Exponential sums over finite fields and the large sieve

Corentin Perret-Gentil

ABSTRACT. By using a variant of the large sieve for Frobenius in com-
patible systems developed in | | and [ |, we obtain zero-
density estimates for arguments of ¢-adic trace functions over finite fields
with values in some algebraic subsets of the cyclotomic integers, when
the monodromy groups are known. This applies in particular to hyper-
Kloosterman sums and general exponential sums considered by Katz.
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1. INTRODUCTION

1.1. Exponential sums and trace functions. We consider exponential
sums over a finite field F, of characteristic p > 5 such as:
(1) Hyper-Kloosterman sums of rank n > 2 given by

—1)n1 tr(x etz
K1n,q(a)=<q(n_)1)/2 3 e( (1+p + ))7 (1)

X
T1,...,on€Fg
xl"‘w’n:a

for a € Fy, tr : F; — F) the trace map, and e(z) = exp(2miz) for
any z € C. More generally, we also have hypergeometric sums as
introduced in | , Chapter §];

(2) General exponential sums of the form

yely p
1Y), 9(y), h(y)#0

for x € Fy, f,9,h € Q(X) rational functions and x a character of
. For example, we have Birch sums q 12 2yeF, € (tr(zy + y*)/p),

cubic exponential sums studied in particular by Livné | | and
Katz;
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2 Ezxponential sums over finite fields and the large sieve

(3) Functions counting points on families of curves such as

g+1 ;1|/2(Z(Fq)| (zeF,, f(z)#0), (3)

where X, is the smooth projective model of the affine hyperelliptic
curve y?> = f(x)(z — 2) over F,, for f € Z[X] fixed squarefree of
degree 2g > 2.

1.1.1. Ezponential sums as algebraic integers. Note that the three examples
above all take values in the localization Z[§4p]q1/z (by the evaluation of qua-
dratic Gauss sums), or less precisely in the cyclotomic field Q((4p).

It is an interesting question to investigate their properties as elements of
these sets, as done by Fisher | , | or recently by the author | ]
for the distribution of their reductions modulo a prime ideal and short sums
thereof.

1.1.2. Trace functions. Examples (1)—(3) are specific incarnations of trace
functions t : Fy — C arising from constructible middle-extension sheaves
of Qg-modules on P1/F,, for £ a prime distinct from p, as constructed in

particular by Deligne | | and Katz | .
Very powerful tools are then available to study various aspects of these
functions, such as Deligne’s extension | | of the Riemann hypothesis

for varieties over finite fields to weights of étale cohomology groups of such
sheaves.

For example, Katz | | obtained a “vertical Sato—Tate law” for the dis-
tribution of Kloosterman sums, through a general equidistribution theorem
of Deligne, and similar results | | for families of the type (2) or (3).

1.2. Zero-density estimates. The goal of the present article is to obtain
general zero-density estimates of the form

_ {x e Fy: t(z) € A}| _
q

P(t(x) € A) : o(1) (g > +0) (4)

where:

—t:F, — E is the trace function associated to a coherent family of
sheaves over [, (Definition 2.1), for E' a number field.

— A c F is an “algebraic” subset such as the set of m-powers (m > 2),
the image of a polynomial, or more generally a set defined by a first-
order formula in the language of rings.

This will apply in particular, with £ = Q({sp), to Kloosterman sums (1)
and exponential sums of the form (2).

1.2.1. Families of curves. The large sieve for Frobenius in compatible sys-
tems was developed by Kowalski in | | and | | to obtain results
of the type of Chavdarov | | on zeta functions of families of curves, such
as the probability that the numerator has Galois group as large as possible.



Ezxponential sums over finite fields and the large sieve 3
In the notations of Example above, Kowalski gets for example (see
| , Section 8.8]) that
{2 e Fy: f(2) 20, [X.(F,)| e N¥%)]
q
log g,

P(f(z) £0, | X.(F,)| eN“) -

« gql—(4g2+zg+4)*1

for N*2 the set of squares of integers.

The large sieve bound ultimately relies on estimates of exponential sums
obtained through Deligne’s generalization of the Riemann hypothesis over

finite fields.
Note that in the setting above, we have E = Q.

1.2.2. Examples of results for Kloosterman sums. In the case of hyper-Kloosterman
sums (1) of rank n > 2, our main results are the following:

Proposition 1.1. Let n = 2 be an integer and € > 0. For m > 2 coprime
to p, we have

p°logq

P(Kln,q(ﬂf) € @(Qm)m) Cnme B i@y

when q = p® — 400 is coprime to n with e = 16B,,, where

2n24n—1 . dd
an{ Yt (5)

2
W :n even,

and Q(Cap)™ is the set of mth powers in Q((ap). The implied constant de-
pends only on n, m and €.

More generally:

Proposition 1.2. Let n = 2 be an integer and € > 0. For

— almost all' monic polynomials f € Z|X] of fized degree d = 2, and
— all f € Z|X] of degree d = 2 such that the Galois group of f(X)—y €
C(y)[X] is equal to &g,

we have

p°logq
P(Khng(@) € SQGp) <onse 1z — 0

when q = p* — + is coprime to n with e = 16B,,, for B, as in (5). The
implied constant depends only on n, f and €.

Remarks 1.3.
(1) The bounds are uniform in p, thanks to the determination of the finite
monodromy groups in | |, over a field of characteristic £ »,, 1.

(2) This can further be extended to definable subsets of Q((4p) (i.e. de-
fined by a first-order formula in the language of rings), under some
technical conditions (Proposition later on).

(3) The same bounds hold for unnormalized Kloosterman sums.

IThroughout, this will mean “for all but o(h?) such polynomials of height at most h,
as h — 400",
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(4) Under the general Riemann hypothesis (GRH) for the Dedekind zeta
function of Q({sp), one may take ¢ = 0 and e > 4B, + 1.

(5) By relying on the determination of the monodromy groups over Q,
by Katz and the results of Larsen-Pink (see Section 5.2), instead of
[ |, these results would only hold when p is fixed and e — +c0,
with an implied constant depending on p.

1.3. Strategy. The general idea to obtain zero-density estimates of the type
(1) is the following: in the setting of Section 1.2, let O be the ring of integers
of E. It turns out (by definition of a coherent family) that there exists a set
A of valuations of O (equivalently, of prime ideals) such for every A € A, the
function ¢ : F;, — E coincides with the trace function ¢ : F;, — O, arising
from a constructible middle-extension sheaf of Oy-modules on P!/F,. By
reduction, we obtain a trace function ty : F, — Fy, where [F) is the residue
field at A.
Thus,

{z e F,:tr(z) € A\ VA€ A}

q b
where Ay = (An O,) (mod \) c Fy. A variant of Kowalski’s large sieve for
Frobenius in compatible systems, handling sheaves of Oy-modules instead of

sheaves of Zy-modules, can then be used to bound this quantity in terms of
local densities in the sets Aj.

P(t(z) e A) <

1.3.1. Technical tools. More precisely, the first part of the approach requires:

— The construction by Deligne and Katz of examples of the form
and as trace functions of sheaves of Oy-modules.
— Information on monodromy groups:
— When available, the determination of integral monodromy groups
for a density one subset of the valuations, not depending on p.

— Otherwise, results of Larsen and Pink | , )] to handle
sheaves whose monodromy groups are known over Q, (e.g. by
the works of Katz | , ]), but not over Fj.

