.3. Cyclotomic fields. If E “ Qpζdq, F “ Epζmq are cyclotomic fields, it is
possible to improve the unconditional uniform range in Chebotarev’s density
theorem by relying on estimates for primes in arithmetic progressions.

Proposition 4.4. For d,m ě 1 coprime integers, let E “ Qpζdq and F “
Epζmq. For C Ă GalpF {Eq – pZ{mqˆ, we have

|ΛpCqL| ě |Λ1pCqL| "
|C|L

pdmqεϕpmq logL
when either:

(1) ε ą 0 and L ě pdmq8, or

(2) under GRH, ε “ 0 and L ě pdmq2`ε1
for some ε1 ą 0.

4In Friedlander’s paper, it is only assumed that E is in a tower of normal extensions. If
E{Q is itself normal, we can improve the result by using more a precise version of Stark’s
estimates [Sta74] on the residue at 1 of the Dedekind zeta function of E.
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Proof. Since every unramified rational prime ℓ of inertia/residual degree fℓ
(equal to the order of ℓ in pZ{dqˆ) gives rise to ϕpdq{fℓ prime ideals with
norm ℓfℓ ,

|ΛpCqL| “ ϕpdq
ÿ

f |ϕpdq

|tℓ ď L1{f prime : ℓ ∤ ∆E , fℓ “ f, ℓf P Cu|
f

.

The summand with f “ 1 gives:

|Λ1pCqL| ě ϕpdq|tℓ ď L prime : ℓ ∤ ∆E , ℓ ” 1 pmod dq, ℓ P Cu|.
If pd,mq “ 1, then by the Chinese remainder theorem

|Λ1pCqL| ě ϕpdq
«

ÿ

cPC

πpc, dm,Lq ´ ωpdq
ff
,

where πpa, d, Lq “ |tℓ ď L prime : ℓ ” a pmod dqu| for a P pZ{dqˆ. Uni-
formly, one has

πpa, d, Lq " L

ϕpdqdε logL (18)

under (1) (by [May13, Theorem 3.3], using Linnik-type arguments) or (2)
assuming GRH. �

Remark 4.5. Similarly, this shows that for a Galois extension E{Q, the set
of prime ideals with inertia degree 1 has natural density 1, so we cannot hope
to substantially improve the lower bound by taking into account the f ą 1

in the proof of Proposition 4.4.

Remarks 4.6. (1) By the Bombieri–Vinogradov theorem, the range (2)
in (18) holds unconditionally for all a on average over d.

(2) By a conjecture of Montgomery, one may be able to take ε “ 0 and
L " pdmq1`δ for any δ ą 0. By Barban–Davenport–Halberstam,
Montgomery, and Hooley, this holds true in (18) on average over d
and a.

4.3. Explicit zero-density estimates. The results from the previous sec-
tion along with Proposition 4.1 give:

Proposition 4.7. Under the hypotheses of Proposition 4.1 and (13), with
E{Q normal, F {E a finite Galois extension with Galois group H, a conjugacy-
invariant subset C Ă H and Λ “ ΛpCq or Λ1pCq as in (15), we have that
for any ε ą 0:

(1) If F “ E is normal,

P
`
tpxq P A

˘
!ε

∆
1{2`ε
E plog qq1`ε
B1`εq1{p2Bq

,

which is nontrivial when ∆B`ε1

E “ opqq for some ε1 ą 0.

(2) Under GRH, if q ě plog∆Eq2B`ε,

P
`
tpxq P A

˘
!ε

m log q

|C|Bq1{p2Bq !m,C
log q

Bq1{p2Bq
.
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(3) Assume that E “ Qpζdq and F “ Epζmq with pd,mq “ 1. If q ě
pdmq16B, then

P
`
tpxq P A

˘
!ε

mpdmqε log q
|C|Bq1{p2Bq !m,C

dε log q

Bq1{p2Bq
.

The implied constants depend only on the conductor of the family and the
quantities indicated.

