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Abstract

This document is the final report for the author’s Master’s project, whose
goal was to study the Eichler-Shimura construction associating abelian va-
rieties to weight-2 modular forms for Γ0(N). The starting points and main
resources were the survey article by Fred Diamond and John Im [DI95], the
book by Goro Shimura [Shi71], and the book by Fred Diamond and Jerry
Shurman [DS06]. The latter is a very good first reference about this sub-
ject, but interesting points are sometimes eluded. In particular, although
most statements are given in the general setting, the book mainly deals with
the particular case of elliptic curves (i.e. with forms having rational Fourier
coefficients), with little details about abelian varieties. On the other hand,
Chapter 7 of Shimura’s book is difficult, according to the author himself,
and the article by Diamond and Im skims rapidly through the subject, be-
ing a survey. The goal of this document is therefore to give an account of
the theory with intermediate difficulty, accessible to someone having read a
first text on modular forms – such as [Zag08] – and with basic knowledge
in the theory of compact Riemann surfaces (see e.g. [Mir95]) and algebraic
geometry (see e.g. [Har77]).

This report begins with an account of the theory of abelian varieties needed
for what follows. The main goal is to explain why the Jacobian (resp. Picard
group) of a compact Riemann surface (resp. nonsingular algebraic curve) are
abelian varieties, and to explain when quotients of abelian varieties can be
formed. Then, we summarize the construction of modular curves as compact
Riemann surfaces and their relationship with modular forms. Moreover, we
introduce moduli spaces of enhanced elliptic curves and show how they relate
to modular curves as well. The next step is to introduce the Hecke algebra,
and its action on modular forms, moduli spaces, and on modular curves and
their Jacobians, through the Hecke ring. As soon as we have studied the
number field associated to an eigenform and the action of its complex em-
beddings on newforms, we can define and study the abelian variety associated
to a newform: its dimension and alternative expressions, the action of Hecke
operators and the decomposition of the Jacobian. The last two chapters are
devoted to proving the relationships through L-functions between a modular
form and its associated abelian variety. To do that, the main step is to prove
the Eichler-Shimura relation, computing the reduction of Hecke operators
on Jacobians of modular curves in terms of the Frobenius. It remains then
to transfer this relation to the abelian varieties to be able to conclude. At
the end of the text, two appendices give respectively numerical examples in
the genus 1 case, and a summary of the basic theory of modular forms to fix
notations and serve as a reference.
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Introduction

The famous modularity theorem, whose proof was recently established by Wiles,
Breuil, Conrad, Diamond and Taylor, can be stated as follows:

Theorem. Any elliptic curve E defined over Q with conductor N is modular:
there exists a newform f ∈ S2(Γ0(N)) such that L(s, E) = L(s, f). Equivalently,
ap(E) = ap(f) for all primes p.

Previously known as the Taniyama-Shimura-Weil conjecture, this result arose as
a converse of the following construction of Eichler and Shimura: If f ∈ S2(Γ0(N))
is a newform with rational Fourier coefficients, there exists an elliptic curve E
defined over Q such that ap(E) = ap(f) for almost all primes p.

For example, we will see that the unique newform in Γ0(11), whose Fourier ex-
pansion begins with

q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 + . . .

corresponds to the elliptic curve

y2 + y = x3 − x2 − 10x− 20.

This construction can be generalized by the following theorem, whose study will
be the goal of this document:

Theorem (Eichler-Shimura, Carayol, Langlands, Deligne). Let f ∈ S2(Γ0(N))
be a newform. There exists an abelian variety Af such that

1. Af is defined over Q.

2. Af has dimension [Kf : Q], where Kf = Q({an(f) : n ≥ 0}) is the number
field of f . In particular, if the Fourier coefficients of f are all rational, then
Af is an elliptic curve.

3. Af and f are related by their L-functions: we have

L(Af , s) =
∏

τ

L(fτ , s),

where the product is over the complex embeddings τ : Kf → C. Alterna-
tively, ap(Af ) =

∑
τ ap(fτ ) for all primes p.

The idea is the following: we consider modular curves, which are compact Rie-
mann surfaces strongly related to modular forms. By the general theory of com-
pact Riemann surfaces, their Jacobians are complex abelian varieties. The Hecke
algebra acts on modular forms, modular curves, and the Jacobians of the latter.
Moreover, the set of newforms is composed of simultaneous eigenvectors for the
Hecke operators, and the eigenvalues are the Fourier coefficients. By quotienting
the Jacobian of a modular curve by the action of a well-chosen subgroup of the
Hecke algebra, we obtain the desired abelian variety.

By analyzing their function fields, we see that these modular curves, as algebraic
curves, can in fact be defined over Q. Moreover, the same holds true for their

iii
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Jacobians and the Hecke operators, leading to the fact that the abelian varieties
can be defined over Q as well.

The key property, equality of L-functions, comes from a relationship between
Hecke operators on a modular curve and the Frobenius maps on its reductions:
the Eichler-Shimura relation. From the latter, we obtain the relationship between
local factors of the L-function of the abelian variety (which are related to the
Frobenius maps) and local factors of L-functions of modular forms (which are
related to eigenvalues of Hecke operators).

The modular curves we are interested in also correspond to moduli spaces of
enhanced elliptic curves (elliptic curves with additional torsion information). The
Hecke operators transfer in this setting, where their action can easily be described
explicitly.

By an important result of Igusa (later generalized by Deligne-Rapoport and Katz-
Mazur), these modular curves admit a model compatible with the moduli space
in a functorial way. The Eichler-Shimura relation is proven in the moduli space,
and can then be transferred back to the modular curves.

The restriction to all but finitely many primes corresponds to the primes of bad
reduction for the modular curve and its Jacobian. However, a result of Carayol
shows that the equality also holds at these primes.

Something fascinating in the Eichler-Shimura construction is the interplay be-
tween algebraic geometry, analytic geometry, and arithmetic. The following are
some of these relationships:

− the fact that every compact Riemann surface is a complex algebraic curve.
This allows us to consider modular curves as algebraic curves.

− the algebraization of complex tori with a polarization. This shows that the
Jacobian of a compact Riemann surface is an abelian variety. Moreover,
this will let us show that quotients of complex abelian varieties exist.

− the interpretation of modular curves as moduli spaces for enhanced elliptic
curves, which gives good models for modular curves compatible with the
moduli space interpretation.

− a relationship between modular forms (resp. cusp forms) and meromorphic
(resp. holomorphic) differential forms on modular curves.

By Faltings’ isogeny theorem, the modularity theorem actually means that the
Eichler-Shimura construction gives all elliptic curves defined over Q, up to isogeny.
More generally, we can use the ideas of this construction to give equivalent for-
mulations of the modularity theorem.

For example, it can be shown that an elliptic curve over Q with conductor N is
modular if and only if there exists a nonconstant holomorphic mapping from a
modular curve X1(N) (or its Jacobian) to the elliptic curve. Alternatively, the
Eichler-Shimura construction can be used to define 2-dimensional ℓ-adic Galois
representations ρf,ℓ associated to a newform f ∈ S2(Γ0(N)), and it can be shown
that an elliptic curve over Q is modular if and only if there exists a newform
f ∈ S2(Γ0(N)) such that

ρf,ℓ ∼= ρE,ℓ,

where ρE,ℓ is the 2-dimensional ℓ-adic representation associated to E, obtained
from the Tate module.



Chapter 1

Abelian varieties

In this first chapter, we study abelian varieties, groups in the category of projective
algebraic varieties. As we mentioned in the introduction, these generalize elliptic
curves and are the objects which we will try to associate to modular forms.

Besides studying their basic properties, the main goals are to show that the Ja-
cobian (resp. Picard group) of a compact Riemann surface (resp. nonsingular
algebraic curve) are abelian varieties and to explain when quotients of abelian
varieties can be formed. These are three fundamental facts for what follows. At
the end of the chapter, we explain what are Néron models and define L-functions
of abelian varieties.

After some point, we will mostly focus on complex abelian varieties, the case in
which we will be mainly interested. While all the results we will see in this context
can be generalized over an arbitrary field, we will not need these generalizations;
moreover, results are more easily given and motivated in the complex case. In
particular, we will see that the structure of complex abelian varieties can easily
be described.

The references for this chapter are:

− For the theory of abelian varieties over arbitrary fields: [Mil08] and [Mum08];

− For the theory of complex abelian varieties: [BL04], [KM93] and [RS11];

− For the theory of compact Riemann surfaces: [Mir95].

1. Abelian varieties over an arbitrary field

First, we define abelian varieties over an arbitrary field and study their first
properties.

Definition 1.1. An abelian variety defined over an algebraically closed field K
is a projective algebraic variety A with morphisms

m : A×A → A
u : A → A

along with an element e ∈ A, that induce a group structure on A. The dimension
of A is its dimension as a variety. We say that A is defined over a subfield k ⊂ K
if A,m, u are defined over k and e ∈ A(k).

In other words, an abelian variety is a group in the category of projective algebraic
varieties. The notions of morphisms and subvarieties of abelian varieties are
defined in the natural way.

Remarks 1.2. We will only consider abelian varieties defined over C, Q or finite
fields. The hypothesis projective is important; the affine theory is that of linear
algebraic groups.

1



Chapter 1. Abelian varieties 2

Example 1.3. An elliptic curve defined over any field is an abelian variety, moti-
vating this generalization. We will see another important family of examples later
on, in particular generalizing elliptic curves.

1.1. Abelian varieties are nonsingular and commutative

Proposition 1.4. An abelian variety is nonsingular.

Proof. By [Har77, I.5.3], any variety has a dense nonsingular subset. Since trans-
lation by any point is an isomorphism, this shows that every point is nonsingu-
lar.

Theorem 1.5 (Rigidity). Let V,W,U be projective varieties defined over an al-
gebraically closed field k and f : V ×W → U be a regular map. If there exist
v0 ∈ v(k), w0 ∈W (k), u0 ∈ U(k) such that

f(V × {w0}) = f({v0} ×W ) = {u0},

then f is constant, equal to u0.

Proof. Let U0 be an affine neighborhood of u0 in U . Since V is projective (hence
complete), the projection π : V ×W → W is closed. Therefore, the set W0 =
π(f−1(U − U0)) ⊂W is closed as well. Note that

W −W0 = {w ∈W : f(V × {w}) ⊂ U0};

in particular, w0 ∈W −W0. Since it is a morphism between a projective and an
affine variety, the (co)restriction f : V × (W −W0) → U0 is constant by [Har77,
I.3.2-3.5,], with image equal to u0 since f(v0, w0) = u0. Hence, f : V ×W → U0

is constant equal to u0, by [Har77, I.4.1].

Corollary 1.6. Any regular map between abelian varieties is the composition of
a homomorphism followed by a translation.

Proof. Let f : A → B be a regular map between abelian varieties. Composing
with a translation reduces to the case f(1A) = 1B. Let α : A × A → B be the
map

(a, a′) 7→ f(aa′)f(a)−1f(a′)−1.

Note that α verifies the hypotheses of Theorem 1.5, with v0 = w0 = 1A and
u0 = 1B. Hence α = 1B, which implies that f is a homomorphism.

Corollary 1.7. An abelian variety is commutative.

Proof. If A is an abelian variety, the previous Corollary shows that the regular
map a 7→ a−1 is a homomorphism, since it sends the identity element to itself.
Hence, A is commutative.
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1.2. Images and sums

Proposition 1.8. If f : A→ B is a morphism of abelian varieties, then f(A) is
an abelian subvariety of B.

Proof. Since A is projective, it is complete and therefore f(A) is closed in B.

Remark 1.9. We see here that the projectivity is important: the image of a mor-
phism of varieties may not be a subvariety in general.

Corollary 1.10. Let A,B be abelian varieties over a field k. Then A×B is an
abelian variety. If A and B are subvarieties of an abelian variety C, then A+B
is a subvariety of C.

Proof. It suffices to recall that the product of projective varieties is projective.
The second point follows from Proposition 1.8, since A+B is the image of A×B
by the natural morphism A×B → C.

1.3. Isogenies

Definition 1.11. Let A,B be two abelian varieties. An isogeny is a surjective
morphism f : A→ B with finite kernel.

Proposition 1.12. If f : A→ B is a morphism of abelian varieties, the following
conditions are equivalent:

− f is an isogeny;

− dimA = dimB and f is surjective;

− dimA = dimB and ker f is finite;

Proof. By [Har77, II.3.22], if f is dominant, there exists an open set U in B such
that

dim f−1(b) = dimA− dim f(A)

for all b ∈ U . Since all the fibers have the same dimension (they are isomorphic
through translation), this equality holds for all b ∈ B. Hence, the first two
conditions are equivalent. By applying this to the corestriction f : A→ f(A), we
get that the three conditions are equivalent by [Har77, Ex. 1.10(d)].

We could say much more about isogenies in the general case (see [Mil08, I.7]),
but as announced, we will restrict to isogenies of complex abelian varieties in
what follows. Most of the results we will see can be generalized over an arbitrary
field, and they also generalize the theory of isogenies of elliptic curves (see [Sil09,
III.5]).

1.4. Reducibility

Definition 1.13. An abelian variety is simple if it does not have a nontrivial
abelian subvariety.
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Proposition 1.14 (Poincaré reducibility). Let A be an abelian variety defined
over a field k. If B is an abelian subvariety defined over k, there exists an abelian
subvariety C of A defined over k such that the natural morphism B × C → A is
an isogeny defined over k.

Remark 1.15. We will not prove this result over an arbitrary field here (see [Mil08,
I.10.1]), but we will do it over C in the next section. However, we will still need
this general case later on.

Corollary 1.16. Let A be an abelian variety defined over a field k. There exist
simple abelian subvarieties A1, . . . , An defined over k such that

A1 × · · · ×An → A

is an isogeny defined over K.

Proof. By [Har77, Ex. 1.10(d)], dimension for closed subvarieties is strictly de-
creasing, so the result follows from Proposition 1.14 by induction.

2. Algebraic geometry and analytic geometry

As explained in the introduction, important points in what follows will be the re-
lationships between algebraic geometry and analytic geometry. In this section, we
give the relationships between three algebraic/analytic objects: smooth complex
algebraic varieties/complex analytic manifolds, complex abelian varieties/com-
plex Lie groups and complex algebraic curves/compact Riemann surfaces.