— For sheaves associated with exponential sums of the form ,
conditions and/or normalizations so that arithmetic and geo-
metric monodromy groups coincide.

To compute local densities in the sets Ay, we will need bounds on “Gauss-
ian sums” (see Section 3) over:

— Linear algebraic groups over FFy; these follow either from Deligne’s

generalization of the Riemann hypothesis over finite fields | | and
bounds of Katz on sums of Betti numbers | |, or from explicit
computations of D.S. Kim for certain finite groups of Lie type.

— Subsets of IF such as powers (Bourgain and others, e.g. | |) or
more generally definable subsets (Kowalski | |, using the work
of Chatzidakis—van der Dries-Macintyre | D).

The implied constant in a bound of the form (/) will depend on p (forcing
to fix p and take ¢ = p°, e — +00) when we rely on the results of Larsen—
Pink, and will be absolute when more precise information about integral
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monodromy groups is available.

When we want results with absolute implied constants, we will also employ
uniform estimates in Chebotarev’s density theorem (e.g. | ]), since E
may depend on p.

1.4. Organization of the paper. In Section 2, we lay out the technical
setup of trace functions of sheaves of Oy-modules over finite fields, define
coherent families, and show that (1) and (3) arise from such families. Finally,
we state a variant of the large sieve for Frobenius in compatible systems
(Theorem 2.7).

In Section 3, we get results on the Gaussian sums mentioned above, which
will be used to compute the local densities in the sieve.

In Section 4, we apply the large sieve of Section 2 to obtain bounds of
the type (1), by using the estimates from Section 3 and uniform bounds in
Chebotarev’s density theorem.

In Section 5, we start by explaining how this leads to the results for
Kloosterman sums given in Section above. Then, we work towards
obtaining similar zero-density estimates for general exponential sums of the
form (2), showing that coherent families can still be obtained through the
results of Larsen and Pink (in particular with Theorem 5.3).

Acknowledgements. The author would like to thank Emmanuel Kowalski
and Richard Pink for helpful discussions, as well as the anonymous referees
for very valuable comments. This work was partially supported by DFG-SNF
lead agency program grant 200021L 153647 and by the National Science
Foundation under Grant No. 1440140, while the author was in residence at
the Mathematical Sciences Research Institute in Berkeley, California, during
the Spring semester of 2017. Some of the results also appeared in the author’s
PhD thesis.

2. THE LARGE SIEVE FOR FROBENIUS IN COMPATIBLE SYSTEMS

We start by recalling the technical setup of trace functions over finite
fields, before stating a version of the large sieve for Frobenius adapted to our
needs.

Throughout this section, a number field E with ring of integers O is fixed,
as well as a finite field F, of characteristic p.

2.1. Trace functions over finite fields.

2.1.1. Definitions. Let A be an f-adic valuation corresponding to a prime
ideal [ of O, E)\ and O, the completions, and Fy = O/I the residue field.

Let A = Q;, Oy or Fy. We recall that a constructible middle-extension
sheaf of A-modules over P!/F, (or sheaf of A-modules over F,, for simplicity)
corresponds to a continuous ¢-adic Galois representation

pr ™y = Gal (F,(T)* /Fy(T)) — GL(Fy) = GLy(A),
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for 77 a geometric generic point and F,(7")*P the corresponding separable
closure. The associated trace functions are, for every finite extension F,/IF,,

tr=trq:Fy, — A
xr > tr <pf(Fr0bx7q) | f#) ,

where” Frob, , € (D,/I)} = Gal(F,/F,) is the geometric Frobenius at = €
[y, for I, < D, < 1, the inertia (resp. decomposition) group at x. We will
denote by Uz < P! the maximal open of lissité of F.

We refer the reader to | , Chapter 2| for more details and references.

2.1.2. Monodromy groups. If F is a sheaf of A-modules over F, as above,
the arithmetic and geometric monodromy groups of F are the groups

Ggeom(F) = pr (W%Z)m) < Garitnh(F) = pr(m1p) < GLy(A)

if A is discrete, and
Ggeom('/r) = pPF (77%3?m) < Garith(f) = p]-—(ﬂ'l,p) < GLn(@Z)

if A = Qq, where ~ denotes Zariski closure, for 755™ := Gal(F,(T)*®/F,(T)).

The works of Katz (see e.g. | , , |) contain the determina-
tion of the monodromy groups over Q, of many sheaves of interest, such as
Kloosterman sheaves. An important input is the fact that, for pointwise pure
of weight 0 sheaves, the connected component of the geometric monodromy
group is a semisimple algebraic group by a result of Deligne.

The determination of discrete monodromy groups is usually more difficult,
since they have far less structure.

2.2. Coherent families.

DEFINITION 2.1. Let A be a set of valuations on O and let U < P!/F, be
an open affine subset. A family (F))xea, where F) is a sheaf of Oy-modules
over [F, with maximal open of lissité¢ U, is coherent if:

(1) It forms a compatible system: if py : mp — GLy(O)) is the rep-
resentation corresponding to Fy, then for every A € A, every finite
extension F,/IF, and every x € U(FF,), the characteristic polynomial

charpol py (Frobg 4) € OA[T]

lies in E[T] and does not depend on A.

(2) There exists G € {SLy,, Spa,, } such that for every A € A correspond-
ing to a prime ideal [ < O, the arithmetic and geometric monodromy
groups of Fy 1= Fy (mod [) coincide and are conjugate to G(F)).
We call G the monodromy group structure of the family.

The conductor of the family is defined to be sup,c, cond(]?)\), where
cond(Fy) = n + | Sing(Fx)| + Z Swan,(Fy) (A€ A)
2€Sing(Fy)

is the conductor defined by Fouvry—Kowalski-Michel (see e.g. | D).

2The set of conjugacy classes of a group G will be denoted by G¥.
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Remark 2.2. Here, the prime p is fixed, and the bounds of type (1) would
concern the trace functions on [F, obtained for every power ¢q of p. However,
it may also make sense to vary p (e.g. for Kloosterman sums of fixed rank,
exponential sums (2) coming from the reduction of integer polynomials, etc.),
and the conductor will allow to control this dependency. See also Remark

If (F))xea is a compatible system as above, then in particular the trace
function t = tr, : F; — Oy (as the opposite of the coefficient of order n — 1
in the characteristic polynomial) is independent from A and takes values in
E. More precisely,

t(Fg) = [ Oxn E =[O = (Spec(0) —A) 'O c E, (6)
AEA leA

where O is the localization at the ideal [ corresponding to the valuation .

2.2.1. Fourier transforms and coherent families. The sheaves we will con-
sider arise by f-adic Fourier transforms, as developed by Deligne, Laumon
and others (see | , Section 7.3|, | , Chapter 5|), corresponding to
the discrete Fourier transform on the level of trace functions.

This often results in sheaves with large classical monodromy groups, which
is part of Condition above.

Concerning Condition and the conductor, we recall:

Lemma 2.3. Let us assume that Q(Csp) < E and let ¢ : F, — C be a
nontrivial additive character. If (Fx)aea is a compatible system of Fourier
sheaves’ of Ox-modules over IFy,, then the family (FTy(Fx))aen s compatible
as well and cond(m (F)) « cond(Fy)2, where FT, denotes the normalized
Fourier transform with respect to .

Proof. Let F = Fy and G = FTy(F). By construction, for every finite
extension F,/IF, and every a € Ug(F,), the reverse characteristic polynomial
det (1 — Frob, 4 T' | Gy) is equal to

2 .