4.3.1. The case E “ Qpζ4pq. For exponential sums, we are interested in the

case E “ Qpζ4pq, where nE “ 2pp´ 1q and ∆E “ 42p´3p2pp´2q.
The restrictions q " gpEq (for some gpEq “ gpnE ,∆Eq ě 1) of Proposition

4.7 impose limitations on the range of e, p when q “ pe Ñ `8:

Corollary 4.8. Under the hypotheses of Proposition 4.7 for E “ Qpζ4pq and
F “ Epζmq with pm, 4pq “ 1, we have

P
`
tpxq P A

˘
!ε

mppmqε log q
|C|Bq1{p2Bq !m,C

pε log q

Bq1{p2Bq
Ñ 0 pq “ pe Ñ `8q

when either

(1) ε ą 0 and e ě 16B, or (2) under GRH, ε “ 0 and e ą 4B.

The implied constants depend only on the conductor of the family and the
quantities indicated.

Remarks 4.9. (1) Had we not taken advantage of the fact that E is a
cyclotomic field, the unconditional results mentioned in Section 4.2.2
would have forced to take q “ pe Ñ `8 with e " p.

(2) Under Montgomery’s conjecture mentioned in Remarks 4.6, we may
take ε “ 0 and e ą 2B. Without an improvement in the error term
of the large sieve bound (14), e “ 2B ` 1 ě 10 is the minimal value
the method could handle.

4.4. Local densities. In this section, we finally give examples of sets A Ă E

for which the local densities assumption (13) holds.

4.4.1. Powers/finite index subgroups.

Proposition 4.10. Let E, O be as in Proposition 4.1 and for m ě 2, let

Λ “
#
tλ P Λ0,p : |Fλ| ” 1 pmod mqu : m odd

tλ P Λ0,p : not lying above 2u : m even.

Then (13) holds for A “ Em Ă E.

Proof. We have Aλ “ Fmλ and for |Fλ| ě 3,

|Aλ|
|Fλ|

“
ˆ
1´ 1

|Fλ|

˙
1

p|Fˆλ |,mq
` 1

|Fλ|
!

#
1
m
` 1
|Fλ|

: m odd
1
2
` 1
|Fλ|

: m even.

�

Note that the set Λ in Proposition 4.10 is of the form given in Example
4.3 (2).
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4.4.2. Definable subsets.

Proposition 4.11. Let E, O and Λ be as in Proposition 4.1 and let ϕpxq
be a first order formula in one variable in the language of rings such that:

(1) Neither |ϕpFλq| nor | ϕpFλq| are bounded as |Fλ| Ñ `8, where  
denotes negation.

(2) For every λ P Λ corresponding to an ideal l, ϕpEq X Ol pmod lq is
contained in ϕpFλq.

Then (13) holds with A “ ϕpEq Ă E.

Proof. Condition (2) implies that Aλ Ă ϕpFλq for all λ P Λ. Under condition
(1), Theorem 3.8 shows that

|ϕp|Fλ|q| “ Cλ,ϕ|Fλ|p1` op1qq
| ϕp|Fλ|q| “ Cλ, ϕ|Fλ|p1` op1qq

“ p1´ Cλ,ϕq|Fλ|p1` op1qq
with Cλ,ϕ, Cλ, ϕ P p0, 1s. Hence, Cλ,ϕ ‰ 0, 1 for |Fλ| large enough, and

lim sup|Fλ|Ñ`8
|Aλ|
|Fλ|

ď lim sup|Fλ|Ñ`8
|ϕpFλq|
|Fλ|

ď maxCpϕq ă 1, recalling that

Cpϕq is finite. �

Remark 4.12. Condition (2) of Proposition 4.11 holds if both

(a) ϕpEq XOl Ă ϕpOlq, and (b) ϕpOlq pmod lq Ă ϕpFλq

hold. Note that:

– Condition (a) holds when charpFλq "f 1 if ϕpxq “ pDy : x “
fpyqq for some f P ZrXs. Indeed, for x P E, we have λpfpxqq “
minp0, degpfqλpxqq if no coefficient of f is divisible by charpFλq.

– Condition (b) holds if ϕ contains no negations or implications. On
the other hand, for ϕpxq “  pDy : x “ y2q, the reduction of a
nonsquare in O may be a square in Fλ.

Example 4.13 (Images of polynomials). Consider the case ϕpxq “ pDy : x “
fpyqq for f P ZrXs of Section 3.2.4. Then Proposition 4.11 applies for

– almost all monic f of fixed degree d ě 2 (with respect to the termi-
nology of Footnote 1, p. 3), and

– all f satisfying the Galois group condition of Proposition 3.10,

up to restricting to a cofinite subset of Λ. Indeed:

– By Proposition 3.10 and Remarks 3.11, Condition (1) of Proposition
4.11 holds for almost all monic f of fixed degree.

