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Abstract. This note gives a variant of a random invariant generation
theorem of Guralnick and Kantor, for SLn and Sp2n over a finite field
of characteristic p, with the element of large order replaced by a regular
unipotent element of order p, motivated by a generation result of Gow
and Tamburini. This would follow from general bounds of Liebeck and
Saxl, but different arguments can be given in this case, leading to im-
proved error terms and not relying on the classification of finite simple
groups.

1. Introduction

We start by shortly surveying some of the literature on random (invariant)
generation of classical groups, introducing notations and definitions along the
way. Henceforth, a finite set X will be equipped with the counting measure,
and for a property Φ with n free variables, we will write

P
´

Φpxq : x P Xn
¯

“
|tx P Xn : Φpxq holdsu|

|X|n
.

Moreover, Fq will denote a finite field of order q in characteristic p.

1.1. Random generation by two elements.

1.1.1. Two random elements. In 1969, Dixon [Dix69] proved Netto’s conjec-
ture that two random even permutations generate the alternating group An

with probability 1 as n Ñ 8, i.e.

P
´

xx, yy “ An : x, y P An

¯

Ñ 1.

He further conjectured that the same should hold true for any finite simple
group G as |G| Ñ 8, which was shown by Kantor and Lubotzky [KL90a]
for a finite classical group, and extended by Liebeck and Shalev [LS95] to all
finite simple groups. Their method is based on the classification of maximal
subgroups of the finite simple groups by Aschbacher [Asc84], and relies on
the classification of finite simple groups.

1.1.2. One random element, one fixed. A variant is to fix one of the two
elements, as done by Guralnick, Kantor and Saxl [GKS94] for a quasisimple
classical group G over Fq (see also [Sha98] and [MSW94]): for any x P G,

P
´

xx, yy “ G : y P G
¯

Ñ 1 as q Ñ 8.
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1.2. Invariant generation. A stronger condition on a set of group gener-
ators is that any conjugates of the generators remain generators; these are
called invariant generators.

Usually, a generating set will not generate the group invariably. Actually,
any generating set generates the group invariably if and only if the group is
nilpotent (see [KLS11, Proposition 2.4]).

Kantor, Lubotzky and Shalev [KLS11] have shown that every finite (resp.
nonabelian finite simple) group G is invariably generated (resp. invariably
generated with respect to AutpGq) by ď log2 |G| (resp. 2) elements. This
uses Singer cycles and the results of [MSW94] on the classification of maximal
subgroups containing such elements. In the case of simple groups, see also
[GS03, Theorem 1.3].

1.2.1. Invariant generation by random elements. This notion is particularly
relevant when one tries to determine Galois groups (say of the splitting field
of an integer polynomial) from conjugacy classes.

As explained in [KZ12], this leads to the definition of the Chebotarev
invariant of a finite group G: the expected minimal size of a random subset
that generates G invariably. Kantor, Lubotzky and Shalev [KLS11] showed

that this invariant is ! p|G| log |G|q1{2, with an absolute implied constant.
By Fulman and Guralnick [FG03, Theorem 5.3] that if G is a fixed type

of simple algebraic group, a large enough number of elements of GpFqq are
almost surely invariants generators.

In the case of only two generators, Niemeier and Praeger [NP98, Theorem
10.1] obtained that for most classical groups G over Fq, a positive proportion
of pairs px, yq P G2 are “invariant generators modulo obstruction”, i.e. for
every g, h P G, if H “ xxg, yhy is irreducible, then H “ G.

1.3. Invariant generation with a fixed class. Alternatively, one may
fix a (generating) subset and ask how many conjugates remain generators,
leading more generally to:

Question 1.1. Given a fixed subset S of a finite group G and A Ă AutpGq,
what is

P
´

xfpsqpaq : s P Sy “ G : f : S Ñ A
¯

as |G| Ñ 8 ?

When S has two elements x, y and A is conjugation by the elements of G,
this is simply P pxx, ygy “ G : g P Gq.