[ [ det (1 — Frob, T | Hi(Ug * Fp. F® Lygar)

i=0
where L (q,) denotes an Artin-Schreier sheaf and H i the ith ¢-adic coho-
mology group with compact support. By the Grothendieck—Lefschetz trace
formula | , Exposé 2|, this is exp (3,5, S(a,n)T"/n), where S(a,n) =
ZIGUQ(Fqn) tr g (z)(tr(az)) has image in £ and does not depend on A by
hypothesis, whence the conclusion.

The assertion on the conductors can be found in | , Proposition
8.2], along with | , Remark 1.10]. O

2.2.2. FEzamples. For the examples below, we let £ = Q((4p), with ring of
integers O = Z[Cap).

3See | , 7.3.5] for the relevant definitions.
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Proposition 2.4 (Kloosterman sheaves). Let n > 2 be a fized integer co-
prime to p. For

Ay, = {\ L-adic valuation on O : p# L€ >, 1, £=1 (mod4), Fy =TFy},

there exists a coherent family (K1, x)xen,, of sheaves of Ox-modules over [Fy,
with monodromy group structure

{SLn 0 odd

Sp,, :n even,

conductor bounded by n+ 3, and such that the trace function txy, , q is equal
to the Kloosterman sum Kl,, 4 on qu.

Proof. The construction of the Kloosterman sheaves is due to Deligne (see
[ | for the construction via recursive Fourier transforms). As already
mentioned, the assertion on the integral monodromy groups over I can be
found in | |. They form a compatible system for n fixed by Lemma

applied recursively. O

Remark 2.5. As an illustration of (6), note that Kl 4 : Fy — Z[Cap]n-1)/2-

The following example, when unnormalized (hence replacing Oy by Zj),
was treated in | | and | |:

Proposition 2.6 (Point counting on families of hyperelliptic curves). Let
feZ[X] be a squarefree polynomial of degree 2g = 2, and let A be the set of
£-adic valuations of O with £ = 3. For p large enough, there exists a coherent
family (Fga)xea of L-adic sheaves of Ox-modules over Iy, with monodromy
group structure Spy,, conductor depending only on f, and such that t;f’hq(z)
is given by (3) when f(z) # 0.

Proof. For the construction, see | , Section 10.1], and normalize by a
Tate twist. Because of this normalization, | , Theorem 10.1.16] and
[ , Lemma 10.1.9] show that the arithmetic and geometric monodromy
group preserve the same symplectic pairing. Finally, | , Theorem 1.2]
shows that the geometric monodromy group is Spy,. U

2.3. The large sieve for Frobenius.

Theorem 2.7. Let A be a set of valuations (or equivalently prime ideals) on
O. Given L = 1, we write Ay, for the set of valuations in A corresponding to
ideals of norm at most L. Let (Fy)xea be a coherent family, with monodromy
group structure G, where F \ corresponds to a representation

P 7T1,p d GLn(O)\) — GLn(FA).

For every X € A, let Q) < G(F)) be a conjugacy-invariant subset. Then, for
all L > 1,

[{z € Ur, (Fy) : pA(Froby ) ¢ Q) for all A€ AL} « (1 N LB> 1
q q1/2

P(L)’



Ezxponential sums over finite fields and the large sieve 9

where the implied constant depends only on the conductor of the family, and

Z |QA| el @ =SL, o

e 72"213"“ : G = Sp,, (n even).
Proof. This is a variant of | , Proposition 3.3] (see also | , Chap-
ter 8]). For A\, X € A distinct, the product map m , — G(Fy) x G(Fy) is
surjective by | , Corollary 2.6] (a variant of Goursat’s Lemma), which
extends with no modification to the case where Fy and F) do not neces-
sarily have prime order (see | , Part II1]). By | , Corollary 24.6],
B =1+ dim(G) + rank(G)/2. O

Remark 2.8. Note that in the case E = Q((4) of the examples of Section

, the size of the residue field Fy corresponding to a prime ideal [ < Z[(,]
depends on the multiplicative order modulo d of the prime £ above which [ lies
(see | , Theorem 2.13]). In particular, if d = 4p, then |F)| depends on
p. This is a new phenomenon compared to the degree 1 case (i.e. Oy = Zy)
studied in | | and | |.

Remark 2.9. The case of orthogonal monodromy group structures (that
would appear in some variants of the examples in Section 5) is excluded
in the definition of a coherent family, because the argument above does not
apply in general: see the remark after | , Corollary 2.6]. A similar
difficulty arises in Theorem later on: see Remark

3. TRACES OF RANDOM MATRICES AND (GAUSSIAN SUMS

In the next section, we will apply Theorem to Oy = {g € G(F)) :
tr(g) ¢ Ax}, for some Ay < Fy. In this section, we get estimates on the

densities
Q
P(tr(9) ¢ A) =

By the orthogonality relations in Fy, we get the following:

Proposition 3.1. Let G < GL,(Fy) be a subgroup and A < Fy. Then

1
P(tr(g) e A) = — > 1a(tr(g))
Gl =2
= ﬂ + O | max Z Y(tr(g Z (=
|F’\| 17&7,DEJF)\ |G| geG zEA
We expect, for nontrivial 1 € IF‘A,
Z Y(tr(g)) « [Fy] =) (8)

geG

for some a(G) > 0, and Simllarly, if A is “well-distributed” in [y, we expect

I 2 (o) <« [y ©)

€A
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for some a(A) > 0. In both cases, the bounds should be uniform with respect
to all nontrivial ¥ € Fy.

Under (8) and (9), Proposition 3.1 becomes
_ 1Al —a(G)—a(A)+1
P(ix(g) € 4) = (1 +0 (um )) . (10)

3.1. Gaussian sums in linear groups (8).

3.1.1. General result. We start by a result that applies more generally to
algebraic varieties in GL,.

Proposition 3.2. Let V = V(F,) for V < GL, an algebraic variety over
Fy. The bound (8) holds with a(V) = 1/2, uniformly for all nontrivial
Y ey, unless tr : V — Fy is constant.

Proof. Let ¢’ # char(IF)) be an auxiliary prime and let us consider the restric-
tion £ of the Lang torsor Lo, on A" JFy to V (see | , Example 7.17]),
as sheaf of Qy-modules. By the Grothendieck—Lefschetz trace formula,

2dimV
dwtr(g)) = ) (=1)'tr (Frobg, | H(V x Fx,L)).
geV i=0

By Deligne’s generalization of the Riemann hypothesis over finite fields

[Dels0],
tr (Froby, | H(V x Fy, £)) < |Fy|["2dim H(V x Fy, £)
for 0 < ¢ < 2dim V, and by the coinvariant formula,
tr (FrobyA | H24mV (v ﬁA,£)> =0

unless £ is geometrically trivial, in which case tr : V' — T would be constant.
Hence

2dim V-1
Dl wltr(g)| < [FAPmVV2 0N dim HY(V x By, £).
gev =0
By | , Theorem 12|, we find that

< 3|]F>\|dimV—1/2(2 + d)n2+r

2, ltx(g)

gev

if V' is defined by r polynomials of degree at most d. The conclusion follows
by | , Corollary 24.6]. O

3.1.2. Classical finite groups of Lie type. Using the Bruhat decomposition,
D.S. Kim actually explicitly evaluated the Gaussian sums (3) for classical

finite groups of Lie type (see e.g. | ) |). The expressions involve
hyper-Kloosterman sums, and applying Deligne’s bound yields the following,
which greatly improves Proposition 3.2, in particular as n grows:

Proposition 3.3. Forn > 1 and G = GL,(F), SL,(Fy), Spa,,(Fy), SO3. (Fy)
and SOg,+1(Fy), the bound (8) holds with o(G) = 1 given in Table
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G a(G)
n(n—1)
GL” n22—1
SLy, -
n(n+2)

Sy, SO, (n even) | =5
2

SO, (n odd) A

SO;" (n even) n("872)
TABLE 1. Cancellation for Gaussian sums over finite groups
of Lie type.
Proof. See | , Proposition 6.28]. O

3.2. Gaussian sums in F). Let us now consider Bound (9) for various
subsets A < Fy.

3.2.1. Squares. Let A = IFZXQ be the subgroup of squares in F, with ¢ > 2.
Using the Legendre symbol and the evaluation of quadratic Gauss sums, we
get that (9) holds with a(A) = 1/2, uniformly for all nontrivial ¢ € Fy,
corresponding to square-root cancellation since |A| = (¢ —1)/2.