2.1. Smooth algebraic varieties and analytic manifolds

Any smooth complex algebraic variety can be viewed as a complex manifold, since
smoothness is equivalent to the condition on a Jacobian matrix that allows one
to use the inverse function theorem to find local coordinates. More precisely, we
have the following result:

Proposition 1.17. There is a functor · (C) : SmthVarC → ManC, from the
category of smooth varieties over C to the category of complex analytic manifolds,
such that:

− The diagram

SmthVarC
· (C) //

&&▲▲
▲▲▲

▲▲▲
▲▲

ManC

zz✉✉
✉✉
✉✉
✉✉
✉

Set

commutes, where the vertical arrows are the forgetful functors.

− Irreducible varieties are mapped to connected complex manifolds.

− If X is a smooth variety over C, the first point indicates that X and X(C)
are equal as sets. Then, the topology of X(C) is stronger than the Zariski
topology of X.

− If X is projective, then X(C) is compact.
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− The dimension of a smooth complex variety X is equal to the dimension of
X(C) as a complex manifold. In particular, smooth curves are mapped to
Riemann surfaces.

Proof (Sketch). Since the irreducible components of a smooth variety are disjoint,
we can consider only irreducible varieties without loss of generality. If X is a
smooth affine variety in An of dimension d, let f1, . . . , fd be generators of I(X) ⊂
C[X1, . . . , Xn], and let P ∈ V . By hypothesis, (∂fi/∂xj) has rank n − d, so we
can suppose without loss of generality that (∂fi/∂xj)i,j=d+1,...,n is invertible. By
the implicit function theorem, there exist open sets U ⊂ Cd, V ⊂ Cn−d, and a
holomorphic function ϕ : U → V such that

{(x, ϕ(x)) : x ∈ U} = X ∩ (U × V ),

i.e. a local coordinate for X near P . We check that this gives a well-defined
complex manifold structure to X. If X is a smooth projective variety in Pn, it
suffices to choose an open cover by irreducible affine subvarieties. For the details
and generalizations1, see [Wer11].

The topologies on X(C) and X are in general not equal. However, we have the
following fundamental theorem that we will use extensively:

Theorem 1.18 (Chow). Let X be a projective algebraic variety and Y be a closed
analytic subset of X(C). Then Y is Zariski-closed in X and smooth.

Proof. See [Fri02, Theorem 5.13].

Remark 1.19. The hypothesis projective is needed: {x ∈ C : sin(x) = 0} is a
closed analytic subset of C, but it is not algebraic, since all proper algebraic
subsets of C are finite.

Corollary 1.20. Let X,Y be projective algebraic varieties and f : X(C)→ Y (C)
be a holomorphic map. By Proposition 1.17, we can consider f as a map from X
to Y . Then f : X → Y is an algebraic morphism. Conversely, if f : X → Y is
an algebraic morphism, then f : X(C)→ Y (C) is a holomorphic map.

Proof. If U is closed in Y , then it is closed in Y (C), since the topology of Y (C)
is stronger than the Zariski topology. Hence f−1(U) is closed in X(C), whence
closed in X by Theorem 1.18. Therefore, f : X → Y is continuous. See [Mum08,
p. 33] for the proof that f : X → Y is a morphism. The last assertion follows
from Proposition 1.17.

2.2. Complex abelian varieties and complex Lie groups

Let A be a complex abelian variety. By Proposition 1.17, there is a functorially-
associated connected compact manifold A(C) such that A ∼= A(C) as topological
spaces. By functoriality and Corollary 1.20, A(C) has a group structure given by
holomorphic maps, thus it is a connected compact complex Lie group.

1Serre’s GAGA gives a functor from the whole category of algebraic varieties over C to the
category of “analytic spaces”, generalizing complex manifolds by allowing singularities. This
functor restricts to the functor given above for smooth projective varieties.
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Proposition 1.21. Let A,B be complex abelian varieties. If f : A → B is a
morphism of complex Lie groups, then f : A(C)→ B(C) is a morphism of abelian
varieties, and conversely.

Proof. Follows from Proposition 1.17 and Corollary 1.20.

However, we will see that the categories of complex abelian varieties and complex
compact connected Lie groups are not equivalent.

2.3. Compact Riemann surfaces are algebraic curves

A fundamental result from the theory of compact Riemann surfaces is the follow-
ing (see [Mir95, VI-VII]):

Theorem 1.22. If X is a compact Riemann surface, then X is isomorphic to
a compact Riemann surface Y that is holomorphically embedded in Pn for some
n ≥ 1, i.e. Y ⊂ Pn and for every p = [p0, . . . , pn] ∈ Y , there exists some 0 ≤ i ≤ n
such that

1. pi 6= 0;

2. For all 0 ≤ j ≤ n, the function zj/zi is holomorphic on Y near p;

3. There exists 0 ≤ j ≤ n such that zj/zi is a local coordinate near p.

Since Y is compact in Pn with respect to the strong topology, it is closed. By
Theorem 1.18, there is therefore a smooth projective algebraic curve Xalg, such
that Xalg(C) ∼= Y ∼= X. Moreover, the function field of Xalg (as an algebraic
curve) is isomorphic to the function field of X (as a Riemann surface). Hence,
compact Riemann surfaces are nonsingular algebraic curves.

Example 1.23. Note that smooth projective plane curves and (local) complete
intersection curves are indeed compact Riemann surfaces holomorphically em-
bedded in a projective space (see [Mir95, II.2]).

3. Complex abelian varieties

In this section, we study the structure and properties of complex abelian varieties
as commutative compact connected complex Lie groups.

Given an elliptic curve E defined over Q, it is a fundamental fact that E corre-
sponds to a complex torus of dimension one: there exists a lattice Λ in C (i.e. a
discrete subgroup of rank 2) such that

E(C) ∼= C/Λ

as Lie groups2. We will see that this result generalizes to complex abelian varieties:
as Lie groups, they are isomorphic to complex tori of higher dimensions.

Recall that a lattice in Cg is a discrete subgroup of maximal rank 2g. Equivalently,
it is a free abelian group in Cg containing a R-basis of Cg. If Λ is a lattice in
Cg, note that the quotient Cg/Λ is a compact connected complex Lie group of
dimension g.

2More precisely, the isomorphism is given by (℘Λ, ℘
′

Λ) : C/Λ → E(C), where ℘Λ is the
Weierstrass elliptic function associated to Λ.
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Definition 1.24. A Lie group isomorphic to Cg/Λ for some integer g ≥ 1 and a
lattice Λ in Cg is called a complex torus.

3.1. Complex abelian varieties are complex tori

Using basic tools of the theory of Lie groups, we now determine the Lie group
structure of complex abelian varieties.

Theorem 1.25. A commutative connected compact complex Lie group is a com-
plex torus.

Proof. Recall that if V is the Lie algebra of a compact complex Lie group G, then
(see [Var84, 2.7,2.10]):

− For all v ∈ V , there exists a unique holomorphic integral curve ϕv : C→ G
for v, i.e. (dϕv)e : C→ V is t 7→ tv.

− The flow ϕ : V × C→ G defined by (v, t) 7→ ϕv(t) is holomorphic.

− The exponential map exp : V → G is defined by exp(v) = ϕv(1) for all
v ∈ V . By the unicity of integral curves, we have exp(tv) = ϕv(t) for all
v ∈ V, t ∈ C. Moreover, (d exp)e = id.

Now, let us note that:

− exp is a homomorphism: indeed, let v, w ∈ V and consider the map ψ : C→
G given by t 7→ exp(tx) exp(ty). If G is commutative, we have (dψ)e(t) =
t(x + y), so ψ = ϕx+y by unicity of integral curves. Evaluating at t = 1
gives

exp(x+ y) = exp(x) exp(y).

− exp is surjective: by the above, the image exp(V ) is a subgroup of G. Since
(d exp)e = id, the exponential map is a diffeomorphism in a neighborhood
of 0, so exp(V ) contains an open neighborhood of e. But any neighborhood
of the identity in a compact connected Lie group generates the whole group,
so that exp(V ) = G.

− ker exp is a lattice in V : since G ∼= V/ ker exp is compact, it suffices to
prove that ker exp is a discrete subgroup of V , which is clear since exp is a
diffeomorphism in a neighborhood of e.

− exp is holomorphic since the flow ϕ is holomorphic.

Hence, A ∼= V/ ker exp as complex Lie groups, where V/ ker exp is a complex
torus.

Corollary 1.26. Complex abelian varieties are complex tori.

Remark 1.27. Actually, the hypothesis “commutative” in Theorem 1.25 is unnec-
essary: using similar ideas, we could have simply shown that a compact connected
complex Lie group is commutative (see [KM93, 12.1.22]).

4. Complex tori

In the previous section, we saw that complex abelian varieties are complex tori. In
this section, we study these and answer the following question: Are all complex
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tori complex abelian varieties (i.e. given a complex torus, does there exist a
complex abelian variety isomorphic to it as Lie group)? This will allow us to
consider quotients of abelian varieties later.

4.1. Morphisms

Definition 1.28. A morphism of complex tori is a morphism of the underlying
complex Lie groups.

Proposition 1.29. Let f : V/Λ → V ′/Λ′ be a morphism of complex tori. Then
there exists a unique C-linear map f̂ : V → V ′ with f̂(Λ) ⊂ Λ′ such that the
diagram

0 // Λ //

f̂ |Λ
��

V //

f̂
��

V/Λ //

f
��

0

0 // Λ′ // V ′ // V ′/Λ′ // 0

commutes.

Proof. The tangent spaces at 0 of V/Λ and V ′/Λ′ are V, V ′ respectively. We
have isomorphisms V/Λ ∼= V/ ker exp and V ′/Λ′ ∼= V ′/ ker exp′ induced by the
exponential maps. By the properties of the latter, the diagram

V

exp

��

(df)0 // V ′

exp

��
V/ ker exp

f // V ′/ ker exp′ .

commutes, giving the result since (df)0 is C-linear, and clearly takes ker exp to
ker exp′ by the diagram. The unicity is clear.

Therefore, we get injective homomorphisms of abelian groups

ρC : Hom(V/Λ, V ′/Λ′) → HomC(V, V
′)

ρZ : Hom(V/Λ, V ′/Λ′) → HomZ(Λ,Λ
′).

Indeed, since Λ (resp. Λ′) generates V (resp. V ′) as a R-vector space, an element
of Hom(V/Λ, V ′/Λ′) is determined by its image in HomZ(Λ,Λ

′).

Proposition 1.30. If X,X ′ are complex tori of dimensions g, g′, we have Hom(X,X ′) ∼=
Zm for some m ≤ 4gg′.

Proof. Since the homomorphism ρZ is injective, we can view Hom(X,X ′) as a
subgroup of the free abelian group HomZ(Λ,Λ

′) of rank (2g)(2g′) = 4gg′.

4.2. Subtori and quotients

Definition 1.31. A subtorus of a complex torus X is a Lie subgroup of X which
is also a complex torus.

Proposition 1.32. The subtori of a complex torus are its compact connected Lie
subgroups.
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Proof. Let H be a Lie subgroup of a complex torus G. If H is compact and
connected, then H is a complex torus by Theorem 1.25, thus a subtorus of G.
Conversely, if H is a complex torus, then it is compact and connected.

More explicitly, we have the following description:

Proposition 1.33. Let X = V/Λ be a complex torus. Then the subtori of X are
the tori

(V ′ + Λ)/Λ ∼= V ′/(Λ ∩ V ′),

where V ′ is a subspace of V such that Λ ∩ V ′ is a lattice in V ′.

Proof. Clearly, the given spaces are subtori of X. Conversely, let X ′ be a subtorus
of X and write X ′ = V ′/Λ′ for V ′ a complex vector space and Λ′ a lattice of V ′.
By Proposition 1.29, we have a commutative diagram

0 // Λ′

��

// V ′ //

ι̂
��

V ′/Λ′ //

ι

��

0

0 // Λ // V // V/Λ // 0.

Since ι is injective, we get that ker ι̂ ⊂ Λ′. Hence, ker ι̂ = 0 because Λ′ is discrete,
showing that we can view V ′ as a vector subspace of V . Moreover, the diagram
shows that V ′ ∩ Λ = Λ′. Hence, X ′ = V ′/Λ′ = V ′/(V ′ ∩ Λ) ∼= (V ′ + Λ)/Λ.

Proposition 1.34. If Γ is a finite subgroup of a complex torus X, then X/Γ is
also a complex torus of the same dimension.

Proof. Let X = V/Λ for V a complex vector space and Λ a lattice in V . There
exists a subgroup Λ′ of V containing Λ such that Γ = Λ′/Λ, so

X/Γ ∼= V/Λ′.

Since Λ ⊂ Λ′, we have that Λ′ contains a R-basis of V . Moreover, since Γ is finite,
there exist v1, . . . , vr ∈ Λ′ such that Λ′ =

∐r
i=1(vi + Λ). Thus, Λ′ is a discrete

subgroup of V because Λ is.

Proposition 1.35. Let f : X → X ′ be a morphism of complex tori. Then im f is
a subtorus of X ′ and the connected component of ker f containing 0 is a subtorus
of X.

Proof.

1. The image im f is a compact connected Lie subgroup of X ′, so it is a
subtorus by Proposition 1.32.

2. The kernel ker f is a closed Lie subgroup of X. Since the connected com-
ponent (ker f)0 is closed (thus compact) and connected, it is a subtorus as
well by Proposition 1.32.
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4.3. Isogenies

Definition 1.36. An isogeny of complex tori f : X → Y is a surjective morphism
with finite kernel. We write X ∼ Y if there is an isogeny f : X → Y . The degree
of the isogeny is deg f = | ker f |.

Example 1.37. If f : A → B is an isogeny of complex abelian varieties, then
f : A(C)→ B(C) is an isogeny of complex tori.

We have the following analogue of Proposition 1.12:

Proposition 1.38. Let f : X → Y be a morphism of complex tori. The following
are equivalent:

1. f is an isogeny.