1.3.1. Results with Singer cycles. Kantor [Kan94] showed that for n ě 4, a

Singer cycle s P G “ PSLnpFqq (an element of maximal order qn´1
q´1

), and

every 1 ‰ g P G, we have

P
´

xg, shy “ G : h P G
¯

ě

ˆ

1 ´
1

q
´

1

qn´1

˙2

.

Earlier, Shalev [Sha98] also proved that a Singer cycle and a random element
generate GLnpFqq invariably with probability tending to 1 when q Ñ 8.

Kantor’s result was in particular extended to any almost simple group G

by Guralnick and Kantor [GK00, Theorem I], also with Singer cycles in the
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case of classical groups: there exists s P G such that for any 1 ‰ g P G,

P
´

xg, shy “ O8pGq : h P G
¯

Ñ 1

as |G| Ñ `8, where O8pGq is the last element in the derived series (G
itself for G “ SLnpFqq or SpnpFqq). The arguments are deep and rely on the
classification of finite simple groups, but it is mentioned [GK00, p. 789] that
for classical groups, it is possible to proceed by entirely geometric arguments
as in [Kan94], by carefully choosing s (of large order).

1.4. Invariant generation with a regular unipotent. The goal of this
note is to give a variant of the result of Guralnick and Kantor, in the cases
G “ SLnpFqq or Sp2npFqq, with the Singer cycle s replaced by a regular
unipotent, i.e. conjugate to the single unipotent Jordan block

u “

¨

˚

˚

˚

˚

˝

1 1

1
. . .

. . . 1
1

˛

‹

‹

‹

‹

‚

. (1)

We note that:

(1) Such an element always exist by [LS12, Corollary 3.6].
(2) If1 p "n 1, such an element in GLnpFqq has order p by Lucas’ theorem

on the divisibility of binomial coefficients, which is much smaller than
that of a Singer cycle.

1.4.1. Generation. This consideration is motivated by the following: As a
particular example of Steinberg’s result on the generation of finite simple
groups of Lie type by two elements [Ste62], Gow and Tamburini [GT92]
showed2 that when n is odd, SLnpFpq is generated by u and the permutation
matrix

m “ p´1q
n´1
2

¨

˚

˝

1

. .
.

1

˛

‹

‚
.

Numerical experiments show that u and m are not invariant generators:
the pair ph´1uh,mq generates SL3pF3q for only about 31% of the elements
h P GL3pF3q. However, this proportion increases to about 86% for SL3pF23q.

1.4.2. Random invariant generation. We will show the following:

Theorem 1.2. Let k “ Fq be a finite field of characteristic p. For n ě 2,
let

G “ SLnpkq pn ě 2q or G “ Spnpkq pn ě 2 evenq.

1In the following, we will write p "n 1 (resp. p !n 1) for the condition of p being large
(resp. small) enough with respect to n.

2More generally, they show that u and its transpose generate SLnpFpq for any n ě 2

and p prime, unless pp, nq “ p2, 4q.
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Let u P G be a unipotent element with a single Jordan block, and let m P G

be nonscalar. Then, if p "n 1, the elements u,m invariably generate G with
probability 1 as |k| Ñ 8, that is to say

P
´

xm,ugy “ G : g P G
¯

“ 1 ´ On

ˆ

1

|k|

˙

.

If m acts cyclically3 on kn and n ě 4, then this can be improved to

1 ´ On

ˆ

1

|k|n´1

˙

.

Remarks 1.3. (1) Even if u,m are defined over Fp, conjugating with ele-
ments defined over k allows to generate the full group, and not only
a subfield subgroup.

(2) The proof does not depend on the classification of finite simple groups.

2. Bound via maximal subgroups

In the setting of Theorem 1.2, let G “ SLn (n ě 2) or G “ Spn (n ě 2
even), and

Pnpkq “ P
´

xm,ugy “ Gpkq : g P Gpkq
¯

,

P c
npkq “ 1 ´ Pnpkq.

The goal is to find a lower bound for P c
npkq as |k| Ñ 8.