3.2.2. Powers/Multiplicative subgroups. More generally, we have:

Proposition 3.4. For a € (0,1/2), Bound (9) holds for any subgroup H <
FY such that |H| = |FA|Y2**, uniformly for all nontrivial ¢ € Fy.

Proof. This follows for example from the bound Y . ¥ (z) « |[Fy|"/? that
is deduced from Deligne’s extension of the Riemann hypothesis over finite
fields (see | , Proposition 5.7]). O

Ezample 3.5. For m > 2 fixed and H = F{™ the subgroup of mth powers,

the condition |H| = |Fx|"/?* holds as soon as |Fy| is large enough, since
_ IR\t

H| = G-

Remark 3.6. When |H| is arbitrarily small (say |H| = |[Fy|® for some § > 0),
the works of Bourgain and others (see e.g. | |) give (9) for some a =
a(d) > 0, up to some necessary restrictions if 6 < 1/2 and F) # Fy.

3.2.3. Definable subsets. For R a ring and ¢(x) a first-order formula in one
variable in the language of rings, we define p(R) = {a € R : ¢(a) holds}.

Ezample 3.7. For p(x) = (Jy : x = 3?), the set ©(R) is the subset of squares,
as in the previous section. More generally, we can take ¢(z) = (Jy : = =

f(y)) for any polynomial f € Z[Y].

We recall:

Theorem 3.8 (Chatzidakis—van den Dries-Macintyre | ). For ev-
ery formula o(x) in one variable in the language of rings, there exists a finite
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set C(¢) < (0,1] N Q such that for every finite field Fy,

[p(F)] = CO\@)IFA| + Op(IFA|?) (11)
with C'(A\, @) € C(p), or
[pEN] <y [FaI7Y2 (12)

The tmplied constants depend only on .

The following combined with Theorem shows that Gaussian sums over
definable subsets exhibit square-root cancellation:

Theorem 3.9 (| , Theorem 1, Corollary 12, Remark 19]). Let ¢(x) be
a formula in one variable in the language of rings such that |p(Fy)| is not
bounded as |Fy| — 400. Then, if ¢ € Fy is nontrivial, the bound (9) for
A = ¢(Fy) holds with a(A) = 1/2, with an implied constant depending only
on .

3.2.4. Images of polynomials. When ¢(x) = (Jy : x = f(y)) for some poly-
nomial f € Z[X], Theorem also appears in | | (using the Weil
conjectures for curves).

Proposition 3.10 (| , Theorem 1, Lemma 1]). Let f € Z[X] be of
degree d = 2 and such that the Galois group of f(X) —y € C(y)[X] over
C(y) is equal to Sg. Then (11) for p(x) = (Jy : x = f(y)) and a finite field
F\ of characteristic £ »¢ 1 holds with

deg(f) (_1)n+1
C(X, @) = n; e (0.1).
This is extended to f € F)(X) in | |.
Remarks 3.11. (1) See | , p. 422] for sufficient conditions to verify
the hypothesis of Proposition
(2) By | | or | |, the hypothesis of Proposition holds for

almost all monic f € Z[X] of degree d > 2, with respect to the
terminology of Footnote 1, p.

4. ZERO-DENSITY ESTIMATES FOR TRACE FUNCTIONS IN ALGEBRAIC
SUBSETS

We continue to fix a number field E with ring of integers O.

4.1. General result.

Proposition 4.1. Let A be a set of valuations on O and let t : F; — E be
the trace function over F, associated to a coherent family (Fa)xen of sheaves
of Ox-modules over ), with monodromy group structure G. For A < E and
A € A corresponding to a prime ideal | of O, we denote by Ay < Fy the
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reduction of A n Op modulo . Assume that

A
sup 1Ay <L (13)
xed [Fa
Then
1
P(t(z) € A) « ] with L= [qﬁJ , (14)
L
where B > 0 s as in Theorem 2.7, with an tmplied constant depending only

on the conductor of the family and on the left-hand side of (13).

Proof. For every A € A, we may reduce t : F;, — Oy < O, to t: Fy — F), so
that

{z eF,:t(x) € Ay for all A e A}

P(t(z) € A) < ;

By Theorem with
U ={geG(F\) :trg¢ Az} (AeA),
which are clearly conjugacy-invariant, we get
LBY 1
P(t(l’) € A) < <1 + ql/g> m,

where P(L) = > .4, P(tr(g) ¢ Ax). By (10) (Proposition 3.1),

_ Axl 1 |4,
P(tr(g) € Ay) = m 1+0 [y [ 1@ a1 « Wa

since a(G) = 1 by Proposition 3.3. Therefore, we get that for any L > 1,

LP 1 AT
P(t(z) e A) « <1+ql/2) |ALl (1&2?\};%) .

O

Remark 4.2. If we assume more generally that the monodromy group of F 18
G(F,) for G < GL,, any linear group over [, the results hold if a(A4)) = 1/2
for all A € A, by Proposition 3.2. Interestingly, in the case of SL,,, Sp,,, and
SO:f, Proposition gives much more cancellation, so that we do not need
information about the a(Ay).

To apply Proposition 1.1, we need the local densities assumption (13) and
lower bounds on |Az|. We treat these aspects in the following subsections.

4.2. Lower bounds on |Ay|. For our applications, we will mainly consider
A to be either:

Examples 4.3. (1) The full set Ag) of valuations on O not lying above
the p-adic valuation.
(2) For m > 2 and C < (Z/m)*, the set of valuations A € Ay, such that
|F)\| eC.
(3) The restriction of these to ideals having degree 1 over Q.
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More generally, let F'/E be a fixed finite Galois extension of number fields
with Galois group H, C' < H be a conjugacy-stable subset, and

A(C) = {I < E prime, not ramified in F' : Frob; € C'} (15)
A (C) = {le A(C) of degree 1 over Q}.
Example then corresponds to ¥ = F', while corresponds to F' =

E(¢m) with H =~ (Z/m)*.
By Chebotarev’s density theorem, if E and F' are fixed,

C| L

with an absolute implied constant. Hence, if F' and E do not depend on p,

(11) is

IAC)r] = |A1(O) ]

log q .
P(t(z) € A) <c,n Bauen 0 (¢=p°— +0). (17)

If £ and/or F depend on p (e.g. for Kloosterman sums, where £ = Q((4p)),
we must either fix p or deal with uniformity with respect to £ and F. We
discuss this situation in the following paragraphs.