– Condition (2) holds if charpFλq "f 1 by Remark 4.12.

5. Examples

5.1. Kloosterman sums. Proposition 1.1, given in the introduction, now
follows directly from Corollary 4.8 with Proposition 2.4 and the local densi-
ties estimates from Proposition 4.10.
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Similarly, replacing the latter with Proposition 4.11, we obtain:

Proposition 5.1. Let ϕpxq be a first-order formula in the language of rings
as in Proposition 4.11. Then, for n ě 2 and ε ą 0,

P
´
Kln,qpxq P ϕpQpζ4pqq

¯
!n,ϕ,ε

pε log q

Bnq1{p2Bnq
Ñ 0 (19)

when q “ pe Ñ `8 coprime to n with e ě 16Bn, for Bn as in (5). The
implied constant depends only on n, ϕ and ε.

Proposition 1.2 is a particular case of the latter, using Example 4.13.

5.1.1. Results for unnormalized sums. Replacing A by qpn´1q{2A in Propo-
sition 4.1 and using uniformity shows that the above results also hold for
unnormalized Kloosterman sums.

5.1.2. Galois actions. When considering densities of the form (19), it is in-
teresting to take into account the following Galois actions:

(1) For all σ P GalpFq{Fpq – Z{e and x P Fˆq ,

Kln,qpxq “ Kln,qpσpxqq.
The orbit of x has size degpxq P t1, . . . , eu. Fisher [Fis92, Corollary
4.25] has actually shown that if p ą p2n2e ` 1q2, the Kloosterman
sums are distinct up to this action.

(2) For σ P GalpQpζpq{Qq – Fˆp corresponding to c P Fˆp and x P Fˆq , we
have

σpKln,qpxqq “ Kln,qpcnxq.
Moreover, orbits have size p´1

pp´1,nq P tpp´ 1q{n, . . . , p´ 1u.
If ϕ is a first-order formula in the language of rings, let Ap “ ϕpQpζ4pqq.

Since σpApq “ Ap for all σ P GalpQpζpq{Qq, we can define an equivalence
relation „ on tx P Fˆq : Kln,qpxq P Apu generated by x „ cnx for all c P Fˆp ,

x P Fˆq , and we have

|tx P Fˆq : Kln,qpxq P Apu{ „ | “
|tx P Fˆq : Kln,qpxq P Apu|pp´ 1, nq

p´ 1

!n
|tx P Fˆq : Kln,qpxq P Apu|

p´ 1
.

If in addition the hypotheses of Proposition 5.1 are satisfied, this yields

|tx P Fˆq : Kln,qpxq P Apu{ „ | !n,ε
q1´1{p2Bnq log q

p1´ε
.

Remark 5.2. The right-hand side can tend to 0 with pÑ `8 only when e ă
2Bn

2Bn´1
. Since 2Bn

2Bn´1
P p1, 2q, this is the case only for e “ 1. Unfortunately,

our estimate on the number of prime ideals of bounded norm in Qpζ4pq
requires to take e " 1. If it could be extended to e “ 1 (but see Remarks
4.9 (2)), the above would show that for p large enough, there is no x P Fˆp
such that Kln,ppxq P ϕpQpζ4pqq.
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5.2. Exploiting monodromy over C. As we mentioned in the previous
section, determining integral monodromy groups (as required by Definition
2.1 (2)), say for a subset of valuations of density 1, is usually difficult.

By using some deep results of Larsen and Pink (relying in particular on the
classification of finite simple groups in [Lar95]), the following result allows
to obtain coherent families from the knowledge of the monodromy groups
over Qℓ, up to passing to a subfamily of density 1 depending on p.

Theorem 5.3. Let E Ă C be a Galois number field with ring of integers O

and let Λ be a set of valuations on O of natural density 1. Let pFλqλPΛ be a
compatible system with Fλ a sheaf of Oλ-modules over Fp. We assume that:

(2’) There exists G P tSLn, Sp2nu such that for every λ P Λ, the arithmetic
monodromy group of Fλ bQℓ is conjugate to GpQℓq.