We use the following classical method: if xm,ugy is a proper subgroup
of Gpkq for some g P Gpkq, then it is contained in a maximal subgroup
H ň Gpkq. Hence,

P c
npkq ď

ÿ

mPHňGpkq
maximal

P
´

ug P H : g P Gpkq
¯

and (2)

P c
npkq ď

ÿ

uPHňGpkq
maximal

P
´

mg P H : g P Gpkq
¯

. (3)

2.1. Classification of maximal subgroups. A major input due to As-
chbacher and Kleidman-Liebeck is then that the maximal subgroups of Gpkq
belong to one of the following classes (see [KL90b]), assuming p ě 3:

– Groups in C1 are subspace stabilizers StabGpkqpW q for 0 ‰ W ň kn.
If G “ Spn, W is either nondegenerate or totally isotropic.

– Groups in C2 (resp. C3, C4) are stabilizers of orthogonal (resp. sin-
gular, tensor product) decompositions.

– Groups in C5 are symplectic-type r-subgroups.
– Groups in C6 are normalizers of classical groups, that only appear

if G “ SLn: NGpkqpSpnpkqq, NGpkqpSOnpkqq, or NGpkqpSUpk1qq for

k1 ď k a subfield with |k1| “ |k|1{2.
– Groups C7 are subfield subgroups: NGpkqpGpk1qq for k1 ď k of prime

index.

3i.e. there exists v P kn such that kn “ spanpmiv : i ě 0q.
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– Groups in ApSq are maximal subgroups H with

S “ πpT q E πpHq ď AutpSq

T

OO

E H

OO

(4)

for a finite simple group S, π : GLnpkq Ñ PGLnpkq the projection,

such that the action of T E H ď Gpkq on k
n

is irreducible and
preserves no nondegenerate bilinear or unitary form.

2.2. Maximal subgroups containing regular unipotents. It turns out
that some of the classes can be excluded if the subgroup contains a unipotent
element with a single Jordan block.

Proposition 2.1. If H P
Ť5

i“2 Ci and p "n 1, then

P
´

ug P H : g P Gpkq
¯

“ 0. (5)

Proof. One can see elementarily (cf. [SS97, pp. 374–375], [Cra17, Section
2] and [PG18, Proposition 6.7]) that if H contains an element with a single

Jordan block, then p ď n (if H P C2 Y C3), p ď 3 (if H P C4) or p ď n2 log2pnq

(if H P C5). Hence, these classes are excluded if p "n 1. �

On the other hand, for the maximal subgroups in class A, we have:

Theorem 2.2. Let S “ πpT q P PGLnpkq as above be simple and let H P
ApSq. If p "n, then

P
´

ug P H : g P Gpkq
¯

“ 0

This is either:

– In [Cra17], a classification of irreducible subgroups of GLnpFqq con-
taining an element with exactly one nontrivial Jordan block is ob-
tained; Theorem 2.2 can be deducted from op. cit. Sections 4–10.

– In [PG18, Section 6.5], using a result of Larsen-Pink [LP11, Theorem
0.2] to reduce to groups of Lie type in the same characteristic, work
of Liebeck on minimal dimensions of faithful irreducible modular rep-
resentations, and the descent of a classification result of Suprunenko
through a theorem of Seitz-Testerman.

Thanks to the result of Larsen-Pink, the classification of finite simple
groups does not need to be used in either case (in the first one, use [Cra17,
Section 5] after applying [LP11, Theorem 0.2]).

2.3. The bounds of Liebeck and Saxl. It is a deep result of Liebeck
and Saxl [LS91] (see also [GK00, Theorem 2.3]) that if n ě 3, then for any
x P Gpkq and any maximal subgroup H as above,

P
´

xg P H : g P Gpkq
¯

! 1{|k|. (6)

This is most difficult when H is in class A.
By Equation (3) and (6), it is then clear that P c

npkq Ñ 0 as |k| Ñ `8 if
u is contained in only op|k|q many maximal subgroups.
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The strategy of Guralnick and Kantor in [GK00] for classical groups (see
Section 1.3.1 above) is indeed to choose an element that is contained in Op1q
maximal subgroups.