2. f is surjective and dimX = dimY .

3. f has finite kernel and dimX = dimY .

Proof. By [Lee12, 7.10,7.15], when f is surjective, we have an isomorphism of Lie
groups X/ ker f ∼= Y , with dimX − dimker f = dimY . Since dimker f = 0 as a
manifold if and only if it is finite, we obtain the equivalence of the first two points.
For the third one, it suffices to apply this to the corestriction f : X → f(Y ) and
use that the dimension of a proper connected Lie subgroup is strictly smaller than
the dimension of the ambient Lie group3.

Proposition 1.39. Let f : V/Λ→ V ′/Λ′ an isogeny between complex tori. Then
the induced map f̂ : V → V ′ of Proposition 1.29 is an isomorphism.

Proof. First of all, we note that ker f̂ ⊂ Λ. Indeed, an element v ∈ ker f̂ − Λ
would generate an infinite subgroup of ker f since Cv ∩ Λ is discrete. Hence, we
must have ker f̂ = 0 because Λ is discrete. By Proposition 1.38, dimV = dimV ′,
so f is an isomorphism.

Proposition 1.40. The composition of two isogenies is an isogeny.

Proof. Clear, since the composition of two surjective homomorphisms is a sur-
jective homomorphism, and if f : X → Y, g : Y → Z have finite kernel, then
| ker(g ◦ f)| = | ker(g)|| ker(f)|.

Example 1.41. Let X be a complex torus and Γ be a finite subgroup of X. By
Proposition 1.34, the quotient X/Γ is a complex torus. The projection p : X →
X/Γ is an isogeny.

Example 1.42. Let X be a complex torus of dimension g. For n ∈ Z, the multi-
plication [n] : X → X is an isogeny of degree n2g. Indeed, if X = V/Λ,

X[n] = ker[n] =
1

n
Λ/Λ ∼= Λ/nΛ ∼= (Z/n)2g,

since Λ ∼= Z2g.

3Using the correspondence between connected Lie subgroups and subalgebras of the Lie
algebra, see [Lee12, Theorem 15.31].
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4.4. Dual isogenies

Proposition 1.43. If f : X → Y is an isogeny of complex tori with deg f = n,
then there exists a unique isogeny f̃ : Y → X such that

X
f //

[n]X
��

Y
f̃

~~⑥⑥
⑥⑥
⑥⑥
⑥

[n]Y
��

X
f // Y

f ◦ f̃ = [n]Y and f̃ ◦ f = [n]X

Moreover, f̃ has degree n2g−1.

Proof. By definition of the degree, we have that ker f ⊂ ker([n]X). Therefore,
there exists a homomorphism f̂ : Y → X such that f̂ ◦ f = [n]X . Moreover,

(f ◦ f̂) ◦ f = f ◦ (f̂ ◦ f) = f ◦ [n]X = [n]X ◦ f,

thus f ◦ f̂ = [n]X since f is surjective. From the relation f̂ ◦ f = [n]X , we
deduce that f̂ is surjective and has finite kernel. By Proposition 1.29, f̂ is in
fact given by [x] 7→ [nϕ(x)], where ϕ : CdimX → CdimY is a linear isomorphism.
Hence, f̂ is holomorphic as well. Finally, the relation f̂ ◦ f = [n]X implies that
deg f̂ · n = n2g/n = n2g−1, using Example 1.42. The unicity is clear, since if g
verifies the same properties as f̂ , then (f̂ − g) ◦ f = 0, thus g = f̂ because f is
surjective.

Definition 1.44. The unique isogeny f̃ of Proposition 1.43 is called the dual
isogeny of f .

Example 1.45. If X is a complex tori of dimension g, then [̃n] = [n2g−1].

Corollary 1.46. Isogeny of complex tori is an equivalence relation.

If there exists an isogeny between two complex tori, we say that they are isogenous.

4.5. Complex tori as abelian varieties

In the previous section, we saw that complex abelian varieties are complex tori
(as Lie groups). In this paragraph, we analyze the converse problem: when is a
complex torus isomorphic to a complex abelian variety (as Lie groups) ?

Proposition 1.47. There exists at most one (up to isomorphism) structure of
complex abelian variety on a complex torus.

Proof. Follows directly from Proposition 1.21.

By abuse of language, we will say that the torus is an abelian variety if it can be
endowed with such a structure.

In dimension one, we know that all complex tori are abelian varieties (as Lie
groups): if Λ is a lattice in C, there exists an elliptic curve defined over C such
that E(C) ∼= C/Λ as Lie groups. In higher dimensions, the answer is not always
positive, and we can give the following criterion:
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Definition 1.48. Let Cg/Λ be a complex torus. A positive-definite Hermitian
form H = H1 + iH2 on Cg such that H2(Λ × Λ) ⊂ Z is called a Riemann form
(or polarization) on Cg/Λ (or, on Cg with respect to Λ).

Theorem 1.49. A complex torus is a complex abelian variety if and only if it
admits a Riemann form.

Proof. See the book [KM93], which is focused on proving this result.

Example 1.50. A 1-dimensional complex torus is an abelian variety, since it is
isomorphic to an elliptic curve. Any 1-dimensional complex torus is isomorphic
to C/Λz for some z ∈ H, where Λz = Z+ zZ. A Riemann form on C/Λz is given
by H(u, v) = uv/ Im(z) for u, v ∈ C.

Example 1.51. An example of a complex torus which is not an abelian variety
can be given as follows: if H = H1 + iH2 is a Riemann form on a complex torus
Cg/Λ, we easily see that H2(iu, iv) = H2(u, v) for all u, v ∈ Cg. Let us denote
again Hi ∈ M2g(R) the matrix of Hi in the canonical basis and Λ ∈ M2×2g(C)
the matrix of a basis of Λ in the canonical basis. Then, ΛH−1

2 Λt = 0 (see the
following proofs or [BL04, Theorem 4.2.1]). Hence, if λ1, . . . , λ2g is a real basis
of Cg with algebraically independent coordinates, there cannot exist a Riemann
form on Cg/Λ.

We see that the property of a complex torus to be an abelian variety is preserved
by taking subtori and through isogenies:

Proposition 1.52. If a complex torus admits a Riemann form, then any subtorus
also has a Riemann form.

Proof. Clearly, the restriction of any Riemann form on X to any subtorus is again
a Riemann form.

Proposition 1.53. If a complex torus X has a Riemann form and f : X → X ′

is an isogeny of complex tori, then X ′ also has a Riemann form.

Proof. Let us write X = V/Λ and X ′ = V ′/Λ′ as before. By Proposition 1.29,
the isogeny f is induced by an isomorphism of vector spaces f : V → V ′ such
that f(Λ) ⊂ Λ′. Let H : V × V → C be a Riemann form on X. Composing with
f−1, we obtain a Hermitian form

H ′ = H ◦ (f−1 × f−1) : V ′ × V ′ → C.

However, H ′ restricted to Λ′ × Λ′ is not necessarily integer-valued. To correct
this, we note that since ker f ∼= Λ′/f(Λ) is finite, there exists an integer n ≥ 1
such that nΛ′ ⊂ f(Λ). Letting Ĥ = n2H ′ = Ĥ1+ iĤ2, we obtain a Riemann form
on X ′. Indeed, for all λ1, λ2 ∈ Λ′, we have

Ĥ2(λ1, λ2) = H ′(nλ1, nλ2) ∈ Z.
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5. Quotients of complex abelian varieties

In this paragraph, we use the results obtained above concerning complex tori
and their polarizations to study the construction of quotients of complex abelian
varieties.

5.1. Reducibility and decomposition

We can now prove Proposition 1.14 for complex abelian varieties.

Proposition 1.54 (Poincaré reducibility). Let A′ be a subvariety of a complex
abelian variety A. Then there exists an subvariety A′′ of A such that A = A′+A′′

and A′ ∩A′′ is finite. In other words, the map A′ ×A′′ → A is an isogeny.

Proof. Let A(C) = V/Λ for V a complex vector space and Λ a lattice in V . By
Theorem 1.49, there exists a Riemann form H : V × V → C with respect to
Λ. Since A′(C) is a subtorus of A(C), we can suppose by Proposition 1.33 that
A′(C) = V ′/(Λ ∩ V ′) for V ′ a vector subspace of V . Let V ′′ be the orthogonal
complement to V ′ with respect to H, Λ′′ = Λ ∩ V ′′ and X ′′ = V ′′/Λ′′. Note that:

− X ′′ is a complex torus: Since Λ is discrete in V , the set Λ′′ is also discrete
in V ′′. We need to show that X ′′ is compact, i.e. that Λ′′ has maximal rank
in V ′′. By hypothesis, H = H1 + iH2 induces an antisymmetric positive-
definite pairing

I = H2 |Λ: Λ× Λ→ Z.

Let us prove that Λ′′ is the orthogonal complement of Λ′ in Λ with respect
to I. On one hand, Λ′′ is clearly included in the orthogonal complement.
On the other hand, let v ∈ Λ such that I(v′, v) = 0 for all v′ ∈ Λ′. Since
V ′ = Λ′⊗R, it follows that H2(v, v

′) = 0 for all v′ ∈ V ′, whence H1(v, v
′) =

H2(u, iv
′) = 0 for all v′ ∈ V ′. Therefore, v ∈ Λ ∩ V ′′ = Λ′′.

Let us now consider Λ̂ = Λ ⊗ Q, and Λ̂′, Λ̂′′ defined in the same way.
The pairing I induces a bilinear antisymmetric positive-definite pairing Î :
Λ̂ × Λ̂ → Q such that Λ̂′′ is the orthogonal complement of Λ̂′ in Λ̂. Thus,
we get that Λ̂ = Λ̂′ ⊕ Λ̂′′, which implies that

rankΛ′′ = dimQ Λ̂′′

= dimQ Λ̂− dimQ Λ̂′

= rankΛ− rankΛ′

= 2(dimC V − dimC V
′)

= 2 dimC V
′′ = dimR V

′′.

− X ′′ is an abelian variety: This is a subtorus of A(C), so we can conclude by
Proposition 1.52: there exists an abelian variety A′′ such that A′′(C) = X ′′.

− We have A = A′ +A′′: Indeed, A′ + A′′ = A′(C) +A′′(C) = A′(C) +X ′′ =
V ′/Λ′ + V ′′/Λ′′ = A(C).

− The set A′ ∩ A′′ is finite: Since this set is a subset of the compact A, it is
sufficient to prove that it is discrete. Let x ∈ A′ ∩ A′′, i.e. x = π(v′) with
v′ ∈ V ′ ∩ V ′′ and π : V → A the projection. Let U ⊂ V be a neighborhood
of v′ such that U ∩ (U + λ) = ∅ for all nonzero λ ∈ Λ. Then π(U) is a
neighborhood of [v′]Λ such that π(U) ∩ (A ∩A′) = {[v′]Λ}.
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Corollary 1.55. Every complex abelian variety is isogenous to a product of sim-
ple abelian varieties.

Proof. We can proceed as in Corollary 1.16, since dimension of subgroups of a
connected Lie group is strictly decreasing.

5.2. Quotients

Proposition 1.56. Let A′ be a subvariety of a complex abelian variety A. Then
there exists an abelian variety B and a surjective morphism f : A→ B with kernel
A′ such that for every morphism of abelian varieties g : A → C with A′ ⊂ ker g,
there exists a morphism ĝ : B → C such that

A

f
��

g // C

B
ĝ

>>⑦⑦⑦⑦⑦⑦⑦⑦

commutes. Moreover B has dimension dimA− dimA′ and B ∼= A/A′ as groups.

Proof. By Proposition 1.54, there exists an abelian subvariety A′′ of A such that
A = A′ +A′′ and A′ ∩A′′ is finite. Thus,

A/A′ ∼= A(C)/A′(C) ∼= (A′(C) +A′′(C))/A′(C) ∼= A′′(C)/(A′(C) ∩A′′(C))

as abelian groups. But A′′(C)/(A′(C)∩A′′(C)) is a complex torus by Proposition
1.34, the set A′(C) ∩A′′(C) being finite. By Proposition 1.53, there is an abelian
variety B such that A′′(C)/(A′(C) ∩ A′′(C)) ∼= B(C) as Lie groups, and B ∼=
B(C) ∼= A/A′ as groups. The dimension of the complex torus B(C) is equal to
dimA′′(C) = dimV ′′ = dimV −dimV ′ = dimA(C)−dimA′(C) = dimA−dimA′.
By Corollary 1.20, the surjective morphism of Lie groups A(C) → B(C) with
kernel A′(C) gives a surjective morphism of abelian varieties f : A → B with
kernel A′.

Let us now show the universal property. Let g : A→ C be a morphism of abelian
varieties such that A′ ⊂ ker g. From the definition of B, there exists a morphism
ĝ : B(C)→ C(C) such that the diagram

A(C)

f
��

g // C(C)

B(C)

ĝ

;;✇✇✇✇✇✇✇✇✇

commutes. By Corollary 1.20, these maps (co)restrict to give the commutative
diagram in the statement.

Definition 1.57. Let A′ be an abelian subvariety of a complex abelian variety
A. The quotient A/A′ is the unique abelian variety (up to isomorphism) given by
Proposition 1.56.

Remark 1.58. More generally, Proposition 1.56 holds over any field of characteris-
tic zero. Poincaré reducibility still holds (Proposition 1.14) and the result follows
from considerations about quotient of varieties by actions of finite groups (see
[Mil08, I.8]). See [CCP] for an interesting discussion.
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6. Jacobians of compact Riemann surfaces

In this section, we recall the definition of the Jacobian of a compact Riemann
surface, and we prove that it is an abelian variety. This is probably the most
important class of examples of abelian varieties, and they also generalize the case
of elliptic curves, which are isomorphic to their Jacobian.

6.1. The Jacobian of a compact Riemann surface

Let X be a compact Riemann surface of genus g and denote by Ω1
hol(X) the space

of holomorphic 1-forms on X.

Since π1(X) is the free group on 2g generator, it follows that

H1(X,Z) = π1(X)ab = π1(X)/[π1(X), π1(X)] ∼= CLCH(X)/BCH(X)

is a free abelian group of rank 2g.