Then there exists a subset Λp Ă Λ of natural density 1, depending on p and on
the family, such that pFλqλPΛp

is coherent, with monodromy group structure
G.

After using Theorem 5.3, we may apply Proposition 4.1 with the coherent
subfamily pFλqλPΛp

to get

P
`
tpxq P A

˘
! 1

|pΛpqL|
!p

1

|ΛL|
, (20)

when L “
X
q1{p2Bq

\
Ñ `8, with the implied constant depending on p and

on the original family.

5.2.1. Proof of Theorem 5.3. The idea of the argument, based on [LP92] and
[Lar95], is due to Katz and appears partly in [Kow06a, p. 29], [Kow06b, p.
7], [Kow08, pp. 188–189] (however see Remark 5.5 below), and [Kat12, Sec-
tion 7].

To reduce as much as possible to the situation of [LP92] and [Lar95], we
consider the subset Λ1 Ă Λ corresponding to ideals of degree 1 over Q, so
that Eλ “ Qℓ, Oλ “ Zℓ and Fλ “ Fℓ if λ P Λ1 is an ℓ-adic valuation. By
[Jan05, 4.7.1], for any S Ă SpecpOq, the Dirichlet density of S is equal to
the Dirichlet density of the elements of S having degree 1 over Q. In partic-
ular, Λ1 has Dirichlet density 1, and actually natural density 1 by [Nar04,
Corollary 2, p. 248] (for cyclotomic fields, see also the proof of Proposition
4.4).

In the notations of [Lar95, Section 3] and definitions of [LP92, Section 6],
we have the compact F -group π1,p with compatible system of representations

`
ρλ “ ρFλ

: π1,p Ñ GLnpOλq “ GLnpZℓq
˘
λPΛ1

and Frobenius Frobα for α P A “ tpx, pnq : n ě 1, x P Fpnu. Note that G is
a simply connected reductive group scheme over Z, and by hypothesis ρλ is
semisimple.
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For every λ P Λ, we let Gλ “ GEλ
, Γλ “ ρλpπ1,pq ď GpOλq the integral

monodromy group, rΓλ :“ Γλ pmod λq its reduction, and

B “ tλ P Λ : rΓλ ň GpFλqu Ă Λ

the set of valuations where the monodromy group is smaller than expected.
We let moreover:

– For every α P A,

ξpαq P OλrT s ď ErT s
the characteristic polynomial of ρλpFrobαq (which does not depend
on λ P Λ by hypothesis).

– K Ă ξpGQq the Q-rational closed subvariety of codimension ě 1

given by [Lar95, (3.8)]. There exists a constant Cα ą 0 such that
ξpαq pmod ℓq R K pmod ℓq if ℓ ą Cα.

– A1 Ă A the set of the α P A such that:
(1) ρλpFrobαq is regular with respect to GLn (see [Lar95, (3.4)],

[LP92, (4.5)]) for every λ P Λ.
(2) ξpαq R K.

By [Lar95, (3.11)], tFrobα : α P A1u Ă π1,p is still dense and by
[LP92, (4.7)]:
(1) ρλpFrobαq lies in a unique maximal torus of Tλ,α of GEλ

.
(2) ξpαq is associated to a torus Tα in GLn,E , unique up to GLnpEq-

conjugacy, such that Tα ˆE Eλ is conjugate to Tλ,α.
(3) The splitting field of these tori is equal to the splitting field Lα

of ξpαq over E [LP92, (4.4)].
– C 1α ě 1 such that Lα{Q is unramified at any ℓ ą C 1α.
– L the intersection of the Lα for α P A1, so that Q Ă E Ă L Ă Lα.

We decompose

B “ pB X pΛzΛ1qq
ď ď

xPGalpL{Eq7

Bx,

where Bx “ tλ P Λ1 XB : rλ, L{Es “ xu.
The upper natural density of B is

δpBq “ lim sup
SÑ`8

|tλ P B : Npλq ď Su|
|tλ P Λ : Npλq ď Su|

ď δpΛzΛ1q `
ÿ

xPGalpL{Eq7

δ pBxq “
ÿ

xPGalpL{Eq7

δ pBxq .

Let us fix a class x P GalpL{Eq7 and an ℓ1-adic valuation λ1 P Λ1 with
Frobenius rλ1, L{Es “ x.