2.3.1. Case of regular unipotents in G.

Proposition 2.3. A regular unipotent element u in Gpkq is contained in
Onplog log |k|q maximal subgroups.

Proof. By the classification recalled in Section 2, Proposition 2.1 and Theo-
rem 2.2, a regular unipotent u is contained in

|t0 ‰ W ň kn : uW “ W u| ` ωprk : Fpsq ` Op1q

! |t0 ‰ W ň kn : uW “ W u| ` log log |k|

maximal subgroups when p "n 1, where ω denotes the number of prime
factors function. Moreover, u has only one invariant subspace per dimension
(namely spanpe1, . . . , edq for 0 ď d ď n if u is in the basis (1)). �

By Equation (3) and bound (6), this shows that

P c
npkq !n

log log |k|

|k|
,

which is Theorem 1.2 with an additional logarithm factor.
However, when x is a regular unipotent element, it is possible to estimate

the probabilities (6) easily from the classification reviewed in Section 2.2 and
the fact that the centralizers are small. Thus, instead of using (3), we will
use (2) to obtain Theorem 1.2 with the smaller error terms.

3. Contribution of classes C6 and C7

In what follows, we shall use that for any set H Ă Gpkq,

P
´

ug P H : g P Gpkq
¯

“
ÿ

hPH

P
´

ug “ h : g P Gpkq
¯

ď |H|
|CGpkqpuq|

|Gpkq|
!n

|H|

|k|dimG´n`1
, (7)

along with the formulas for the orders of finite groups of Lie type ([KL90b,
Chapter 2]).

3.1. Class C6.

Proposition 3.1. We have

P
´

ug P NSLnpkqpSpnpkqq : g P SLnpkq
¯

!n |k|´
npn´3q

2 ,

P
´

ug P NSLnpkqpSOnpkqq : g P SLnpkq
¯

!n |k|´
npn´1q

2 ,

P
´

ug P NSLnpkqpSUnpk1qq : g P SLnpkq
¯

!n |k|´
pn´1q2

2 ,

where k1 ď k is a subfield with |k1| “ |k|1{2 in the second case.
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Proof. By [KL90b, (2.6.2), (2.3.3), Cor. 2.10.4, Prop. 2.10.6, Prop. 4.8.3,
Prop. 4.8.5],

NSLnpkqpSpnpkqq – µnpkq ˆ Spnpkq

NSLnpkqpSOnpkqq – µnpkq ˆ SOnpkq

NSLnpkqpSUnpk1qq – µnpkq ˆ SUnpk1q,

if k1 ď k is a subfield with |k1| “ |k|1{2 in the last case. Thus,

|NSLnpkqpSpnpkqq| !n |k|
npn`1q

2 ,

|NSLnpkqpSOnpkqq| !n |k|
npn´1q

2 ,

|NSLnpkqpSUnpk1qq| !n |k|
n2´1

2 ,

which gives the result using (7). �

3.2. Class C7.

Proposition 3.2. For k1 ď k a proper subfield,

P
´

ug P NGpkqpGpk1qq : g P Gpkq
¯

!n

#

|k|´
dimG

2
`n´1 n ě 3

1{|k|2 n “ 2.

Proof. By [KL90b, Prop. 4.5.3–4],

NGpkqpGpk1qq “ µnpkqGpk1q –
`

µnpkq{µnpk1q
˘

ˆ Gpk1q,

so by (7) the probability is

!n |k|
´dimG

´

1´ 1

rk:k1s

¯

`n´1
ď |k|´

dimG
2

`n´1.