Let us fix p ∈ X. For any γ ∈ π1(X, p), we can define a linear map
∫

γ
: Ω1

hol(X)→ C

and since C is commutative, this gives a map
∫

[γ]
: Ω1

hol(X)→ C

where [γ] is the class of γ in H1(X,Z). Alternatively, from the equivalent point of
view H1(X,Z) ∼= CLCH(X)/BCH(X), this follows from the fact that integration
over boundary chains is zero.

Definition 1.59. A period is an element of Ω1
hol(X)∗ that is of the form

∫
[c] for

some homology class [c] ∈ H1(X). If Λ is the subgroup of periods, we define the
Jacobian of X as the abelian group

Jac(X) = Ω1
hol(X)∗/Λ.

As a corollary of the Riemann-Roch theorem, the complex vector space Ω1
hol(X)

has dimension g (i.e. the topological genus is equal to the analytic genus, see
[Mir95, pp. 191-192]). Thus,

Jac(X) ∼= Cg/Λ

for Λ the subgroup of Cg corresponding to periods.

Example 1.60. The Jacobian of the Riemann sphere is the trivial group. The
Jacobian of a complex torus X = C/Λ is isomorphic to X. Indeed, we have
Ω1
hol(X) ∼= C, and letting ω1, ω2 ∈ C be a Z-basis of Λ, the group of periods is

homothetic to Λ (or equal to if we choose dz as a basis for Ω1
hol(X)).

6.2. Jacobians are complex tori

For p0 ∈ X an arbitrary base point, recall the Abel-Jacobi map

A : Div(X)→ Jac(X)

defined by p 7→
∫
[γp]

, where γp is any path between p0 and p in X. We then have

the following alternative interpretation of the Jacobian:
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Theorem 1.61 (Abel-Jacobi). Let us consider the map A0 : Div0(X)→ Jac(X)
obtained by restricting A. Then:

− (Abel) The kernel of A0 is equal to the set of principal divisors in Div0(X).

− (Jacobi) The map Div0(X)→ Jac(X) is surjective.

Hence, Jac(X) ∼= Pic0(X).

Recall the following part of the proof of Abel’s theorem (see [Mir95, Chapter
VIII]): let ai, bi (1 ≤ i ≤ g) be a basis of the free abelian group H1(X), so that
the subgroup of periods Λ is generated by:

Ai =

∫

ai

and Bi =

∫

bi

for 1 ≤ i ≤ g.

Let ω1, . . . , ωg be a basis of Ω1
hol(X) and let A,B be the g × g period matrices

defined by (A)ij = Ai(ωj) and (B)ij = Bi(ωj). To prove Abel’s theorem, recall
that we show that (see [Mir95, Chapter VIII, Lemmas 4.4,4.5,4.8]):

Lemma 1.62. Under the above notations, we have:

a) A and B are nonsingular.

b) AtB = BtA.

c) The 2g columns of A and B are R-linearly independent.

Corollary 1.63. The subgroup of periods Λ is a lattice in Cg.

Proof. Indeed, Λ is a free abelian group in Cg containing the basis {Ai, Bi} of C
g

as a R-vector space.

Corollary 1.64. The Jacobian of a compact Riemann surface is a complex torus
of dimension equal to the genus of the surface

6.3. Jacobians are abelian varieties

We now show the fundamental fact that the Jacobian of a compact Riemann
surface X of genus g is an abelian variety. To do this, we need to define a
polarization on

Jac(X) ∼= Ω1
hol(X)∗/Λ ∼= Cg/Λ

by Theorem 1.49, where Λ is the lattice corresponding to periods.

Note that since the period matrix A is nonsingular, we can choose the basis (ωi) of
Ω1
hol(X) such that A = I. Then B is called normalized and we have the following

result (see [Mir95, Lemma VII.4.7]):

Lemma 1.65. The normalized period matrix B is symmetric and has positive-
definite imaginary part (i.e. imB is a positive-definite real matrix).

Proposition 1.66. Let X be a compact Riemann surface of genus g and Λ its
lattice of periods. Then there exists a Riemann form for Cg/Λ ∼= Jac(X).

Proof. Let δ1, . . . , δg, B1, . . . , Bg be the Z-basis of Λ corresponding to A,B as
above, and let x1, . . . , xg, y1, . . . , yg be the corresponding real dual basis in (Cg)∗
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(since Cg = Λ⊗ R). Let E : Cg × Cg → C be the pairing defined by

E =

g∑

j=1

yj ∧ xj .

By definition, E is a R-bilinear antisymmetric real form such that the image of
Λ×Λ lies in Z. Moreover, note that E(iu, iv) = E(u, v) for all u, v ∈ Cg. Indeed,
if we let B = B1 + iB2 with B1, B2 real matrices and B2 positive-definite, we get
that if v = v1 + iv2 ∈ Cg, then

v2 = B−1
2 Im(v) and v1 = Re(v)−B1B

−1
2 v2,

which implies that

E(u, v) = 〈B−1
2 Im(u),Re(v)−B1B

−1
2 Im(u)〉−〈B−1

2 Im(v),Re(u)−B1B
−1
2 Im(v)〉

for u, v ∈ Cg, where 〈·〉 denotes the standard inner product on R. Hence, E(iu, iv)
is equal to

〈B−1
2 Im(iu),Re(iv)−B1B

−1
2 Im(iu)〉 − 〈B−1

2 Im(iv),Re(iu)−B1B
−1
2 Im(iv)〉

= 〈B−1
2 Re(u),− Im(v)−B1B

−1
2 Re(u)〉 − 〈B−1

2 Re(v),− Im(u)−B1B
−1
2 Re(v)〉

which is equal to E(u, v) since B1, B2 are symmetric real matrices. Similarly, we
see that E(iu, v) = E(iv, u) and E(iv, v) > 0 if v 6= 0 by Lemma 1.62. Now,
define a pairing H : Cg × Cg → C by H(u, v) = E(iu, v) + iE(u, v). This is a
Riemann form for Cg/Λ since:

− it is sesquilinear;

− it is antisymmetric since E is antisymmetric and (u, v) 7→ E(iu, v) is sym-
metric;

− its imaginary part is E, which is integer-valued on Λ× Λ;

− it is positive-definite. Indeed, for all nonzero v ∈ V , H(v, v) = E(iv, v) +
iE(v, v). But E(v, v) = E(iv, iv) = E(i(iv), v) = −E(v, v), so thatH(v, v) =
E(iv, v) > 0.

Corollary 1.67. The Jacobian of a compact Riemann surface is an abelian va-
riety.

Example 1.68. Let E be a compact Riemann surface of genus 1 (i.e. a complex
torus by [Mir95, VII.1.9]). By Example 1.60, Jac(E) ∼= E as compact Riemann
surfaces, so that E is an abelian variety. This is the elliptic curve corresponding
to this torus. Similarly, a smooth projective plane cubic curve (of genus 1 by
Plücker’s formula) is an abelian variety.

Finally, we note the following universal property:

Proposition 1.69. Let X be a compact Riemann surface with genus g ≥ 1 and a
chosen base point P0, giving an injection ι : X →֒ Jac(X) defined by P 7→ [P−P0].
Then for any complex abelian variety B with a morphism of complex manifolds
X → B(C) such that P0 is mapped to 0, there exists a unique morphism of complex
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Lie groups Jac(X)→ B(C) such that the diagram

X //

��

Jac(X)

zz✉✉
✉✉
✉✉
✉✉
✉

B(C)

commutes.

Proof. Let B be a complex abelian variety with f : X → B(C) a morphism of
complex manifolds such that f(P0) = 0. Note that we can extend f to a function
f : Div(X) → B(C), since B(C) is an abelian variety. First, let us suppose that
there exists a morphism f̂ : Jac(X) → B(C) such that f̂ ◦ ι = f . By Riemann-
Roch, we have dimL(D+gP0) ≥ 1, so that for any element in D ∈ Div0(X), there
exists an effective divisor E ∈ Div(X) of degree g such such that [E− gP0] = [D].
Hence, f̂([D]) = f(E), which proves that f̂ is uniquely determined.

To prove that it exists, it suffices to show that f(div(ϕ)) = 0 for all ϕ ∈ C(X). To
do so, we generalize what is done in [Mir95, V.2.8]. Let us write B(C) ∼= Cd/Λ for
Λ a lattice in Cd and let P be the standard identified polygon of X (see [Mir95,
VIII.1]). By the general lifting lemma ([Mun00, 79.1]), f (resp. ϕ) lifts to a map
f̃ : D → Cd (resp. to a map ϕ̃ : P → C). By Cauchy’s argument principle,

1

2πi

∫

∂P
ϕ̃(z)dlogf(z) = div(ϕ̃) (mod Λ).

On the other hand, this integral belongs to Λ as in [Mir95, V.2.8], which implies
the assertion.

7. Jacobians of algebraic curves

Given a compact Riemann surface X, we have just seen that there exists an
abelian variety isomorphic to Jac(X) as complex Lie groups. In particular, by
Theorem 1.61, there exists an abelian variety isomorphic to Pic0(X) (as groups).

Since compact Riemann surfaces are algebraic curves, we can go on to wonder
whether we can generalize this: being given an algebraic curve C defined over a
field k, does there exist an abelian variety Jac(C) (defined over k ?) such that

Pic0(C) ∼= Jac(C)

as groups ? More precisely, since Pic0 is a functor from the category of algebraic
curves to the category of groups, we would like this association to have functorial
properties. Alternatively, we could also want to generalize the universal property
of Proposition 1.69.

In this section, we give a brief survey of the answer, given by A. Weil during his
proof of the Riemann hypothesis for function fields and his work on Abelian and
Jacobian varieties between 1940 and 1950. At first, he constructed the Jacobian
of a curve over an extension of the base field. Around 1950, Chow showed that
an extension of the base field was not needed, and Weil showed in 1955 that his
construction did not need an extension of the base field either. The details of the
construction can be found in [Mil08, Part III].

The result is the following:
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Theorem 1.70. Let C be a nonsingular algebraic curve of genus g defined over
a field k, and such that C(k) 6= ∅. There exists an abelian variety Jac(C) defined
over k such that:

1. The dimension of Jac(C) is g.

2. There is a functorial isomorphism Pic0(CL) ∼= Jac(CL) for any field exten-
sion L/k.

3. Jac(C) is the unique abelian variety that is birationally equivalent to the
variety C(g) = Cg/Sg, where the symmetric group Sg acts on the product
Cg.

4. (Universal property) Let P ∈ C(k). There is an injective morphism f : C →
Jac(C) such that f(P ) = 0, with the following universal property: if A is
an abelian variety and g : C → A is a morphism such that g(P ) = 0, then
there exists a unique morphism of abelian varieties ĝ : Jac(C) → A such
that the diagram

C
f //

g

��

Jac(C)

ĝ
{{①①
①①
①①
①①
①

A

commutes.

Remarks 1.71.

− For the third point, it can indeed be shown that C(g), as the quotient of a
variety by the action of a finite group, is a nonsingular variety.

− The fourth property defines the Jacobian up to isomorphism of abelian
varieties.

− As we explained above, the fact that the Jacobian can be defined over the
same base field as the curve is important. It is actually what we will need
later.

7.1. Construction of the Jacobian

The starting point for the construction of the Jacobian is the following: let us
pick a base point P0 ∈ C; for any integer r ≥ 0, there is a map

Cr → Pic0(C)

given by (P1, . . . , Pr) 7→ [P1+· · ·+Pr−rP0]. Since Pic
0(C) is abelian, this induces

a map C(r) → Pic0(C).

Proposition 1.72. If r = g, this map is surjective.

Proof. Note that the set C(g) can be identified with the set of effective divisors
of degree g on C, and the map is given by E 7→ [E − gP0]. Let D be a divisor of
degree 0. By Riemann-Roch,

ℓ(D + gPo) = ℓ(K −D − gP0) + deg(D + gP0) + 1− g

= ℓ(K −D − gP0) + 1 ≥ 1,

thus there exists an effective divisor, of degree g, such that [D] = [E − gP0],
whence the surjectivity.
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The idea of Weil’s construction is then:

− Make C(g) into a “birational group”, a variety with a group multiplication that is
a rational map. Indeed, using the surjection C(g) → Pic0(C), we can define the
sum of two elements of C(g) modulo linear equivalence. Then, we can prove that
there exist an open set U ⊂ C(g) × C(g) such that ℓ(D + D′ − gP0) = 1 for all
(D,D′) ∈ U . By the proof of Proposition 1.72, multiplication is well-defined on U .

− A general result about birational groups shows that there exists a unique group
variety J defined over k and a birational map f : C(g) → J that is a homomorphism
where products are defined, i.e. f(ab) = f(a)f(b) when ab is defined in C(g). The
group variety J is defined by “gluing” copies of translates of U .

− Prove that J is complete (so projective by his later work) and that the rational map
f : C(g) → J is a birational equivalence and a morphism. Moreover, if D,D′ ∈ C(g)

(as effective divisors of degree g) are linearly equivalent, then f(D) = f(D′).

− Therefore, we get an abelian variety J with a morphism f : C(g) → J that is a
birational equivalence. Moreover, Pic0(C) ∼= J as groups.

A posteriori, this is motivated by point 3 of Theorem 1.70.

7.2. Compatibility of the two Jacobians

Let X be a compact Riemann surface. By Theorem 1.22, there exists a non-
singular algebraic curve Xalg defined over C such that X ∼= Xalg(C) as compact
Riemann surfaces. We can wonder about the relationship between the two Jaco-
bians Jac(X) and Jac(Xalg).

Proposition 1.73. The Jacobian of the compact Riemann surface X is the Ja-
cobian of the algebraic curve Xalg, i.e. Jac(X) ∼= Jac(Xalg) as abelian varieties
over C.