If λ P Bx, then Γλ is a proper subgroup of GpFλq “ GpFℓq. By [Lar95,
(1.1), (1.19)], when ℓ "G 1, every maximal subgroup of GpFℓq is of the form
HpFℓq, for H Ă GZℓ

a smooth Zℓ-subgroup scheme. By [Lar95, (3.17)] (see
also [Lar95, (3.8)]), it follows that there exists a maximal proper reductive
Qℓ-subgroup N of Gλ (containing a Levi component of HQℓ

) such that

FMpλ, αq P FMN˝ Ĺ FMGλ

for every α P A1 such that ℓ ą Dα “ maxpCα, C 1αq, where:
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– N˝ is the identity component of N .
– FMpλ, αq is the isomorphism class of the Frobenius module (i.e. free
Z-module of finite rank with an endomorphism of finite order) arising
from the character group of the maximal torus Tλ,α ď Gλ containing

ρλpFαq, with the action of GalpQℓ{Qℓq “ GalpQℓ{Eλq. By [Lar95,
(3.14)], this depends only on rℓ, Lα{Qs “ rλ, Lα{Es up to isomor-
phism.

– FMGλ
and FMN˝ are the set of isomorphism classes of Frobenius

modules arising from unramified tori of Gλ, resp. N˝.

Let M P FMGλ
zFMN˝ . As in [Lar95, (3.15)], and [LP92, (8.2)], we will

show that

p‹q For every R ě 1, there exist α1, . . . , αR P A1 such that
rM s “ FMpλ1, αiq with Lαi

linearly disjoint5.

Assuming this, it follows that if ℓ ą max1ďiďRDαi
, then for 1 ď i ď R,

rλ, Lαi
{Es “ rℓ, Lαi

{Qs ‰ rℓ1, Lαi
{Qs “ rλ1, Lαi

{Es
in GalpLαi

{Qq ě GalpLαi
{Eq, since M ‰ FMpλ, αiq. Therefore, by Cheb-

otarev’s theorem,

δ pBxq ď δ
`
tλ P Λ : rλ, Lαi

{Es ‰ rλ1, Lαi
{Es for 1 ď i ď Ru

˘

“
ˆ
1´ 1

n!

˙R |x|
|GalpL{Eq|

since rLαi
: Es ď n! and by linear disjointedness. Hence δpBq ď p1´ 1{n!qR

for every R ě 1, so that B has natural density 0 by taking RÑ `8.

We now prove p‹q. It suffices to show that for any finite Galois extension
F {L, there exists α P A1 such that rM s “ FMpλ1, αq with Lα and F linearly
disjoint over L. We proceed as in [LP92, (8.2)] (where E “ Q).

For K1, . . . ,Km the intermediate fields of F {L normal over L and minimal
with respect to inclusion with this property, we have that Lα is linearly
disjoint with F over L if and only if Ki Ć Lα for all 1 ď i ď m. This holds
in particular if for every i there exists λi P Λ1 corresponding to a prime that
splits in Lα, but not in Ki.

For every 1 ď i ď m, let βi P A1 be such that Ki Ć Eβi . By minimality of
Ki, we have Eβi XKi “ L, so that GalpLβi{Lq ˆGalpKi{Lq is contained in

tpσ1, σ2q P GalpLβi{Eq ˆGalpKi{Eq : σ1 |L“ σ2 |Lu – GalpLβiKi{Eq.
By Chebotarev’s theorem, the set of λ P SpecpOq that split in Lβi but
does not split in Ki has positive Dirichlet density, so the same holds for the
λ P Λ1 with this property, since Λ1 has Dirichlet density 1. Hence, there
exists λi P Λ1ztλ1u that splits in Lα but not in Ki, and we may suppose all
the λi distinct.

By [LP92, (7.5.3)], there exists α P A1 such that:

(1) Tλ1,α is conjugate in GLnpEλ1q to the unramified maximal torus of
Gλ1 corresponding to M , so rM s “ FMpλ1, αq.

5Here, this means that for any 2 ď i ď R, Lα1
. . . Lαi´1

and Lαi
are linearly disjoint

over L, i.e. their intersection is equal to L.
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(2) Tλi,α is conjugate in GLnpEλiq to Tλi,βi . Since λi splits in Lβi , this
torus is split, so that λi also splits in Lα.