The case n “ 2 is verified by hand. �

4. Contribution of class C1

The total contribution to P c
npkq of maximal subgroups in class C1 is

n´1
ÿ

d“1

|t0 ‰ W ň kn : mW “ mu|P
´

ug P StabGpkqpW q : g P Gpkq
¯

. (8)

4.1. Upper bound on the probabilities.

Proposition 4.1. For W ď kn a subspace of dimension d and H “ StabGpkqpW q,
we have

P
´

ug P H : g P Gpkq
¯

!n

$

’

&

’

%

|k|´dpn´dq : G “ SLn

|k|´dpn´dq : G “ Spn, W nondegenerate

|k|
´dp2n`1´3dq

2
´1 : G “ Spn, W tot. isotropic.
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Proof. Let d be the dimension of W . By definition, ug P H “ StabGpkqpW q if

and only if u P StabGpkqpg
´1W q. Since u has exactly one invariant subspace

Wd of any dimension 0 ď d ď n,

P
´

ug P H : g P Gpkq
¯

“ P
`

g´1W “ Wd : g P Gpkq
˘

“
|tg P Gpkq : g´1W “ Wdu|

|Gpkq|

If G “ SLn, then

P
´

ug P H : g P Gpkq
¯

!n
|k|d

2`pn´dqn´1

|k|n2´1
“ |k|´dpn´dq.

If G “ Spn, then W is assumed to be nondegenerate or totally isotropic.
In the first case, an element g P Gpkq such that g´1W “ Wd is determined
by an element of Spdpkq ˆ Spn´dpkq, so that the probability is

!n
|k|dimSpd `dimSpn´d

|k|dimSpn
“ |k|´dpn´dq.

In the totally isotropic case, g P Gpkq such that g´1W “ Wd is determined
by an element of Spn´dpkq and an element of SLdpkq, so that the probability
is

!n
|k|dimSLd ` dimSpn´d

|k|dimSpn
ď |k|

´dp2n`1´3dq
2

´1.

�

4.2. Number of invariant subspaces. The number of subspaces W ď kn

of dimension 0 ď d ď n is
ˆ

n

d

˙

|k|

ď

ˆ

1

1 ´ 1{|k|

˙d

|k|dpn´dq.

Hence, Proposition 4.1 with the trivial bound for the cardinality in (8)
gives a contribution of Op1q, and we need to exploit the condition mW “ W

to obtain a smaller error. This is obtained through the following:

Proposition 4.2. Let g P GLnpkq and let σdpgq be the number of g-invariant
subspaces of kn of fixed dimension 1 ď d ď n.

(1) If g acts cyclically on kn, then σdpgq !n 1.
(2) If g is not scalar, then

σdpgq !n |k|dpn´dq´1.

Remarks 4.3. (1) Such bounds can be found in [GK00, 3.1–7, 3.15–16],
with improved savings when d ą 1 or when n ě 6 if W is supposed
to be totally isotropic or nondegenerate for some symplectic form.
However, these savings would eventually not improve the error terms
in 1.2, so that we seize the opportunity to give an alternative proof
of Proposition 4.2 below.

(2) The number of invariant subspaces of given dimension with respect
to a fixed linear map was determined in great generality in [Fri11],
but it is not easy to derivate upper bounds from there.
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4.2.1. Cyclic case. If kn is cyclic under g P GLnpkq, then kn is isomor-
phic to krXs{pminpϕqq as krxs{pminpgqq-module and g-invariant subspaces
correspond to divisors of minpgq. In particular, the number of g-invariant
subspaces is !n 1.

4.2.2. Semisimple case. Let us assume that g P GLnpkq is semisimple, with
minimal polynomial minpgq “

śs
i“1 fi (fi P krXs irreducible). There are

primary and cyclic decomposition

kn “
s

à

i“1

Vi with Vi “ ker pfipT qq – krii and ki “ krXs{pfiq.

Lemma 4.4. In the above notations,

σdpgq “
ÿ

d1`¨¨¨`ds“d
degpfiq|di

s
ź

i“1

ˆ

dimpViq{degpfiq

di{degpfiq

˙

|k|degpfiq.

Proof. By [BF67, Lemma 1], σdpgq “
śs

i“1 σdpg |Vi
q. There is a correspon-

dence between g-invariant subspaces and submodules W ď krii , with W cor-
responding to a subspace of dimension dimkipW qrk : kis “ dimkipW qdegpfiq.
Hence,

σdpg |Vi
q “

#
`

ri
d{degpfiq

˘

|ki|
degpfiq | d

0 otherwise.