Proof. Note that we have Jac(X) ∼= Jac(Xalg(C)), so that we need to show that
Jac(Xalg(C)) ∼= Jac(Xalg). We use the universal properties from Proposition 1.69
and Theorem 1.70, along with Chow’s theorem (Corollary 1.20). To simplify the
notations, let A be an abelian variety such that A(C) ∼= Jac(X) as complex Lie
groups. We prove that A satisfies the universal property of Theorem 1.70. The
injective morphism Xalg(C) →֒ Jac(Xalg(C)) ∼= A(C) gives an injective morphism
X → A by Corollary 1.20. Let B be an abelian variety with a morphism g :
Xalg → B. By Proposition 1.69, this gives a morphism g : Xalg(C) → B(C),
hence a morphism of complex Lie groups Jac(Xalg(C)) → B(C) such that the
diagram

Xalg(C) //

��

Jac(Xalg(C)) ∼= A(C)

vv❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧

B(C)

commutes. Again, by Corollary 1.20, this gives a morphism of abelian varieties
A→ B such that

Xalg
//

��

A

}}④④
④④
④④
④④
④

B

commutes, whence the result.
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8. Néron models

An outstanding fact of the arithmetic of abelian varieties is the existence of Néron
models, in particular generalizing the results we had about reduction of elliptic
curves:

Theorem 1.74. Let R be a Dedekind domain with field of fractions K and let A
be an abelian variety over K. There exists a smooth commutative group scheme
A over R such that for any smooth scheme X over R, the map

HomR(X ,A)→ HomK(XK , A)

is surjective, i.e. A(X ) ∼= A(XK).

We call A the Néron model of A (defined up to isomorphism by this universal
property).

By taking X = R, we find in particular that A(R) ∼= A(K), so that A is indeed
a model for A.

In other words, the Néron model of A is a model over R such that morphisms to
A can be extended4 to morphism to A. In particular, let X be a variety over K
with a model X over R (in the sense of [Liu06, Chapter 10]) and let f : X → A
be a morphism. Then f extends to a morphism f̂ : X → A and if p is a prime
ideal of R, we have a commutative diagram

X
f //

��

A

��
Xp

fp // Ap,

where the vertical maps are reduction modulo p.

Definition 1.75. Let A be an abelian variety defined over the field of fractions
K of a Dedekind domain R. We say that A has good reduction modulo a prime
ideal p of R if the fiber Ap := Ap is an abelian variety over R/p.

We will also use the fact that Néron models of Picard groups can be given “ex-
plicitly” in terms of the Picard functor (see [BLR90, 9.5]), but we shall explain
this in given time.

The canonical reference about Néron models is the book [BLR90]. The case of
elliptic curves is explained in great detail in [Sil94] and [Liu06].

9. L-functions

In this section, we summarize the definition of the L-function of an abelian vari-
ety5. The main resource about this subject is [Mil08, I.9]. The particular case of

4In some (weak) sense, it extends the fact that we can reduce morphisms between curves,
which can be seen as follows: if f : C → C′ is a morphism between two curves C,C′ defined over
Q, then there exists a rational map fp : Cp → C′

p, which extends to a morphism.
5At the places of good reduction only for the sake of simplicity, since we do not treat the

cases of bad reduction here. This is also what Shimura does in [Shi71]. In [Per13], we studied
the factors at bad reduction as well.
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elliptic curve is detailed in [Sil09, III.8.6]. As this subject was already studied by
the author in [Per13], we go through this rather quickly.

9.1. Tate module and ℓ-adic representations

Let A be an abelian variety of dimension d defined over a field K. Recall that if
K has characteristic zero or if the characteristic of K does not divide an integer
m, then A[m] ∼= (Z/m)2d. If ℓ is a prime distinct from the characteristic of K,
we have the Tate module

TℓA = lim
←−
n≥0

A[ℓn] ∼= (Zℓ)
2d

as Zℓ-modules. Moreover, we have a natural map

End(A)→ End(TℓA) ∼=M2d(Zℓ),

which can be extended to a ℓ-adic representation

ρℓ : EndQ(A)→M2d(Qℓ),

where EndQ(A) = End(A)⊗Q. A surprising result is the following:

Theorem 1.76. If α ∈ EndQ(A), let Pα,ℓ ∈ Qℓ[X] be the characteristic polyno-
mial of ρℓ(α). Then

1. Pα,ℓ ∈ Q[X] (resp. Z[X] if α ∈ End(A)).

2. In particular, Pα,ℓ does not depend on ℓ.

3. Pα,ℓ has the form

X2d − tr(α)X2d−1 + · · ·+ deg(α),

where tr(α) = 1 + deg(α)− deg(id−α).

4. For all x ∈ Z, we have Pα,ℓ(x) = deg(α− x).

Proof. See [Mil08, I.9]. The particular case of elliptic curves is done in [Sil09,
III.8.6], where it is proven that det(ρ(α)) = deg(α) ∈ Z and tr(ρ(α)) = 1 +
deg(α) − deg(id−α) using the Weil pairing, which is enough to conclude when
d = 1.

9.2. L-functions of abelian varieties

Suppose now that A is an abelian variety over a Galois number field K with ring
of integers O. Let p be a prime ideal of O of good reduction for A. If p lies above
the rational prime p, we have the Frobenius morphism σp : Ap → Ap, along with
representations

ρ : EndQ(A) → M2d(Qℓ)

ρp : EndQ(Ap) → M2d(Qℓ)

such that

EndQ(A)
ρ //

��

M2d(Qℓ)

EndQ(Ap)

ρp

88qqqqqqqqqqq
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commutes, where ℓ is any prime distinct from p. Hence, we have an operator
ρp(σp) ∈ M2d(Qℓ), whose characteristic polynomial det(XI − ρp(σp)) belongs to
Z[X] by Theorem 1.76.

Definition 1.77. The local factor at p is

Lp(A, s) = det(1− ρp(σp)X)(N(p)−s)−1

and the L-function associated to A is (up to the local factors at places of bad
reduction)

L(A, s) =
∏

p

Lp(A, s),

where the product is over all prime ideals p of O.

Let ap(A) = |Ap|. As in the case of elliptic curves, we compute that σp + σ̂p =
[ap(A)], deg(σp) = p and tr(σp) = ap(A). Hence, Theorem 1.76 shows that:

Proposition 1.78. The local factor at a prime p of good reduction has for form

Lp(A, s) = 1− ap(A)N(p)−s + · · ·+ pN(p)−2ds,

where ap(A) = |Ap|.

Example 1.79. If E is an elliptic curve, the characteristic polynomial of ρ(σp)
is X2 − tr(σp) + deg(σp) by Theorem 1.76. This gives the classical local factor
1− ap(E)p−s + p1−2s if p is a prime of good reduction for E.

Remark 1.80. For the places of bad reduction, we consider the action of an “al-
gebraic” Frobenius in Gal(Kp/Kp) (defined up to conjugation and to the choice
of a lift) on (TℓA ⊗ Qℓ)

Ip , where Ip ⊂ Gal(Kp/Kp) is the inertia at p. When A
has good reduction at p, the criterion of Néron-Ogg-Safarevich asserts that TℓA is
unramified at p and the actions of the two Frobenius (“algebraic” and “geomet-
ric”) are the same. Hence, the definitions agree in this case. See [Mil08, I.9], or
[Per13] for an elementary account in the case of elliptic curves (or more generally
representations of compact groups).
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Modular curves

In this chapter, we examine modular curves associated to congruence subgroups
of SL2(Z) and study their properties, in particular their structure of compact
Riemann surfaces as well as their connections with moduli spaces of elliptic curves
and modular forms. As explained in the introduction, modular curves and their
Jacobians will be the starting point for associating abelian varieties to modular
forms, thanks to the relationships between these objects.

The first part of the chapter, which gives the construction of modular curves, is
not fully detailed, and is instead used as to remind of what, to fix notations, and
to give references and recall elements that will be used in the second part. This
subject is fully developed in [Miy06] and [DS06].

1. Congruence subgroups and their action on the upper half-plane

Let us first begin by recalling some facts about congruence subgroups of SL2(Z)
and their action on the upper half-plane H.

1.1. Congruence subgroups

Definition 2.1. For an integer N ≥ 1, the principal congruence subgroup of level
N is

Γ(N) = {γ ∈ SL2(Z) : γ ≡ I2 (mod N)} .

A congruence subgroup of SL2(Z) is a subgroup containing Γ(N) for some N ≥ 1.

Example 2.2. In what follows, we will mainly consider the congruence subgroups
Γ(N),

Γ0(N) = {γ ∈ SL2(Z) : γ ≡ ( ∗ ∗
0 ∗ ) (mod N)} and

Γ1(N) = {γ ∈ SL2(Z) : γ ≡ ( 1 ∗
0 1 ) (mod N)} .

Note that Γ(N) E Γ1(N) E Γ0(N) E SL2(Z) = Γ(1).

Proposition 2.3. Any congruence subgroup of SL2(Z) has finite index.

Proof. It suffices to prove that Γ(N) has finite index in SL2(Z) for all N ≥ 1. By
definition, Γ(N) is the kernel of the map SL2(Z) → SL2(Z/N), which surjects.
Indeed, let

(
a b
c d

)
∈ M2(Z) be the lift of an element in SL2(Z). Without loss of

generality, suppose that c 6= 0. Since (c, d,N) = 1, the integer d′ = d+N
∏
p|c,p∤d p

satisfies (c, d′) = 1. Letting u, v ∈ Z be such that uc + vd′ = 1, we find that(
a+vN b−uN
c d′

)
is another lift of the element, in SL2(Z). Hence SL2(Z)/Γ(N) ∼=

SL2(Z/N), which is finite.

Proposition 2.4. If Γ is a congruence subgroup of SL2(Z) and α ∈ GL+
2 (Q),

then αΓα−1 ∩ SL2(Z) is a congruence subgroup of SL2(Z).

24
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Proof. Since αΓ(N)α−1 = (Mα)Γ(N)(Mα)−1 for all M ∈ Q∗, we can suppose
that α has integral entries. If D = detα, then α−1Γ(ND)α ⊂ SL2(Z)∩Γ(N).

1.2. Action on the upper half-plane

Recall that the topological group SL2(R) acts properly on the upper half-plane H
by restricting the action of GL2(C) on P1(C) by fractional linear transformations:

(
a b
c d

)
z =

az + b

cz + d
(z ∈ H).

We will consider the restriction of this action for SL2(Z) and its congruence sub-
groups. Since the action is proper and SL2(Z) is discrete, we obtain1:

Proposition 2.5. For any compacts K,K ′ ⊂ H, the set

{γ ∈ SL2(Z) : γK ∩K
′ 6= ∅}

is finite.

Corollary 2.6. For any z, z′ ∈ H, there exist neighborhoods U,U ′ of z, respec-
tively z′, such that for all γ ∈ SL2(Z)

γ(U) ∩ U ′ 6= ∅⇒ γ(z) = z′.

Proof. By Proposition 2.5, the set {γ ∈ Γ : γB(z, 1) ∩ B(z′, 1) 6= ∅} is finite.
Let γ1, . . . , γr be its elements. Since H is separated, let Ui and U ′

i be disjoint
neighborhoods in H of γiz, respectively z

′, for 1 ≤ i ≤ r. Letting

U = B(z, 1) ∩

(
r⋂

i=1

γ−1Ui

)
, U ′ = B(z′, 1) ∩

(
r⋂

i=1

U ′
i

)

yields the result.

b
b

Figure 2.1: The fundamental domain {z ∈ H : |Re(z)| < 1/2, |z| > 1} for the
action of SL2(Z) on H.

Note that the action of {±I} is trivial, so we will often consider the action of
PSL2(Z) instead of SL2(Z). If Γ is a subgroup of SL2(Z) we will denote Γ to
denote its image by the projection SL2(Z)→ PSL2(Z).

1Refer to the first chapter of [tD87], in particular section 3.
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1.3. Stabilizers and elliptic points

Again, let Γ be a congruence subgroup of SL2(Z).

Proposition 2.7. The stabilizers Γz (z ∈ H) are finite cyclic groups.

Proof. Let z ∈ H. By Proposition 2.5, Γz is finite. Moreover, since SL2(R) acts
transitively on H, we find that SL2(R)z is conjugate to SL2(R)i = SO2(R) ∼= S1.
The result follows from the fact that any finite subgroup of S1 is cyclic.

Definition 2.8. The period of a point z ∈ H (with respect to Γ) is equal to the
order of the group Γz ⊂ PSL2(Z). If z has order 1, we say that it is elliptic.

Remark 2.9. Note that the period is invariant with respect to the action of Γ, so
we can also define the period of an element of Γ\H. An element of period 1 in
Γ\H will again be called elliptic.

2. Modular curves

We can now define the main objects of study for this chapter.

Definition 2.10. The modular curve Y (Γ) associated to a congruence subgroup
Γ of SL2(Z) is the set Γ\H.

Notation 2.11. For any integer N ≥ 1, we define Y (N) = Y (Γ(N)), Y0(N) =
Y (Γ0(N)) and Y1(N) = Y (Γ1(N)), where Γ(N),Γ0(N) and Γ1(N) are as defined
in Example 2.2.

We will now show that we can endow any modular curve with the structure of a
Riemann surface, which we will then compactify.

For the remainder of this section, let us fix a congruence subgroup Γ of SL2(Z).

2.1. Topological space structure

Let us give Y (Γ) the quotient topology, making the projection π : H → Y (Γ)
continuous and open. Moreover, we have:

Proposition 2.12. The topological space Y (Γ) is separated.

Proof. This follows from the more general fact that the quotient of a locally
compact separated space by a proper group action is separated2. Alternatively,
we can also use Corollary 2.6: let z, z′ ∈ H with distinct images in Y (Γ) and U,U ′

be neighborhoods as in the corollary. Then π(U), π(U ′) are disjoint neighborhoods
of π(z), respectively π(z′).

2.2. Riemann surface structure

Let z ∈ H. By Corollary 2.6, there exists a neighborhood U of z such that for all
γ ∈ Γ,

γU ∩ U 6= ∅⇒ γ ∈ Γz. (2.1)

2See [tD87, I.3.18] or [Miy06, Chapter I].
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Charts around non-elliptic points Suppose that π(z) is not elliptic. Then, Equa-
tion (2.1) shows that π : U → Y (Γ) is injective. Since it is continuous and open,
it induces a isomorphism onto its image and gives a chart around π(z).