4.2.1. Uniformity in the prime ideal theorem. By | | (extending Cheby-
chev’s method to number fields), if £/Q is normal’, then

L
10g(2L)1+5A}5/2+5
for Ap = |discg(E)|, and any € > 0if ng = [E : Q] ». 1. This is nontrivial

only when L » A}E/Hal for some &’ > 0.

me(L) = |{l < E prime : N(I) < L}| ».

4.2.2. Uniformity in Chebotarev’s density theorem. The unconditional re-
sults due to Lagarias-Odlyzko and Serre (see | , Section 2.2|) show
that (16) holds with an absolute implied constant under the restriction
log L » ng(log Ap)?.

Assuming the generalized Riemann hypothesis (GRH) for the Dedekind
zeta function of F, this range can be improved to L » (log Ag)?*¢ for an
arbitrary € > 0 (see | , Section 2.4]).

4.2.3. Cyclotomic fields. If E = Q((y), F = E((n) are cyclotomic fields, it is
possible to improve the unconditional uniform range in Chebotarev’s density
theorem by relying on estimates for primes in arithmetic progressions.

Proposition 4.4. For d,m > 1 coprime integers, let E = Q({y) and F =
E((n). For C c Gal(F/E) = (Z/m)*, we have

ICIL
(dm)*p(m)log L

IAC)L] = [A1(C)L] »

when either:
(1) ¢ >0 and L = (dm)8, or
(2) under GRH, e = 0 and L > (dm)**¢ for some ¢’ > 0.
4In Friedlander’s paper, it is only assumed that E is in a tower of normal extensions. If

E/Q is itself normal, we can improve the result by using more a precise version of Stark’s
estimates | | on the residue at 1 of the Dedekind zeta function of E.
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Proof. Since every unramified rational prime ¢ of inertia/residual degree f;
(equal to the order of ¢ in (Z/d)*) gives rise to ¢(d)/f; prime ideals with
norm 7,

AC)L] = @(d) )
fle(d)

The summand with f = 1 gives:
IAM(C)r] = e(d)|{¢ <L prime : {{Ag, £=1 (modd), {eC}|.
If (d,m) = 1, then by the Chinese remainder theorem

{0 < LY prime : 04 Ag, fo=f, t/ € C}|
7 .

AL(O)1] = p(d) | Y] w(e,dm, L) —w(d) |,
ceC
where w(a,d,L) = [{¢{ < L prime : ¢ = a (mod d)}| for a € (Z/d)*. Uni-

formly, one has

mw(a,d, L) > (18)

L
o(d)df log L
under (by | , Theorem 3.3|, using Linnik-type arguments) or
assuming GRH. O

Remark 4.5. Similarly, this shows that for a Galois extension F/Q, the set
of prime ideals with inertia degree 1 has natural density 1, so we cannot hope
to substantially improve the lower bound by taking into account the f > 1
in the proof of Proposition

Remarks 4.6. (1) By the Bombieri-Vinogradov theorem, the range
in (18) holds unconditionally for all a on average over d.
(2) By a conjecture of Montgomery, one may be able to take ¢ = 0 and
L » (dm)'*9 for any § > 0. By Barban-Davenport-Halberstam,
Montgomery, and Hooley, this holds true in (18) on average over d
and a.

4.3. Explicit zero-density estimates. The results from the previous sec-
tion along with Proposition give:

Proposition 4.7. Under the hypotheses of Proposition and (13), with
E/Q normal, F/E a finite Galois extension with Galois group H, a conjugacy-
invariant subset C < H and A = A(C) or A1(C) as in (15), we have that
for any e > 0:

(1) If F = E is normal,

AP (log g)'+e
Bl+aq1/(2B) )

P(t(z) € A) <.

which is nontrivial when Ag“' = o(q) for some & > 0.
(2) Under GRH, if q¢ = (log Ap)?B+e,

mlogq log q
P(t(z) € A) <. C1Bql/ D) Lm,C BB
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(3) Assume that E = Q((q) and F = E((y) with (d,m) = 1. If ¢ >
(dm)'5B | then
m(dm)c log q d®loggq
|C|Bq'/B) Cm,C Bql/@B)’

The implied constants depend only on the conductor of the family and the
quantities indicated.

P(t(z) € A) <.

4.3.1. The case E = Q((4p). For exponential sums, we are interested in the
case E = Q(C4p), where ngp = 2(p — 1) and Ag = 42P=3p2(r=2),

The restrictions ¢ » g(FE) (for some g(F) = g(ng, Ag) = 1) of Proposition
impose limitations on the range of e, p when ¢ = p® — 4o00:

Corollary 4.8. Under the hypotheses of Proposition for E = Q(4p) and
F = E((p) with (m,4p) = 1, we have

m(pm)“logq p°logg
|C|Bql/@B) ~™C Bql/@2B)

P(t(z) € A) <. —~0 (q=p°— +0)

when either
(1) e >0 and e = 16B, or (2) under GRH, ¢ =0 and e > 4B.

The implied constants depend only on the conductor of the family and the
quantities indicated.

Remarks 4.9. (1) Had we not taken advantage of the fact that E is a
cyclotomic field, the unconditional results mentioned in Section
would have forced to take ¢ = p¢ — 400 with e » p.

(2) Under Montgomery’s conjecture mentioned in Remarks 1.6, we may
take ¢ = 0 and e > 2B. Without an improvement in the error term
of the large sieve bound (14), e = 2B + 1 > 10 is the minimal value
the method could handle.

4.4. Local densities. In this section, we finally give examples of sets A ¢ F
for which the local densities assumption (13) holds.

4.4.1. Powers/finite index subgroups.

Proposition 4.10. Let E, O be as in Proposition and for m = 2, let

A {AeAop:|Fal=1 (mod m)} :m odd
| {\ e Aoy : not lying above 2} :m even.

Then (13) holds for A= E™ c E.

Proof. We have Ay = FY" and for |F)| > 3,
1 1.
[Axl (1_ 1) L, 1 fmtEy smodd
|F/\| |F/\| (|]F§|,m) |F/\| %%—ﬁ 1 even.

Note that the set A in Proposition is of the form given in Example

O
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4.4.2. Definable subsets.

Proposition 4.11. Let E, O and A be as in Proposition and let p(x)
be a first order formula in one variable in the language of rings such that:
(1) Neither |p(Fy)| nor |[=@(Fy)| are bounded as |Fy| — +o0, where —
denotes negation.
(2) For every X\ € A corresponding to an ideal I, ¢(E) n O (mod [) is
contained in (Fy).

Then (13) holds with A = ¢(FE) < E.

Proof. Condition (2) implies that Ay < ¢(F,) for all A € A. Under condition

, Theorem shows that
[p(IFAD] = CrplFAl(1 +0(1))
[=o([FADl = Cx—p|Fal(1 +0(1))

= (1=Chp)lFal(1 +0(1))

with C) 4, Cx—~p € (0,1]. Hence, Cy, # 0,1 for |Fy| large enough, and

lim sup|g, |- 10 % < lim supyp, | 400 % < max C(y) < 1, recalling that

C(y) is finite. O

Remark 4.12. Condition of Proposition holds if both
(a) ¢(E) n Orc (O, and (b) ©(Or) (mod ) = o(Fy)

hold. Note that:

— Condition holds when char(Fy) »¢ 1if o(z) = (Jy : = =
f(y)) for some f € Z[X]. Indeed, for z € E, we have \(f(x)) =
min(0, deg(f)A(x)) if no coefficient of f is divisible by char(Fy).