�

Lemma 4.5. If g is not scalar, then σdpgq !n |k|dpn´dq´1.

Proof. Using that
ˆ

n

m

˙

q

“
m

ź

i“1

qn´i`1

qi ´ 1
ď 2mqmpn´mq,

we obtain

σdpgq !n

ÿ

d1`¨¨¨`ds“d
degpfiq|di

|k|
řs

i“1

di
degpfiq

pdimpViq´diq.

Then the conclusion holds as soon as

s
ÿ

i“1

di

»

—

—

–

pdimpViq ´ diqpdegpfiq
´1 ´ 1q ´

s
ÿ

j“1
j‰i

pdimpVjq ´ djq

fi

ffi

ffi

fl

ă 0

for all 0 ď d1, . . . , ds ď d such that d1 ` ¨ ¨ ¨ ` ds “ d and degpfiq | di. This
is verified if there exists 1 ď i ď s with di ‰ 0 and either

(1) degpfiq ě 2, or
(2) degpfiq “ 1 and there exists j ‰ i with dj ă dimpVjq.

If degpfiq “ 1 for every i with di ‰ 0 and ti : di ‰ 0u “ tj : dj ă dimpVjqu is
a singleton, then s “ 1, kn “ V1 is primary, and g has minimal polynomial
of degree 1, i.e. it is scalar.
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4.2.3. Non-unipotent case. By the Jordan-Chevalley decomposition, if g P
GLnpkq leaves W invariant, then W is also left invariant by the semisimple
part of g. If the latter is nontrivial, we can use Section 4.2.2. Thus, it
remains to handle the case where g is unipotent.

In this case, there is a decomposition V “ ‘r
i“1Vi such that g|Vi

is cyclic,
with minimal polynomial pT ´ 1qmi , such that m1 ď ¨ ¨ ¨ ď mr. Similarly,
an invariant subspace W of dimension d has a cyclic decomposition W “
‘s

i“1Wi, with minpg|Wi
q “ pT ´ 1qm

1
i , and m1

1 ď ¨ ¨ ¨ ď m1
s a subsequence of

m1 ď ¨ ¨ ¨ ď mr satisfying d “
řs

i“1m
1
i ě s. Thus, there are

!n |k|s ď |k|d

such subspaces. If 2 ď d ď n ´ 1, or if n ě 3, this satisfies the required
bound. The case n “ 2 and d “ 1 is excluded, since a primary cyclic
invariant subspace has an invariant complement.

4.3. Total contribution. Thus, we find that the total contribution (8) is:
In the special linear case,

!n

n´1
ÿ

d“1

σdpmq|k|´dpn´dq !n
1

|k|
,

which can be improved to |k|´pn´1q if m acts cyclically.
In the symplectic case (assuming n ě 4 even), noting that a totally

isotropic subspace is contained in one of the two maximal isotropic subspaces
U1, U2 of dimension n{2,

!n

n´1
ÿ

d“1

σdpmq|k|´dpn´dq `

n{2
ÿ

d“1

2
ÿ

i“1

σdpm |Ui
q|k|´

dp2n`1´3dq
2

´1

!n

n´1
ÿ

d“1

|k|´1 `

n{2
ÿ

d“1

|k|´
dpn`1´dq

2
´2 !n

1

|k|
`

1

|k|n{2`2
!

1

|k|
.

If m acts cyclically, this can be improved to |k|´pn´1q.

5. Proof of Theorem 1.2

By (2), Propositions 2.1, 3.1, 3.2, Section 4.3 and Theorem 2.2, we get
that for p "n 1,

P c
npkq !n

1

|k|
` δG“SLn

˜

δně4 even

|k|
npn´3q

2

`
1

|k|
pn´1q2

2

¸

`δk‰Fp

ωprk : Fpsq

|k|maxp2,dimG{2´n`1q

!
1

|k|
.

If m acts cyclically and n ě 4, this can be improved to

P c
npkq ! 1{|k|n´1.
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