This concludes the argument.

Lα

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

PP
PP

PP
PP

F

ss
ss
ss
ss

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤

F X Lα Ki

♥♥
♥♥
♥♥
♥♥
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L

E

Q

Finally, concerning the geometric integral monodromy group Γ
geom
λ “

ρλpπgeom1,p q E Γλ, note that:

(1) rΓλ{rΓgeom
λ is a finite quotient of π1,p{πgeom1,p – pZ, hence a finite cyclic

group.
(2) If |Fλ| "G 1, the group G1pFλq :“ GpFλq{ZpGpFλqq is simple non-

abelian (see e.g. [MT11, Theorem 24.17]).

Hence, by (2), if rΓgeom
λ ň GpFλq, then it is contained in ZpGpFλqq, so that

G1pFλq –
rΓλ{rΓgeom

λ

ZpGpFλqq{rΓgeom
λ

would be cyclic by (1), a contradiction. �

Remarks 5.4. (1) We consider compatible systems of representations ρλ :

π Ñ GLnpOλq, where λ is a valuation on the ring of integers O of a
number field E{Q, while the results in [LP92, Part II] and [Lar95] are
stated for the case E “ Q. One needs to be cautious before stating
the natural generalizations of the results of Larsen and Pink. For
example, under the notations of the theorem, the maximal subgroups
of GpFλq are not all of the form HpFλq for H Ă GOλ

a smooth Oλ-
subgroup scheme, unless Fλ “ Fℓ as in [Lar95, (1.1), (1.19)]: for
instance, one has subfield subgroups.

(2) Theorem 5.3 cannot be used when G “ SOn, since it is not simply
connected, and this assumption is required for [Lar95, (1.19)]. In
even dimension, note that one would need additional input to deter-
mine the type (` or ´) of the monodromy groups over Fλ.

5.2.2. Arithmetic and geometric monodromy groups. Often, only the geo-
metric monodromy group is determined, while Theorem 5.3 and Definition
2.1 require knowledge of the arithmetic monodromy. By twisting a sheaf Fλ
by a constant or a Tate twist, it is often possible to get a sheaf F 1λ with

GgeompFλq “ GgeompF 1λq ď GarithpF 1λq ď GgeompF 1λq,
so that GgeompF 1λq “ GarithpF 1λq “ GgeompFλq. Examples will be given in
the next sections.
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Remark 5.5. In [Kow06a, Kow06b, Kow08], the results of Larsen–Pink are
applied to deduce the geometric monodromy group over Fℓ from the geomet-
ric group over Qℓ . However, this is incorrect since the geometric group does
not contain a dense subset of the Frobenius. Moreover, note that the arith-
metic monodromy group is not contained in Sp2gpQℓq (but in GSp2gpQℓq).

For the unnormalized family of first cohomology groups of hyperelliptic
curves, this is not an issue because the results of J.-K. Yu and C. Hall also
apply to give the geometric monodromy groups. Alternatively, one may
normalize by a Tate twist as in Proposition 2.6 and apply Theorem 5.3 to
the normalized sheaf (see above).

For the characteristic 2 example of [Kow06b, Proposition 3.3], the result
of Hall can also be applied because the local monodromy at 0 is a unipotent
pseudoreflection. Again, one could also apply Theorem 5.3 after normalizing.

On the other hand, the statement [Kow06a, Theorem 6.1] must be modi-
fied to assume for example that the arithmetic monodromy group is Sp, or
that the geometric monodromy groups over Fℓ are known for all ℓ " 1.

5.3. General exponential sums. Finally, we use the previous section to
give examples of coherent families of the form (2).

5.3.1. Construction of coherent families.

Proposition 5.6 (Exponential sums (2), h “ 0, χ “ 1). Let f P QpXq and
let Zf 1 be the set of zeros of f 1 in C, having cardinality kf . We assume that
the zeros of f 1 are simple, that |fpZf 1q| “ |Zf 1 | (i.e. f is supermorse), and
that either:

– pH1q: kf is even,
ř
zPZf 1

fpzq “ 0, and if s1 ´ s2 “ s3 ´ s4 with

si P fpZf 1q, then s1 “ s3, s2 “ s4 or s1 “ s2, s3 “ s4.
– pH2q: f is odd, and if s1 ´ s2 “ s3 ´ s4 with si P fpZf 1q, then
s1 “ s3, s2 “ s4 or s1 “ s2, s3 “ s4 or s1 “ ´s4, s2 “ ´s3.