— Condition holds if ¢ contains no negations or implications. On
the other hand, for p(r) = —(3y : = y?), the reduction of a
nonsquare in @ may be a square in Fy.

Ezample 4.13 (Images of polynomials). Consider the case ¢(x) = (Jy : © =
fly)) for f e Z|X] of Section . Then Proposition applies for
— almost all monic f of fixed degree d > 2 (with respect to the termi-
nology of Footnote |, p. 3), and
— all f satisfying the Galois group condition of Proposition ,

up to restricting to a cofinite subset of A. Indeed:

— By Proposition and Remarks , Condition of Proposition
holds for almost all monic f of fixed degree.
— Condition holds if char(IFy) »¢ 1 by Remark

5. EXAMPLES

5.1. Kloosterman sums. Proposition 1.1, given in the introduction, now
follows directly from Corollary with Proposition and the local densi-
ties estimates from Proposition
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Similarly, replacing the latter with Proposition , we obtain:

Proposition 5.1. Let p(z) be a first-order formula in the language of rings

as in Proposition . Then, forn =2 and e > 0,
p°loggq
P(Khng(@) € o(Q)) “nise 5 or/amy — 0 (19)

when ¢ = p¢ — 400 coprime to n with e = 16B,, for B, as in (5). The
implied constant depends only on n, ¢ and €.

Proposition is a particular case of the latter, using Example

5.1.1. Results for unnormalized sums. Replacing A by ¢®~1/24 in Propo-
sition and using uniformity shows that the above results also hold for
unnormalized Kloosterman sums.

5.1.2. Galois actions. When considering densities of the form (19), it is in-
teresting to take into account the following Galois actions:

(1) For all o € Gal(Fy/Fp) =~ Z/e and = € F,

Kl g(@) = Kl g(0(2)).

The orbit of z has size deg(z) € {1,...,e}. Fisher | , Corollary
4.25] has actually shown that if p > (2n2¢ + 1)2, the Kloosterman
sums are distinct up to this action.

(2) For 0 € Gal(Q(¢p)/Q) = F); corresponding to c € F) and z € F, we
have

(Kl q(z)) = Kl 4(c"x).

Moreover, orbits have size (p{iflln) e{lp—1/n,....,p—1}.

If ¢ is a first-order formula in the language of rings, let A, = ¢(Q(C4p)).
Since o(Ap) = A, for all o € Gal(Q((p)/Q), we can define an equivalence
relation ~ on {x € Fy : Kl, 4(x) € Ay} generated by x ~ c"z for all c € F;,
z e Fy, and we have

Hz e Fy : Klug(z) € Ap}l(p — 1,n)

{zeFy :Klyg(z)e Ap}/ ~| =

p—1
« {z e Fy : Klng(z) € Ay}l
n p . 1 .
If in addition the hypotheses of Proposition are satisfied, this yields
1-1/(2Bn) |
q 0gq
{zeFy : Klyg(z) e Ap}/ ~ | <ne e .

Remark 5.2. The right-hand side can tend to 0 with p — +00 only when e <
22521' Since Q%Jfﬁl € (1,2), this is the case only for e = 1. Unfortunately,
our estimate on the number of prime ideals of bounded norm in Q((4p)
requires to take e » 1. If it could be extended to e = 1 (but see Remarks

), the above would show that for p large enough, there is no x € Fy
such that Kl,, ,(x) € ¢(Q({4p))-
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5.2. Exploiting monodromy over C. As we mentioned in the previous
section, determining integral monodromy groups (as required by Definition
), say for a subset of valuations of density 1, is usually difficult.

By using some deep results of Larsen and Pink (relying in particular on the
classification of finite simple groups in | ]), the following result allows
to obtain coherent families from the knowledge of the monodromy groups
over Qy, up to passing to a subfamily of density 1 depending on p.

Theorem 5.3. Let £ < C be a Galois number field with ring of integers O
and let A be a set of valuations on O of natural density 1. Let (Fx)xea be a
compatible system with Fy a sheaf of Ox-modules over F,. We assume that:

(2°) There exists G € {SLp, Spy,} such that for every X € A, the arithmetic
monodromy group of Fx ® Qy is conjugate to G(Qy).

Then there exists a subset A, = A of natural density 1, depending on p and on
the family, such that (F)) XeA, 8 coherent, with monodromy group structure

G.

After using Theorem 5.3, we may apply Proposition with the coherent
subfamily (Fx)xea, to get

1

P(t(z) e A) « ALl

<p (20)

1
(Ap)i|

when L = [ql/ (2B)J — 400, with the implied constant depending on p and
on the original family.

5.2.1. Proof of Theorem 5.3. The idea of the argument, based on | | and
| |, is due to Katz and appears partly in | , P29, | , D-
7], | , pp. 188-189] (however see Remark 5.5 below), and | , Sec-
tion 7].

To reduce as much as possible to the situation of | | and | |, we

consider the subset A; © A corresponding to ideals of degree 1 over Q, so
that By = Qy, Oy = Zy and Fy = Fy if A € Ay is an f-adic valuation. By
| , 4.7.1], for any S < Spec(O), the Dirichlet density of S is equal to
the Dirichlet density of the elements of S having degree 1 over Q. In partic-
ular, A; has Dirichlet density 1, and actually natural density 1 by | ,
Corollary 2, p. 248| (for cyclotomic fields, see also the proof of Proposition

In the notations of | , Section 3| and definitions of | , Section 6],
we have the compact F-group 1, with compatible system of representations

(ox = pFy i T1p = GLn(On) = GLn(Z)) \

and Frobenius Frob, for a € A = {(z,p") : n > 1,2 € Fpn}. Note that G is
a simply connected reductive group scheme over Z, and by hypothesis p) is
semisimple.
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For every A € A, we let Gy = Gg,, I'yx = pa(m1p) < G(O)) the integral
monodromy group, I'y :=T"y (mod A) its reduction, and

B={\eA:T\<GEF\}cA

the set of valuations where the monodromy group is smaller than expected.
We let moreover:

— For every a € A,
(o) e O)\[T] < E[T]

the characteristic polynomial of py(Frob,) (which does not depend
on A € A by hypothesis).

— K < £(Gg) the Q-rational closed subvariety of codimension > 1
given by | , (3.8)]. There exists a constant C, > 0 such that
&(a) (mod ¢) ¢ K (mod ¢) if £ > C,.

— A’ < A the set of the a € A such that:

(1) pa(Froby) is regular with respect to GL, (see | , (3.4)],
[ , (4.5)]) for every X € A.

(2) (o) ¢ K.

By | , (3.11)], {Froby : o € A’} < my, is still dense and by

[ , (4.7)):

(1) pa(Frob,) lies in a unique maximal torus of Ty o of G, .
(2) &(v) is associated to a torus Ty, in GL,, g, unique up to GL,,(E)-
conjugacy, such that T, x g E) is conjugate to T} ,.
(3) The splitting field of these tori is equal to the splitting field L,
of {(av) over E | , (4.4)].
— C!, > 1 such that L,/Q is unramified at any ¢ > CY,.
— L the intersection of the L, for a« € A’, so that Q ¢ E < L < L.