Charts around elliptic points Suppose now that π(z) is elliptic of order n. For
any z1, z2 ∈ U ,

π(z1) = π(z2)⇔ z1 ∈ Γzz2.

Let δz =
(
1 −z
1 −z

)
∈ GL+

2 (C) be the Cayley transformation, mapping z to 0 and z to
∞. The conjugate (δzΓδ

−1
z )0 = δzΓzδ

−1
z ⊂ GL+

2 (C) is cyclic and fixes the points
0,∞. As a group of fractional linear transformations of P1(C), it is therefore
generated by the multiplication by e(1/n) = e2iπ/n. Thus, we get that

π(z1) = π(z2) ⇔ δzz1 = (δzΓzδ
−1
z )δzz2

⇔ δzz1 = e(d/n)δzz2 (for some d ∈ Z)

Hence
π(z1) = π(z2)⇔ (δzz1)

n = (δzz2)
n.

Therefore, defining ψ : U → C as ψ(w) = (δz(w))
n, we get that π(z1) = π(z2) if

and only if ψ(z1) = ψ(z2). Thus, ψ induces an injection ψ̂ : π(U) → C. In other
words, we have the commutative diagram

U

ψ

''

π
��

δ
// C ρ

// C

π(U)
ψ̂

77♥♥♥♥♥♥♥

where ρ : C→ C is defined by ρ(w) = wn. By the open mapping theorem, ψ(U)
is an open subset of C, so we finally obtain a isomorphism ψ̂ : π(U)→ ψ(U) that
we can use as a chart around z.

Compatibility of the charts It now remains to show that the charts defined
above are compatible.

Proposition 2.13. For any congruence subgroup Γ of SL2(Z), the charts above
endow the modular curve Y (Γ) with the structure of a Riemann surface.

Proof. See [DS06, Ch. 2] or [Miy06, Ch. 1] for this computation.

3. Compactification

Let Γ be a congruence subgroup of SL2(Z). The goal of this section is to com-
pactify the modular curve Y (Γ) by adding points to it, the cusps, to obtain a
compact Riemann surface X(Γ).

3.1. Cusps

Since SL2(Z) acts on P1(Q) = Q ∪ {∞}, we can make the following definition:
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Definition 2.14. An equivalence class of P1(Q) under the action of Γ is called a
cusp with respect to Γ.

Example 2.15. The full modular group SL2(Z) has only one cusp, since SL2(Z)
acts transitively on P1(Q).

Proposition 2.16. There are finitely many cusps with respect to Γ.

Proof. Since any congruence subgroup has finite index in SL2 Z, it suffices to
prove that SL2(Z)\P

1(Q) is finite, which is shown in Example 2.15.

Width of a cusp Just as we defined the period of an elliptic point earlier, we
will now define the width of a cusp. Let s ∈ P1(Q) and choose δ ∈ SL2(Z)
such that δs = ∞. Note that SL2(Z)∞ is cyclic, generated by the translation
( 1 1
0 1 ) ∈ PSL2(Z). Moreover,

hs := [SL2(Z)∞ : δΓsδ−1] = [δ−1 SL2(Z)∞δ : Γs] = [(δ−1 SL2(R)δ)s : Γs]

= [SL2(Z)s : Γs],

which is finite by Proposition 2.3, so that δΓsδ−1 = 〈
(
1 hs
0 1

)
〉 ⊂ PSL2(Z). Note

that the integer hs

1. is independent of δ;

2. does not depend on the image of s in Γ\P1(Q);

3. satisfies the equation ±δΓsδ
−1 = ±〈

(
1 hs
0 1

)
〉.

Hence, we can make the following definition:

Definition 2.17. Let s ∈ P1(Q) and π : P1(Q) → Γ\P1(Q) be the natural
projection. The width of the cusp π(s) is the index hs = [SL2(Z)s : Γs].

3.2. The modular curve X(Γ)

We define H∗ = H ∪ P1(Q) and we remark that SL2(Z) acts on H∗ ⊂ P1(C).

Definition 2.18. The modular curve X(Γ) is the quotient X(Γ) = Γ\H∗.

Note that X(Γ) = Y (Γ) ∪ Γ\P1(Q). That is, the modular curve X(Γ) is equal to
Y (Γ) with finitely many points added, the cusps.

Notation 2.19. For allN ≥ 1, we defineX(N), X1(N) andX0(N) as in Notation
2.11.

3.3. The topology on X(Γ)

First of all, we define a topology on H∗. The subspace topology with respect to
the Riemann sphere P1(C) would be too fine to have the quotient X(Γ) separated.
Rather, we define the topology of X(Γ) as the one generated by:

1. the open sets of H;

2. the sets
α(NM ∪ {∞})
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for all M > 0 and α ∈ SL2(Z), where NM = {z ∈ H : Im z > M}. These
give neighborhoods of the cusps, which are in fact3 disks tangent to the real
line at the rational cusps, and half-planes NM ′ ∪ {∞} at ∞, for M ′ > 0.

b bb

Figure 2.2: Open neighborhoods of cusps.

The action of SL2(Z) on H∗ is not proper4, but we nonetheless have:

Proposition 2.20. The modular curve X(Γ) with the quotient topology induced
by π : H∗ → X(Γ) is separated, compact and connected.

Proof. See [DS06, Proposition 2.4.5] or [Miy06, Ch. 1].

3.4. Charts around the cusps

Let us now give X(Γ) ⊃ Y (Γ) the structure of a Riemann surface. To do so, we
need to find charts around the cusps. We will need the following Lemma, which
is an easy computation:

Lemma 2.21. Let U = N2 ∪ {∞}. If γU ∩ U 6= ∅ for some γ ∈ SL2(C), then γ
is a translation.

Let s ∈ Q ∪ {∞} be a cusp of width h in X(Γ). First, let us choose δ ∈ SL2(Z)
such that δs =∞. Let U be as in Lemma 2.21 and let U ′ = δ−1(U). Since U is a
neighborhood of∞ and δs is a homeomorphism, we get that U ′ is a neighborhood
of s. Then, for z1, z2 ∈ U ,

π(z1) = π(z2) ⇔ z1 = γz2 for some γ ∈ Γ

⇔ δ(z1) = (δγδ−1)(δz2) for some γ ∈ Γ

In this case, Lemma 2.21 shows that δγδ−1 is a translation. But

δΓδ−1 ∩ SL2(Z)∞ = (δΓδ−1)∞ ⊂ ±〈
(
1 h
0 1

)
〉.

So δ(z1) = δ(z2) +mh for some m ∈ Z. Conversely, this condition implies that
z1 = γz2 for some γ ∈ Γ, since {±I}(δΓδ−1)∞ = {±I}〈

(
1 h
0 1

)
〉.

Therefore, if we define ψ : U ′ → C by ψ(z) = e(δz/h), we obtain that ψ(z1) =
ψ(z2) if and only if π(z1) = π(z2). Hence, as before, ψ induces a map ψ̂ : π(U)→

3Recall that fractional linear transformation preserve lines, i.e. subsets of the form L∪ {∞}
for L a line in C ∼=, and circles in C.

4For example, the stabilizer of ∞ in X(1) is infinite.
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C, and finally a chart ψ̂ : π(U)→ ψ(U) around s:

U

ψ

''

π
��

δ
// C ρ

// C

π(U)
ψ̂

77♥♥♥♥♥♥♥

(2.2)

Note that ψ = ρ ◦ δ, where ρ : C→ C is the map z 7→ e(z/h).

Summary of the charts on X(Γ) We can summarize the charts of X(Γ) by the
following: for any z ∈ H∗, there exists a neighborhood U ⊂ H∗ of z such that
for all γ ∈ Γ, the condition γU ∩ U 6= ∅ implies γ ∈ Γz. Let ρ : C → C and
δ : U → U be defined by

ρ δ

z ∈ H z 7→ zh, for h the period of z.
(
1 −z
1 −z

)
∈ GL+

2 (C)
z ∈ P1(Q) z 7→ e(z/h), for h the width of z any δ ∈ SL2(Z) such that δz =∞.

Then the chart around π(z) is

ψ̂ : π(U)→ V

where ψ̂ is such that ψ̂ ◦π = ψ, i.e. Diagram (2.2) commutes, where ψ = ρ ◦ δ. It
now remains to check that these charts are compatible.

Theorem 2.22. If Γ is a congruence subgroup of SL2(Z), the modular curve
X(Γ) is a compact Riemann surface.

Proof. See [DS06, II.4] or [Miy06, Ch. 1].

Corollary 2.23. If Γ is a congruence subgroup of SL2(Z), the modular curve
X(Γ) has only finitely many elliptic points.

Proof. By Corollary 2.6, the set of elliptic points is discrete.

4. Modular curves algebraically

Let Γ be a congruence subgroup of SL2(Z). By Section 1.2.3, the modular curve
X(Γ) is a complex algebraic curve. More precisely, there exists a complex alge-
braic curve X(Γ)alg such that X(Γ) ∼= X(Γ)alg(C).

4.1. Planar model for X1(N)alg

In Chapter 5, we will determine the function fields of X(N) and X1(N) (as
compact Riemann surfaces or algebraic curves) for any N ≥ 1 as

C(X(N)) = C(j, {fv : v ∈ Z2 − 0}) and C(X1(N)) = C(j, f1),

where j : SL2(Z)\H→ C is the modular j-invariant, {fv ∈ C(X(N)) : v ∈ Z2−0}
is a family of functions on X(N), and f1 is the composition of f (0,1)

t
with the

surjection X1(N)→ X(N).
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Using this, we can give a planar model of X1(N)alg that will be used later. Indeed,
let p1 ∈ C(j)[X] be the minimal polynomial of f1 over C(j), and let p̂1 ∈ C[j,X]
be the polynomial obtained from clearing the denominators of p1. Let

X1(N)planar = {(x, y) ∈ C2 : p̂1(x, y) = 0}.

By the correspondence between function fields and curves (see [Har77, I.6] and
[Ful08, Ch. 7] for the explicit construction), there is a birational map

(j, f1) : X1(N)alg → X1(N)planar.

More precisely, X1(N)alg can be obtained by resolving the singularities of the
curve X1(N)planar.

5. Jacobians varieties

Let Γ be a congruence subgroup of SL2(Z). As shown in the previous chapter,
the Jacobian of the modular curve X(Γ) (as a compact Riemann surface or as an
algebraic curve) is a complex abelian variety of dimension equal to the genus of
the curve. We will come back to these fundamental objects in the next chapters.

6. Moduli spaces

Let us now show how modular curves associated to the congruence subgroups
Γ(N), Γ0(N) and Γ1(N) can be seen as moduli spaces for enhanced elliptic curves.
This point of view will be used in an important way later.

6.1. Enhanced elliptic curve and moduli spaces

An enhanced elliptic curve is an elliptic curve with additional torsion information.
More precisely, we define the following spaces:

Definition 2.24. Let N ≥ 1 be an integer.

− S(SL2(Z)) is the moduli space of complex elliptic curves, i.e. the set of
isomorphism classes of such objects.

− S1(N) is the moduli space of couples (E,Q), where E is an elliptic curve
defined over C and Q ∈ E a point of order N . Two such couples (E,Q)
and (E′, Q′) are isomorphic if there is an isomorphism E ∼= E′ mapping Q
to Q′.

− S0(N) is the moduli space of couples (E,C), where E is an elliptic curve
defined over C and C ⊂ E is a subgroup of orderN . Two such couples (E,C)
and (E′, C ′) are isomorphic if there is an isomorphism E ∼= E′ mapping C
to C ′.

− S(N) is the moduli space of couples (E, (P,Q)), where E is an elliptic curve
defined over C and (P,Q) ∈ E×E is a pair of points of E generating E[N ].
Two such couples (E, (P,Q)) and (E′, (P ′, Q′)) are isomorphic if there exists
an isomorphism E ∼= E′ such that P (resp. Q) is mapped to P ′ (resp. Q′).

We will denote the moduli classes of such couples with square brackets. Note that
if N = 1, the three last objects reduce to the first one (the set of isomorphism
classes of complex elliptic curves), and Y (1) = Y1(1) = Y0(1) as well.
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Proposition 2.25. There are bijections S(SL2(Z)) ≡ Y (SL2(Z)), S1(N) ≡ Y1(N),
S0(N) ≡ Y0(N) and S(N) = Y (N) given respectively by

[C/Λz] 7→ [z]SL2(Z)

[C/Λz, [1/N ]Λz ] 7→ [z]Γ1(N)

[C/Λz, 〈[1/N ]Λz〉] 7→ [z]Γ0(N)

[C/Λz, ([z/N ]Λz , [1/N ]Λz)] 7→ [z]Γ(N)

where we identify complex elliptic curves and complex tori, and for z ∈ H, Λz is
the lattice Z+ zZ.

Proof.

1. We know (see page 6) that any complex elliptic curve is isomorphic to a
complex torus of dimension 1 (as complex Lie group). Since any lattice
in C is homothetic to Λz for some z ∈ H, this implies that any complex
elliptic curve is isomorphic to C/Λz for some z ∈ H. Moreover, if z, z′ ∈ H,
then C/Λz ∼= C/Λz′ if and only if [z] = [z′] in Y (SL2(Z)). Indeed, by
Proposition 1.29, C/Λz ∼= C/Λz′ if and only if there exists α ∈ C∗ such that
Λz = αΛz′ = αZ ⊕ αz′Z, and the isomorphism C/Λz 7→ C/Λz′ is given by
w 7→ α−1w. This condition holds if and only if there exists γ ∈ SL2(Z) such
that γ(z, 1)t = (αz′, α)t, i.e. z′ = γz.

2. Let C/Λz be an elliptic curve with a point Q of order N . Equivalently,
there exist c, d ∈ Z such that Q = [(c + dz)/N ] and (c, d,N) = 1. Let
a, b, e ∈ Z such that ac− bd− eN = 1 and consider the matrix γ =

(
a b
c d

)
∈

M2(Z). Since SL2(Z) → SL2(Z/N) surjects, we can suppose that a, b, c, d
are such that γ ∈ SL2(Z). By the above, the map w 7→ (cz+d)−1w gives an
isomorphism C/Λz → C/Λγz, sending Q to [1/N ]Λγz . Hence, [C/Λz, Q] =
[C/Λγz, [1/N ]].