If p is large enough, for E “ Qpζ4pq and Λ0,p as in Example 4.3(1), there
exists a family pGf,λqλPΛ0,p

of sheaves of Oλ-modules over Fp, with trace
function

x ÞÑ ´1?
q

ÿ

yPFq

fpyq‰8

e

ˆ
trpxfpyqq

p

˙
px P Fqq,

and conductor depending only on f .
Moreover, there exists αp P Q and a set of valuations Λ1 “ Λ1f,p of density

1 on E1 “ Epαpq, depending only on f and p, such that
`
Gf,λ b αpO1λ

˘
λPΛ1

is a coherent family of sheaves of O1λ-modules over Fp, for O1 the ring of
integers of E1, with monodromy group structure

– G “ SLkf if pH1q holds.
– G “ Spkf if pH2q holds, and one may take αp “ 1.

Proof. See [Kat90, Theorem 7.9.4, Lemmas 7.10.2.1, 7.10.2.3] for the con-
struction and [Kat90, 7.9.6–7, 7.10] for the determination of G˝geompGf,λq
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over C. The family forms a compatible system by Lemma 2.3. The def-
inition over Oλ comes from the definition of the ℓ-adic Fourier transform
on the level of sheaves of Oλ-modules (see [Kat88, Chapter 5]). Under our
hypotheses, GgeompGf,λq contains SLkf pQℓq, resp. Spkf pQℓq. Moreover:

– In the pH2q case, GarithpGf,λq ď Spkf pFλq by [Kat90, 7.10.4 (3)], and

we can apply Theorem 5.3.
– In the pH1q case, since π1,p{πgeom1,p – Ẑ is abelian, there exists by

Clifford theory an element βp P Oˆλ XQ not depending on λ (since we
have a compatible system) such that the determinant is isomorphic
to βp bOλ.

As in Section 5.2.2, we obtain that with αp “ β
´1{kf
p P O1λ1 for

any valuation λ1 of O1 extending λ, the arithmetic and geometric
monodromy groups of Gf,λ1 b αpO

1
λ1 coincide and are conjugate to

SLkf pQℓq, so that we can apply Theorem 5.3.

�

Example 5.7. The hypotheses hold for the rational function f “ aXr`1`bX,
where a, b P Z, r P Z´t1u, rab ‰ 0, with pH1q if r is odd and pH2q otherwise
(see [FM03, p. 7]), or for the polynomial f “ Xn ´ naX, where a P Zzt0u
and n ě 3, with pH1q if n is even, pH2q otherwise.

The following include for example Birch sums (with h “ X3):

Proposition 5.8 (Exponential sums (2), f “ X, χ “ 1, h polynomial).
Let h “ řn

i“1 aiX
i P ZrXs be a polynomial of degree n ě 3 with n ‰ 7, 9

and an´1 “ 0. If p is large enough, for E “ Qpζ4pq and Λ0,p as in Example
4.3(1), there exists a family pGh,λqλPΛ0,p

of sheaves of Oλ-modules over Fp
with trace function

x ÞÑ ´1?
q

ÿ

yPFq

e

ˆ
trpxy ` hpyqq

p

˙
px P Fqq,

and conductor depending only on h.
Moreover, there exists αp P Q and a set of valuations Λ1 “ Λ1h,p of density

1 on E1 “ Epαpq, depending only on h and p, such that
`
Gh,λ b αpO1λ

˘
λPΛ1

is a coherent family of sheaves of O1λ-modules over Fp, for O1 the ring of
integers of E1, with monodromy group structure:

(1) G “ Spn´1 if n is odd and h has no monomial of even positive degree;
one may take αp “ 1.

(2) G “ SLn´1 otherwise.

Proof. This is similar to the proof of Proposition 5.6. See [Kat90, 7.12] for
the construction of the sheaves and the determination of the monodromy
groups over C. In the symplectic case, ibidem shows that the arithmetic
monodromy group is itself contained in Spn´1. �

Proposition 5.9 (Exponential sums (2), f polynomial, χ ‰ 1). Let
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– h P QpXq odd with a pole of order n ě 1 at 8.
– f P ZrXs odd nonzero of degree d with pd, nq “ 1.
– χ a character of Fˆp of order r ě 2.
– g P QpXq nonzero, with the order of any zero or pole not divisible by
r.