We decompose
B=BnMA) )] | B
zeGal(L/E)!
where B, = {A€ Ay n B: [\ L/E] = z}.
The upper natural density of B is
- {Ae B:N(A

d(B) = limsup )< S
B e A NV < 5]

< SMA)+ D §(Bo)= D, (B

zeGal(L/E)! zeGal(L/E)*
i

Let us fix a class € Gal(L/E)* and an ¢'-adic valuation X' € Ay with
Frobenius [\, L/E] = .

If X € B,, then I'y is a proper subgroup of G(F)) = G(F;). By | ,
(1.1), (1.19)], when £ »¢ 1, every maximal subgroup of G(Fy) is of the form
H(Fy), for H c Gz, a smooth Zs-subgroup scheme. By | , (3.17)] (see
also | , (3.8)]), it follows that there exists a maximal proper reductive
Q¢-subgroup N of G (containing a Levi component of Hg,) such that

FM(A, ) € FMy. < FMg,

for every a € A’ such that ¢ > D, = max(Cy,C’,), where:
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— N° is the identity component of N.

— FM(\, ) is the isomorphism class of the Frobenius module (i.e. free
Z-module of finite rank with an endomorphism of finite order) arising
from the character group of the maximal torus T o, < G containing
pxa(F,), with the action of Gal(Q,/Q,) = Gal(Q,/E)). By | ,
(3.14)], this depends only on [/, L,/Q] = [\, Lo/E] up to isomor-
phism.

— FMg, and FMpye are the set of isomorphism classes of Frobenius
modules arising from unramified tori of G, resp. N°.

Let M € FMg, \FMpe-. Asin | , (3.15)], and | , (8.2)], we will
show that
(%) For every R > 1, there exist ay,...,ar € A’ such that

[M] = FM(N, ;) with L,, linearly disjoint".
Assuming this, it follows that if £ > maxj<j<r Da,, then for 1 <i < R,
[)‘a LOéi/E] = [Ev Lai/Q] ta [Zla Lai/Q] = [)‘/’ Lai/E]
in Gal(Ly,/Q) = Gal(L,,/E), since M # FM(\, ;). Therefore, by Cheb-

otarev’s theorem,

§(Bs) < 3({AeA:[\La/E)# [N, La,/E] for 1 <i < R})

- (1 - ”R =

since [Lq, : E] < n! and by linear disjointedness. Hence §(B) < (1 — 1/n!)®
for every R > 1, so that B has natural density 0 by taking R — +oo0.

We now prove (). It suffices to show that for any finite Galois extension
F/L, there exists a € A" such that [M] = FM(X, ) with L, and F linearly
disjoint over L. We proceed as in | , (8.2)] (where E = Q).

For K1, ..., K, the intermediate fields of F'/L normal over L and minimal
with respect to inclusion with this property, we have that L, is linearly
disjoint with F' over L if and only if K; ¢ L, for all 1 < ¢ < m. This holds
in particular if for every i there exists A\; € A1 corresponding to a prime that
splits in L, but not in Kj.

For every 1 <1i < m, let 3; € A’ be such that K; ¢ Eg,. By minimality of
K;, we have Eg, n K; = L, so that Gal(Lg, /L) x Gal(K;/L) is contained in

{(01,0'2) € Gal(Lﬂi/E) X GaI(K,/E) 01 |L: g2 |L} = Gal(LﬁiKi/E).

By Chebotarev’s theorem, the set of A € Spec(O) that split in Lg, but
does not split in K; has positive Dirichlet density, so the same holds for the
A € Ay with this property, since A1 has Dirichlet density 1. Hence, there
exists A\; € A1\{\'} that splits in L, but not in K;, and we may suppose all
the \; distinct.
By | , (7.5.3)], there exists « € A’ such that:
(1) T o is conjugate in GL,(Ey) to the unramified maximal torus of
Gy corresponding to M, so [M] = FM(X, a).

5Here, this means that for any 2 < i < R, La, ... Lq, , and Ly, are linearly disjoint
over L, i.e. their intersection is equal to L.
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(2) Ty, is conjugate in GL,(E),) to T, g,- Since A; splits in Lg,, this
torus is split, so that \; also splits in L.
This concludes the argument.

N7

FnL,

/

La
N

|
L
|

Q

Finally, concerning the geometric integral monodromy group
p)\(ﬂ’%?;m) < Ty, note that:

geom
F)\

(1) T'y/T%°™ is a finite quotient of T1p/TE, = Z, hence a finite cyclic
group.

(2) If |Fa| »¢ 1, the group G'(F)) := G(F))/Z(G(F))) is simple non-
abelian (see e.g. | , Theorem 24.17]).

Hence, by (2), if f‘ieom < G(F)), then it is contained in Z(G(Fy)), so that
f‘/\/f‘ieom
Z(G(Fy))/T5

would be cyclic by (1), a contradiction. O

G/(F)\) =

Remarks 5.4. (1) We consider compatible systems of representations p) :
m — GL,(O,), where X is a valuation on the ring of integers O of a
number field E/Q, while the results in | , Part II| and | | are
stated for the case £ = Q. One needs to be cautious before stating
the natural generalizations of the results of Larsen and Pink. For
example, under the notations of the theorem, the maximal subgroups
of G(IF)) are not all of the form H(Fy) for H c Gp, a smooth Oy-

subgroup scheme, unless Fy = F, as in | , (1.1), (1.19)]: for
instance, one has subfield subgroups.

(2) Theorem cannot be used when G' = SO,,, since it is not simply
connected, and this assumption is required for | , (1.19)]. In

even dimension, note that one would need additional input to deter-
mine the type (+ or —) of the monodromy groups over F.

5.2.2. Arithmetic and geometric monodromy groups. Often, only the geo-
metric monodromy group is determined, while Theorem and Definition

require knowledge of the arithmetic monodromy. By twisting a sheaf F)
by a constant or a Tate twist, it is often possible to get a sheaf F3 with

Ggeom(]:)\) = Ggeom(-/r;\) < Garith(f,/\) < Ggeom(-/—_;\)’

so that Ggeom(Fy) = Garith(Fy) = Ggeom(Fr). Examples will be given in
the next sections.
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Remark 5.5. In | , , |, the results of Larsen—Pink are
applied to deduce the geometric monodromy group over Fy from the geomet-
ric group over Q, . However, this is incorrect since the geometric group does
not contain a dense subset of the Frobenius. Moreover, note that the arith-
metic monodromy group is not contained in Spy, (Q;) (but in GSpy, (Qy)).
For the unnormalized family of first cohomology groups of hyperelliptic
curves, this is not an issue because the results of J.-K. Yu and C. Hall also
apply to give the geometric monodromy groups. Alternatively, one may

normalize by a Tate twist as in Proposition and apply Theorem to
the normalized sheaf (see above).
For the characteristic 2 example of | , Proposition 3.3|, the result

of Hall can also be applied because the local monodromy at 0 is a unipotent
pseudoreflection. Again, one could also apply Theorem 5.3 after normalizing.

On the other hand, the statement | , Theorem 6.1] must be modi-
fied to assume for example that the arithmetic monodromy group is Sp, or
that the geometric monodromy groups over Fy are known for all £ >» 1.

5.3. General exponential sums. Finally, we use the previous section to
give examples of coherent families of the form (2).

5.3.1. Construction of coherent families.

Proposition 5.6 (Exponential sums (2), h =0, x = 1). Let f € Q(X) and
let Zy be the set of zeros of f' in C, having cardinality ky. We assume that
the zeros of f' are simple, that |f(Zs)| = |Zp| (i.e. f is supermorse), and
that either:
~ (H1): ky is even, ),
s; € f(Zyr), then s1 = 53,50 = 54 0T 51 = 52,53 = 4.
~ (Ha): f is odd, and if s1 — sy = s3 — s4 with s; € f(Zy), then
S§1 = 83,82 = S4 0T §] = §2,83 = S4 O §S1 = —S54,82 = —S3.