If z ∈ H and γ =
(
a b
c d

)
∈ Γ1(N), then the isomorphism C/Λγz → C/Λz

given by w 7→ (cz+d)w sends [1/N ] to [1/N ], since (c, d) ≡ (0, 1) (mod N).
Thus, the map [z] 7→ [C/Λz, [1/N ]] is well-defined.

Finally, suppose that z, z′ ∈ H are such that [C/Λz, [1/N ]] = [C/Λz′ , [1/N ]].
By 1., there exists γ =

(
a b
c d

)
∈ SL2(Z) such that z′ = γz, and the isomor-

phism C/Λz′ → C/Λz is given by w 7→ (cz + d)w. Since [(cz + d)/N ]Λz =
[1/N ]Λz , this gives (c, d) ≡ (0, 1) (mod N), i.e. γ ∈ Γ1(N), so that [z] = [z′]
in Y1(N).

3-4. The method is similar to the previous cases

6.2. Modular forms and functions on lattices

As a consequence of the moduli space interpretation of the modular curves Y (Γ)
of Proposition 2.25 (Γ = SL2(Z),Γ1(N),Γ0(N),Γ(N)), we get the following nat-
ural interpretation of weight-k invariant functions on H with respect to these
subgroups:

Definition 2.26. Let Γ be as above and let k ∈ Z. A complex-valued function
F on the set of enhanced elliptic curves with respect to Γ is called k-homogeneous
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if for all λ ∈ C∗





F (C/λΛ) = λ−kF (C/Λ) if Γ = SL2(Z)

F (C/λΛ, λQ) = λ−kF (C/Λ, Q) if Γ = Γ1(N)

F (C/λΛ, 〈λQ〉) = λ−kF (C/Λ, 〈Q〉) if Γ = Γ0(N)

F (C/λΛ, (λP, λQ)) = λ−kF (C/Λ, (P,Q)) if Γ = Γ(N).

Proposition 2.27. Let Γ be as above. There is a bijection between weight-k
invariant functions f : H → C with respect to Γ and k-homogeneous complex-
valued functions F on the set of enhanced elliptic curves with respect to Γ, given
by

f(z) =





F (C/Λz) if Γ = SL2(Z)

F (C/Λz, [1/N ]) if Γ = Γ1(N)

F (C/Λz, 〈[1/N ]〉) if Γ = Γ0(N)

F (C/Λz, ([z/N ], [1/N ])) if Γ = Γ(N).

Proof. We only prove the first case, the three others being similar calculations.
First of all, note that the formula in the statement defines F from f uniquely.
Indeed, if Λ = ω1Z⊕ ω2Z with z = ω1/ω2 ∈ H, then Λ = ω2Λz and

F (C/Λ) = F (C/ω2Λz) = ω−k
2 F (C/Λz) = ω−k

2 f(z).

Moreover, if ω′
1Z + ω′

2Z = Λ with z′ = ω′
1/ω

′
2 ∈ H, then there exists γ ∈ SL2(Z)

such that γ(ω1, ω2)
t = (ω′

1, ω
′
2)
t and z′ = γz, thus

ω′
2f(z

′) = (cω1 + dω2)
−kf(γz) = ω−k

2 f(z).

Finally, let us show the transfer of invariance properties. Suppose that F is a
k-homogeneous function on the set of complex tori. If γ =

(
a b
c d

)
∈ SL2(Z), we

have

f(γz) = F (C/Λγz) = F (C/(cz + d)−1Λz) = (cz + d)kF (C/Λz) = (cz + d)kf(z),

using that Λγz = (cz + d)−1Λz as in the proof of Proposition 2.25. On the other
hand, suppose that f is a weight-k invariant function on H with respect to SL2(Z).
If λ ∈ C∗ and ω1, ω2 ∈ C are such that Λ = ω1Z⊕ ω2Z and z = ω1/ω2 ∈ H, then
F (C/λΛ) = (λω2)

−kf(z) = λ−kF (C/Λz).

Example 2.28 (Eisenstein series). If k > 1, the function on lattices Λ 7→
∑

z∈Λ−0
1
z2k

is homogeneous of degree 2k and corresponds to the Eisenstein series G2k, a mod-
ular form of weight 2k with respect to SL2(Z). Recall that we define g2 = 60G4

and g3 = 140G6.

Example 2.29. The following is an example that we will use later on: For v =
(v1, v2) ∈ Z2 − 0, define a function F v on the set of enhanced elliptic curves with
respect to Γ(N) by

F v(C/Λ, (P,Q)) =
g2(Λ)

g3(Λ)
℘Λ(v1P + v2Q),

where ℘ is the Weierstrass elliptic function. Since F v is 0-homogeneous, the
corresponding function fv : H→ C given by

fv(z) =
g2(Λz)

g3(Λz)
℘Λz

(
v1z + v2

N

)

is Γ(N)-invariant, so it defines a function fv : Y (N)→ C.
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7. Relationship with modular forms

Finally, we investigate the relationship between modular curves and modular
forms. Appendix B recalls the definition, notations, and basic properties of the
latter.

The following is the key result:

Proposition 2.30. For any even integer k, there is an isomorphism of complex
vector spaces

Ak(Γ) ∼= Ωk/2(X(Γ)),

which (co)restricts to an isomorphism Ω1
hol(X(Γ)) ∼= S2(Γ).

This comes from the fact that meromorphic modular forms are Γ-invariants mero-
morphic objects, and so are meromorphic forms on X(Γ).

7.1. Pushbacks of differential forms

Let us consider the projection π : H → X(Γ). It is a morphism of compact
Riemann surfaces, which induces a linear map

π∗ : Ωk(X(Γ))→ Ωk(H).

Let ω ∈ Ωk(X(Γ)). Since H has a global chart, there exists a meromorphic
function f ∈ C(H) such that π∗(ω) = f(z)(dz)k. This will give the bijection of
Proposition 2.30.

In the following technical lemma, we begin by determining explicitly f in terms
of ω, locally.

Lemma 2.31. Let ω ∈ Ωk(X(Γ)). For w ∈ X(Γ), let ψ̂ : π(U) → ψ(U) be a
coordinate near w defined as in Section 2.3. If ω is given locally by g(z)(dz)k ∈
Ωk(ψ(U)), then π∗(ω) ∈ Ωk(H) is given locally by

1. if w ∈ Y (Γ) has period h,

g(ψ(z))

(
δ(z)h−1hdet(δ)

(z − w)2

)k
(dz)k ∈ Ωk(U);

2. if w is a cusp with width h,

g(ψ(z))

(
2πiψ(z)

h

)k
j(δ, z)−2k(dz)k ∈ Ωk(U).

Proof. Recall that the coordinate near w is such that

− U ⊂ H∗ is a neighborhood of w such that for all γ ∈ Γ, the condition
γU ∩ U 6= ∅ implies γ ∈ Γz.

− ψ : U → C is defined by a composition ρ ◦ δ for some functions δ ∈ GL2(C)
and ρ : C→ C.

− ψ̂ is such that ψ̂ ◦ π = ψ.

On the other hand, a chart around w in H is given by id : U → U . The map
π : H→ X(Γ) in local coordinates is ψ̂ ◦ π = ψ = ρ ◦ δ : U → ψ(U).
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1. If w is not a cusp, then ρ(z) = zh and δ =
(
1 −w
1 −w

)
. Note that

dψ

dz
(z) =

dρ

dz
(δz)

dδ

dz
(z) = δ(z)h−1 hdet(δ)

(z − w)2
,

which gives the expression above for π∗(ω) locally in Ωk(U).

2. If w is a cusp of width h, then ρ(z) = e(z/h) and δ ∈ SL2(Z) is such that
δw =∞. Again, note that

dψ

dz
(z) =

dρ

dz
(δz)

dδ

dz
(z) =

2πiψ(z)

h
j(δ, z)−2,

which gives the expression above for π∗(ω) locally in Ωk(U).

7.2. Differential forms to meromorphic modular forms

Lemma 2.32. For ω ∈ Ωk(X(Γ)), the function f ∈ C(H) such that π∗(ω) =
f(z)(dz)k is a meromorphic modular form of weight 2k with respect to Γ.

Proof. First, let us prove that f [γ]2k = f for all γ ∈ Γ. For π : H → X(Γ) the
projection, the meromorphic map γ : H → H is such that π ◦ γ = π. Hence,
γ∗ ◦ π∗ = π∗, so that

f(z)(dz)k = π∗(ω) = γ∗(π∗(ω)) = γ∗(f(z)(dz)n) = f(γz)j(γ, z)−2k(dz)n,

where we used that dγ(z)
dz = j(γ, z)−2. This shows that f [γ]2k = f . We now need

to prove that f is meromorphic at the cusps. For γ ∈ SL2(Z), we compute a local
expression for f [γ]2k around ∞. Let w = γ∞. By Lemma 2.31,

f(z)(dz)k = π∗(ω)(z) = g(ψ(z))

(
2πiψ(z)

h

)k
j(γ−1, z)−2k(dz)k

for z in some neighborhood U ⊂ H ∪ P1(Q) of w. Let z′ = γ−1z. Using that
j(γ−1, z′)j(γ, z) = 1, we find that

f [γ]2k(z
′) = g(ρ(z′))

(
2πiρ(z′)

h

)k
(2.3)

for z′ ∈ γ−1U , a neighborhood of ∞. This shows that f is meromorphic at the
cusp w, for the weight 2k.

7.3. Differential forms to meromorphic modular forms

Lemma 2.33. If f ∈ A2k(Γ), there exists ω ∈ Ωk(X(Γ)) such that π∗(ω) =
f(z)(dz)k.

Proof. Let (π(Ui), ψ̂i) be the atlas of X(Γ) defined in this chapter. It suffices to
find elements ωi ∈ Ωk(ψ̂i(Ui)) such that (ψ̂)∗(ωi) = f(z)(dz)k locally, since these
would then be compatible, inducing ω ∈ Ωk(X(Γ)) such that π∗(ω) = f(z)(dz)k.

Let π(w) ∈ X(Γ) and let ψ̂ : π(U) → ψ(U) be the local coordinate around
w as in Section 2.3. By Lemma 2.31, we need to find a meromorphic function
g : ψ(U)→ C such that
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− if π(w) is a cusp of width h, let γ ∈ SL2(Z) such that z = γ∞. By Equation
(2.3), we find that we must have

g(ρ(z′)) = f [γ]2k(z
′)

(
2πiρ(z′)

h

)−k

for z′ ∈ γ−1U . Recall that ρ(z′) = e(z′/h). Since f is meromorphic at the
cusp z, there exists a complex function k meromorphic around 0 such that
f [γ]2k(z

′) = k(ρ(z′)). Thus, around 0, we can define

g(z) = k(z)

(
2πiz

h

)−k

. (2.4)

− if w ∈ H has period h, we must have

f(z) = g(ψ(z))

(
δ(z)h−1hdet(δ)

(z − w)2

)k

for z ∈ U . Letting z′ = δz with δ as in the definition of the chart, we find
that this is equivalent to

g(ρ(z′)) =
[
f [δ−1]2k(z

′)(z′)k
]
ρ(z′)−k det(δ)k−1h−k

for z′ ∈ δU . To conclude as was done above, it suffices to prove that
there exists a function k̂ : H → C meromorphic at the origin such that
k(z′) = k̂(ρ(z′)) for z′ near 0, where k : H→ C is the meromorphic function
between square brackets above. Indeed, we can then define

g(z) = k̂(z)(zh)−k det(γ)k−1. (2.5)

To do that, it is enough to show that k is invariant under the transformation
z′ 7→ e(1/h)z′. Recall that δΓzδ

−1 as a group of fractional linear transfor-
mations of P1(C) is cyclic of order h generated by multiplication by e(1/h).
Let γ ∈ Γz such that δγδ−1 corresponds to multiplication by e(1/h). Then

k(e(1/h)z′) = k[δγδ−1]2k(z
′) = f [γδ−1]2k(z

′)(δγδ−1z′)k = k(z′).

7.4. Proof of Proposition 2.30

Proof of Proposition 2.30. Let us consider the map Φ : Ωk/2(X(Γ)) → Ak(Γ)
defined by

π∗(ω)(z) = Φ(ω)(z)(dz)n

for ω ∈ Ωk/2(X(Γ)). This is well-defined by Lemma 2.33. By Lemma 2.32,
this map is surjective. Finally, Φ is clearly C-linear and injective. For w ∈ H∗,
Equations (2.4) and (2.5) show that

− if w ∈ P1(Q),

vπ(w)(ω) = v0(k)−
k

2
= ordw(f)−

k

2
.

If k = 2, this gives that f vanishes at the cusp π(w) if and only if ω is
holomorphic at π(w).
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− if w ∈ H,

vπ(w)(ω) = ord0(k̂)−
k

2
=

ordw(f)

h
−
k

2

(
1−

1

h

)
.

If k = 2, it follows that vπ(w)(ω) = (ordw(f) − h + 1)/h or ordw(f) =
hvπ(w)(ω)+h− 1. Since these two numbers are integers, it follows that f is
holomorphic at w if and only if ω is holomorphic at π(w).

Consequently, ω ∈ Ω1
hol(X(Γ)) if and only if Φ(ω) ∈ S2(Γ).

7.5. Dimensions of spaces of modular forms

Through the isomorphism of Proposition 2.30, a lot of information about spaces
of modular forms can be obtained by studying spaces of meromorphic differentials
on modular curves.

In particular, using the Riemann-Roch theorem, we obtain dimension formulas
for spaces of modular forms and cusp forms (and finite-dimensionality!) in terms
of the number of elliptic points and cusps. The restriction “k even” can be lifted
to obtain results about spaces of modular forms of any weight.

It is not our goal to study these arguments here; the reader can refer to [DS06,
Ch. 3] and [Miy06, Ch. 2]. However, we still note the following basic case, which
will be useful later:

Corollary 2.34. For any even integer k ≥ 0, the dimension of the C-vector space
of cusp forms S2(Γ) is equal to the genus of the modular form X(Γ).