For p large enough, for E “ Qpζ4pq and Λ0,p as in Example 4.3(1), there
exists a family pGh,f,χ,g,λqλPΛ0,p

of sheaves of Oλ-modules over Fp with trace
function (2) and conductor depending only on f, g, h, r.

Moreover, if we assume that there exists L P QpXq even with Lpxqr “
gpxqgp´xq and either N “ rankpGh,f,χ,g,λq ‰ 8 or |n ´ d| ‰ 6, then there
exists a set of valuations Λp Ă Λ0,p of density 1, depending only on h, f, g, χ
and p, such that

pGh,f,χ,g,λqλPΛp

is a coherent family, with monodromy group structure G “ SpN .

Proof. This is again similar to the proof of Proposition 5.6. See [Kat90,
7.7, 7.13 (Sp-example(2))] for the construction of the sheaves and the de-
termination of the monodromy groups over C; [Kat90, 7.13] shows that the
arithmetic monodromy group is itself contained in SpN . �

Remark 5.10. If L as in the statement of Proposition 5.9 is odd, there exists
αp P t˘1u such that the arithmetic and geometric monodromy groups over
C of αp b Gh,f,χ,g,λ coincide and are conjugate to SON pCq (see [Kat90, 7.14
(O-example(2))]). However, Theorem 5.3 does not apply in that case (see
Remarks 5.4 (2)).

5.3.2. Zero-density estimates. Hence, for the three families above, we get by
Corollary 4.8 with Propositions 4.10 and 4.11:

Proposition 5.11. We fix a prime p and we set q “ pe. Let t : Fq Ñ Qpζ4pq
be the trace function associated with one of the families from Propositions
5.6, 5.8 or 5.9, and let B be as in (7).

For ϕpxq a first-order formula in the language of rings as in Proposition
4.11,

P
`
tpxq P ϕpQpζ4pqq

˘
!p,f,ϕ

log q

Bq
1

2B

Ñ 0 peÑ `8q.

In particular, for almost all monic f P ZrXs of fixed degree ě 2 (such as
fpXq “ Xm for m ě 2 coprime to p),

P
`
tpxq P fpQpζ4pqq

˘
!p,f

log q

Bq
1

2B

Ñ 0 peÑ `8q.

Proof. In the symplectic case, this is immediate. In the special linear cases,
we get the result for the twisted trace function t1 : Fq Ñ O1λ, t

1pxq “ αeptpxq.
The result for the unnormalized function is obtained as in Section 5.1.1,
replacing A by α´ep A in Proposition 4.1 and using uniformity. �
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Remark 5.12. In the special linear case, the implied constant depends on p

both because of the use of Theorem 5.3, and because of the twisting factor
αp.

5.3.3. Galois actions. Note that for the sums

´1?
q

ÿ

yPFq

e

ˆ
trpxfpyq ` hpyqq

p

˙
χpgpyqq px P Fˆq q

with hpY q “ Y m and fpY q “ Y n pm,n P Zq, we have σcmptpxqqq “ tpcm´nxq,
where σcm P GalpQpζpq{Qq – Fˆp corresponds to cm for some c P Fˆp . Hence,
as in Section 5.1.2, it makes sense to study the integer

|tx P Fˆq : tpxq P ϕpQpζ4pqqu|pp´ 1,m´ nq
p´ 1

!m,n
|tx P Fˆq : tpxq P ϕpQpζ4pqqu|

p´ 1

when ϕpxq is a first-order formula in the language of rings. However, doing
so requires an estimate of the form (4) uniform in p, for example through
a more precise knowledge of the integral monodromy instead of relying on
Theorem 5.3.

5.4. Hypergeometric sums. The same methods also apply to the hyper-
geometric sums defined by Katz [Kat90, Chapter 8], generalizing Klooster-
man sums: under some conditions, the arithmetic and geometric monodromy
groups over Qℓ coincide and are conjugate to SLn, without needing to twist
(see the references to [Kat90] in [PG17b, Proposition 7.7]).
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