2€Z g1 f(Z) = 0, and if s1 — sy = s3 — s4 with

If p is large enough, for E = Q((4p) and Aoy as in Ezample , there
exists a family (Grx)aero, of sheaves of Ox-modules over F,, with trace

function
x»—>—1 Z €<tr(a:f(y))> (x eFy),
\/ZI yelFy p
fy)#o
and conductor depending only on f.
Moreover, there exists oy, € Q and a set of valuations A = A’ﬁp of density

1 on E' = E(ay), depending only on f and p, such that

(912 ® 403 yen
is a coherent family of sheaves of O\-modules over Fy,, for O the ring of
integers of E', with monodromy group structure
-G = Ska Zf (H1> holds.
- G = Spy, if (H2) holds, and one may take oy = 1.

Proof. See | , Theorem 7.9.4, Lemmas 7.10.2.1, 7.10.2.3| for the con-
struction and | , 7.9.6-7, 7.10] for the determination of Ggeom(Gy )
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over C. The family forms a compatible system by Lemma . The def-
inition over Oy comes from the definition of the f-adic Fourier transform
on the level of sheaves of Oy-modules (see | , Chapter 5]). Under our
hypotheses, Ggeom(Gy,) contains SLy, (Qy), resp. Spy ; (Qy). Moreover:

— In the (H3) case, Garith(Gf,2) < Spy, (Fx) by | , 7.10.4 (3)], and
we can apply Theorem

— In the (Hip) case, since my /750

Lp
Clifford theory an element 3, € O NnQ not depending on A (since we

have a compatible system) such that the determinant is isomorphic
to ﬁp ® @ -

As in Section , we obtain that with o, = ) ki O, for
any valuation X' of @' extending A, the arithmetic and geometric
monodromy groups of Gy ® a,O), coincide and are conjugate to
SLg, (Qy), so that we can apply Theorem

~ 7 is abelian, there exists by

O

Example 5.7. The hypotheses hold for the rational function f = aX" ! +bX,
where a,b € Z, r € Z— {1}, rab # 0, with (H;) if  is odd and (Hz2) otherwise
(see | , p- 7]), or for the polynomial f = X" — naX, where a € Z\{0}
and n > 3, with (Hy) if n is even, (H2) otherwise.

The following include for example Birch sums (with h = X3):

Proposition 5.8 (Exponential sums (2), f = X, x = 1, h polynomial).
Let h = >, a; X" € Z[X] be a polynomial of degree n > 3 with n # 7,9
and an—1 = 0. If p is large enough, for E = Q((4p) and Aoy as in Example

, there exists a family (gh,)\))\er’p of sheaves of Ox-modules over F,
with trace function

e Ly (Ely )Y
WZF( L) ey,

and conductor depending only on h.
Moreover, there exists a, € Q and a set of valuations A’ = A;up of density

1 on E' = E(oy), depending only on h and p, such that
(gh,)\ ® O‘poi\)AeA/

is a coherent family of sheaves of O)-modules over Fp,, for O the ring of
integers of E’', with monodromy group structure:

(1) G = Sp,,_ if n is odd and h has no monomial of even positive degree;
one may take oy = 1.
(2) G = SL,,_1 otherwise.

Proof. This is similar to the proof of Proposition 5.6. See | , 7.12] for
the construction of the sheaves and the determination of the monodromy
groups over C. In the symplectic case, ibidem shows that the arithmetic
monodromy group is itself contained in Sp,,_;. (]

Proposition 5.9 (Exponential sums (2), f polynomial, x # 1). Let
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- he Q(X) odd with a pole of order n > 1 at 0.

— [ € Z|X] odd nonzero of degree d with (d,n) = 1.

— X a character of ¥} of order r = 2.

- g € Q(X) nonzero, with the order of any zero or pole not divisible by
r.

For p large enough, for E = Q(C4p) and Ao, as in Example , there
exists a family (gh,fvx,g,A)Aer,p of sheaves of Ox-modules over IF,, with trace
function (2) and conductor depending only on f,g,h,r.

Moreover, if we assume that there exists L € Q(X) even with L(x)" =
g(x)g(—x) and either N = rank(Gp ry.gr) # 8 or |n —d| # 6, then there
exists a set of valuations A, = Ao of density 1, depending only on h, f, g, x
and p, such that

(gh7f7X7g7)‘)>\eAp

is a coherent family, with monodromy group structure G = Spy .

Proof. This is again similar to the proof of Proposition . See | ,
7.7, 7.13 (Sp-example(2))| for the construction of the sheaves and the de-
termination of the monodromy groups over C; | , 7.13] shows that the
arithmetic monodromy group is itself contained in Sp-. O

Remark 5.10. If L as in the statement of Proposition is odd, there exists
o, € {£1} such that the arithmetic and geometric monodromy groups over

C of ap ® Gh fx.9,1 coincide and are conjugate to SOy (C) (see | , 7.14
(O-example(2))]). However, Theorem does not apply in that case (see
Remarks ).

5.3.2. Zero-density estimates. Hence, for the three families above, we get by
Corollary with Propositions and :

Proposition 5.11. We fiz a prime p and we set ¢ = p®. Lett : Fy — Q(l4p)
be the trace function associated with one of the families from Propositions
, or 5.9, and let B be as in (7).
For o(z) a first-order formula in the language of rings as in Proposition

7

1
P(t(x) € @(@(Qp))) Lp.fp ]E;qgja — 0 (e — +0).

In particular, for almost all monic f € Z[X] of fized degree = 2 (such as
f(X) =X™ form =2 coprime to p),

P(t(x) € F(QC))) <ps ;gq S0 (e — +o0).

qﬁ

Proof. In the symplectic case, this is immediate. In the special linear cases,
we get the result for the twisted trace function ¢’ : F, — O}, t'(z) = agt(z).
The result for the unnormalized function is obtained as in Section ,
replacing A by a,,“A in Proposition and using uniformity:. O
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Remark 5.12. In the special linear case, the implied constant depends on p
both because of the use of Theorem 5.3, and because of the twisting factor
ap.

5.3.3. Galois actions. Note that for the sums

-1, (tr@fly) +hy) R
ﬁZF ( : )x(g(y))( cF))

with h(Y) =Y™and f(Y) = Y™ (m,n € Z), we have o (t(z))) = t(c™ "x),
where o.m € Gal(Q((p)/Q) = T, corresponds to ¢ for some c € F;. Hence,

as in Section , it makes sense to study the integer
{z e ¥y : i(x) € o(Q(Cap))}(p — 1, m —n) {z e Fy : i(x) € o(Q(Cap))}
p—1 e p—1

when () is a first-order formula in the language of rings. However, doing
so requires an estimate of the form (/) uniform in p, for example through
a more precise knowledge of the integral monodromy instead of relying on
Theorem

5.4. Hypergeometric sums. The same methods also apply to the hyper-
geometric sums defined by Katz | , Chapter 8|, generalizing Klooster-
man sums: under some conditions, the arithmetic and geometric monodromy
groups over Q, coincide and are conjugate to SL,,, without needing to twist
(see the references to | | in | , Proposition 7.7]).
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