Proof. By Proposition 2.30, S2(Γ) ∼= Ω1
hol(X(Γ)). As a corollary of Riemann-Roch

(see [Mir95, p. 192]), the dimension of Ω1
hol(X(Γ)) (“analytic genus” of X(Γ)) is

equal to the (topological) genus of X(Γ).

7.6. Jacobians and cusp forms

By Proposition 2.30, we have S2(Γ1(N)) ∼= Ω1
hol(X1(N)). Since Jac(X1(N)) =

Ω1
hol(X1(N))∗/H1(X1(N)), there exists a lattice Λ ⊂ S2(Γ1(N))∗ such that

S2(Γ1(N))∗/Λ ∼= Jac(X)

as complex tori. We will also call Λ the lattice of periods.



Chapter 3

Hecke operators, modular curves and modular forms

In this chapter, we will study Hecke operators on modular forms, moduli spaces,
and on modular curves and their Jacobians. They will be the tools used to
“cut” the Jacobian of a modular curve into abelian varieties related to particular
modular forms.

The main references for this chapter are [DS06, Chapter 5], [Miy06, 2.7-2.8] and
[Shi71, Chapter 3]. In [DS06], the Hecke ring is not introduced and properties
such as commutativity of Hecke operators on modular forms are proved by using
explicit formulas. The two other books introduce the Hecke ring and its properties
in great generality. Here, we take an intermediate approach.

1. Double cosets

A way to define operators on modular forms, moduli spaces and modular curves
and their Jacobians is by using double cosets of congruence subgroups.

Definition 3.1. Let Γ1 and Γ2 be congruence subgroups of SL2(Z). For any
α ∈ GL+

2 (Q), we can consider the double coset Γ1αΓ2. We denote the free abelian
group on the set of such double cosets by A(Γ1,Γ2).

Proposition 3.2. If Γ1 and Γ2 are congruence subgroups of SL2(Z), the set
Γ1\Γ1αΓ2 is finite for all α ∈ GL+

2 (Q).

Proof. Let Γ3 = α−1Γ1α∩Γ2 ⊂ Γ2. Then, there is a bijection between Γ1\Γ1αΓ2

and Γ3\Γ2, given by [αγ2] 7→ [γ2]. Since Γ2 and Γ3 are congruence subgroups (by
Lemma 2.4 for the second one), the quotient Γ3\Γ2 is finite.

Hence, we can write

Γ1αΓ2 =
n⊔

j=1

Γ1βj(α) (3.1)

for some βj(α) ∈ Γ1αΓ2 (1 ≤ j ≤ n). Using this decomposition, we can define
actions of A(Γ1,Γ2) on abelian groups with a right action of GL+

2 (Q) that is Γ1

invariant:

Proposition 3.3. Let Γ1,Γ2 be as above, and let M be an abelian group with a
right-action of GL+

2 (Q). There is then a right action of A(Γ1,Γ2) on MΓ1 given
by

m(Γ1αΓ2) =

n∑

j=1

mβj(α)

for m ∈M and α ∈ GL+
2 (Q), where βj(α) are as in (3.1).

Proof. We need to show that the definition above does not depend on the chosen
decomposition. Suppose that Γ1αΓ2 = ⊔nj=1Γ1β

′
j for some β′j ∈ Γ1αΓ2. Then,

38
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there exist σ ∈ Sk and γ(1), . . . , γ(n) ∈ Γ1 such that β′j = γ(j)βσ(j), so that

n∑

j=1

mβ′j =
n∑

j=1

mβσ(j) =
n∑

j=1

mβj

for all m ∈MΓ1 .

2. The Hecke ring

Let us now consider the case Γ1 = Γ2.

Definition 3.4. For Γ a congruence subgroup of SL2(Z) and ∆ a semigroup in
M+

2 (Z) = {δ ∈ M2(Z) : det(δ) > 0} containing Γ, we let the Hecke ring R(Γ,∆)
be the subgroup {ΓαΓ : α ∈ ∆} of A(Γ,Γ).

We define a composition law on R(Γ,∆) as follows: if

ΓαΓ =

n⊔

i=1

Γαi, ΓβΓ =

m⊔

j=1

Γβj ∈ R(Γ,∆),

then we set

(ΓαΓ)(ΓβΓ) =
n∑

i=1

m∑

j=1

Γαiβj =
∑

cγΓγΓ ∈ R(Γ,∆),

where the second sum is over all (distinct) double cosets ΓγΓ ∈ R(Γ,∆) and

cγ = |{(i, j) : Γγ = Γαiβj}| = |{(i, j) : ΓγΓ = ΓαiβjΓ}|/|Γ\ΓγΓ|. (3.2)

Proposition 3.5. Let Γ and ∆ be as above. Then the composition law on R(Γ,∆)
is well-defined and associative.

Proof. Let us consider the free abelian group A on the set Γ\∆. Then A is a right
Γ-module and we have a homomorphism R(Γ,∆) →֒ A given by ΓαΓ =

⊔
i Γαi 7→∑

i Γαi. It is injective since if ΓαΓ =
⊔
i Γαi 6=

⊔
j Γα

′
j = Γα′Γ, then Γαi 6= Γα′

j

for all i, j. Moreover, we see that R(Γ,∆) = AΓ. By Proposition 3.3, there is a
right action of A(Γ,Γ) on R(Γ,∆) given by

(ΓαΓ).(ΓβΓ) =
n∑

i=1

(ΓαΓ)βi =
n∑

i=1

m∑

j=1

Γαjβi

for all α ∈ ∆, β ∈ GL+
2 (Q), where ΓβΓ =

⊔n
i=1 Γβi and ΓαΓ =

⊔m
j=1 Γαj . This

is equal to the multiplication (ΓαΓ)(ΓβΓ), so the composition law on R(Γ,∆) is
well-defined and associative.

Proposition 3.6. Let Γ and ∆ be as above.

1. If there exists an anti-involution1 ϕ : ∆ → ∆ such that ϕ(Γ) = Γ and
ΓαΓ = Γϕ(α)Γ for all α ∈ ∆, then R(Γ,∆) is a commutative ring with unit
Γ1Γ = Γ.

1This is, ϕ ◦ ϕ = id and ϕ is an antihomomorphism.
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2. In this case, if M is an abelian group with a right action of ∆, then MΓ is
a right R(Γ,∆)-module.

Proof. First, we prove that if α ∈ GL+
2 (Q) is such that |Γ\ΓαΓ| = |ΓαΓ/Γ|, then

there exists βi ∈ ΓαΓ (1 ≤ i ≤ n) such that

ΓαΓ =
n⊔

i=1

Γβi =
n⊔

i=1

βiΓ.

Indeed, let αi and α′
i (1 ≤ i ≤ n) such that ΓαΓ =

⊔n
i=1 Γαi =

⊔n
i=1 α

′
iΓ. It

suffices to show that Γαi∩α
′
iΓ 6= ∅ for all i, since we can then pick βi ∈ Γαi∩α

′
iΓ

for every i and obtain the desired equality because Γβi = Γαi and βiΓ = α′
iΓ. If

Γαi ∩ α
′
iΓ = ∅, we would have Γαi ⊂

⊔
j 6=i α

′
jΓ, so that ΓαΓ =

⊔
j 6=i α

′
jΓ, which

is impossible.

We can now prove the proposition:

1. For α ∈ ∆, let βi (1 ≤ i ≤ n) be such that ΓαΓ =
⊔n
i=1 Γβi. Note that

ΓαΓ = Γϕ(α)Γ = ϕ(ΓαΓ) =
⊔n
i=1 ϕ(βi)Γ. Hence |Γ\ΓαΓ| = |ΓαΓ/Γ|.

Let α, α′ ∈ ∆. By the above, there exist βi ∈ ΓαΓ (1 ≤ i ≤ n) and β′i ∈ Γα′Γ
(1 ≤ i ≤ m) such that

ΓαΓ =

n⊔

i=1

Γβi =

n⊔

i=1

βiΓ and Γα′Γ =

m⊔

i=1

Γβ′i =

m⊔

i=1

β′iΓ.

Thus

(ΓαΓ)(Γα′Γ) =
∑

cγΓγΓ and (Γα′Γ)(ΓαΓ) =
∑

c′γΓγΓ,

where cγ = |{(i, j) : Γγ = Γβiβ
′
j}| and c

′
γ = |{(i, j) : Γγ = Γβ′jβi}|. Using

Equation (3.2), we see that cγ = cγ′ .

2. It suffices to prove that (mζ1)ζ2 = m(ζ1ζ2) for all m ∈ MΓ and ζ1, ζ2 ∈
R(Γ,∆). This is clear by the definition of the product.

Henceforth, we will consider the following two cases:

Example 3.7. Let Γ = Γ1(N) and

∆ = ∆1(N) = {α ∈M2(Z) : detα > 0, α ≡ ( 1 ∗
0 ∗ ) (mod N)}.

As we will shortly see in Lemma 3.10, we have an anti-involution
(
a b
cN d

)
7→

( a c
bN d ) verifying the two conditions of Proposition 3.6. Therefore, R(Γ,∆) is

commutative.

Example 3.8. Let Γ = Γ0(N) and

∆ = ∆0(N) = {α ∈M2(Z) : detα > 0, α ≡ ( ∗ ∗
0 ∗ ) (mod N)}.

An anti-involution verifying the conditions of Proposition 3.6 can be defined as
above, showing that R(Γ,∆) is also commutative.
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2.1. Hecke operators and diamond operators

We now define two important classes of elements of the ring R(Γ1(N),∆1(N)),
called Hecke and diamond operators. We will shortly see how they act on modular
forms, modular curves and their Jacobians, and moduli spaces.

In what follows, we let Γ = Γ1(N) and ∆ = ∆1(N).

The Hecke operators

Definition 3.9. For any integer n ≥ 1, we define an element Tn ∈ R(Γ,∆) by

Tn =
∑

ΓαΓ
α∈∆n

ΓαΓ,

where ∆n = {α ∈ ∆ : detα = n}.

The following Lemma shows that this definition makes sense (i.e. that the sum is
finite2) and gives decomposition (3.1) for the double cosets involved:

Lemma 3.10. For any α ∈ ∆n, we have that

ΓαΓ = ∆n =
⊔

a

n/a−1⊔

b=0

Γσa

(
a b
0 n/a

)

where the union is over the integers a > 0 such that a | n and (a,N) = 1, and
σa ∈ SL2(Z) is such that σa ≡

(
a−1 0
0 a

)
(mod N).

Proof. This is a particular case of [Shi71, Proposition 3.36] with t = 1 and h = {1}
or [Miy06, Section 4.5]. For the particular case n prime, see [DS06, pp. 104-105].
The idea is to consider actions of ∆n on lattices.

Remark 3.11. If p is prime, note that we get Tp = Γ
(
1 0
0 p

)
Γ ∈ R(Γ,∆). Moreover,

let us define

βj =

(
1 j
0 p

)
for 1 ≤ j < p and β∞ =

(
mp m′

Np p

)
, (3.3)

where β∞ is defined when p ∤ N , with m,m′ ∈ Z such that mp−m′N = 1. Then,
by Lemma 3.10, the decomposition (3.1) is given by β1, . . . , βp−1 if p | N and
β1, . . . , βp−1, β∞ if p ∤ N .

Lemma 3.12. If m,n are coprime integers, we have Tmn = TmTn.

Proof. This also follows from considering actions of ∆n on lattices and apply-
ing the Chinese theorem. See [Shi71, Proposition 3.34] or [Miy06, 4.5.8(2) and
4.5.18(1)].

2In fact reduced to one element. We could have defined Tn from Lemma 3.10, but Definition
3.9 generalizes to other pairs (Γ,∆). For example, for (Γ0(N),∆0(N)), the sum is not reduced
to one element.
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The diamond operators

Definition 3.13. For d ∈ (Z/N)×, we define the diamond operator

〈d〉 = ΓαΓ ∈ R(Γ,∆),

where α ∈ Γ0(N) ⊂ ∆ is such that its bottom-right coefficient is equal to d in
(Z/N)×. If d ∈ Z is such that N | d, we let 〈d〉 = 0 ∈ R(Γ,∆).

Lemma 3.14. This element is well-defined.

Proof. We need to check that the definition of 〈d〉 does not depend on the el-
ement α chosen. Recall that Γ1(N) is a normal subgroup of Γ0(N), so that
Γ1(N)αΓ1(N) = Γ1(N)α. Moreover, Γ0(N)/Γ1(N) ∼= (Z/N)×, where the iso-
morphism is induced by the map

(
a b
c d

)
7→ [d]. Hence, Γ1(N)α depends only on

the image of the bottom-right coefficient of α in (Z/N)×.

Lemma 3.15. If p is prime and e ≥ 1, we have Tpe = TpTpe−1 − pe−1〈p〉Tpe−2.

Proof. See [Shi71, Proposition 3.34] or [Miy06, 4.5.7 and 4.5.18(1)].

Remark 3.16. In [DS06], the elements Tn are defined only for n prime, and ex-
tended with Lemmas 3.15 along with this property.

3. Actions on modular curves, their Jacobians, and moduli spaces

We begin by studying actions of double cosets on modular curves and related
objects: their Jacobians and moduli spaces of enhanced elliptic curves.

In what follows, we let Γ1,Γ2 be congruence subgroups of SL2(Z)

3.1. Modular correspondences on modular curves

First, let us consider the modular curves X(Γ2), X(Γ1).

Proposition 3.17. There is a well-defined morphism [Γ1αΓ2] : Div(X(Γ2)) →
Div(X(Γ1)) given by

[z] 7→
n∑

j=1

[βjz]

where βj ∈ Γ1αΓ2 (1 ≤ j ≤ n) are as in Equation (3.1).

Proof. As in the proof of Proposition 3.3, we see that the sum above does not
depend on the decomposition Γ1αΓ2 = ⊔nj=1Γβj chosen. On the other hand,
if γ2 ∈ Γ2, the sum evaluated at z is equal to the sum evaluated at γ2z since
Γ1αΓ2 = ⊔

n
j=1Γβjγ2.

We will call such a map a modular correspondence.

Remark 3.18. If Γ = Γ1 = Γ2 and if Γ,∆ satisfy the hypotheses of Proposition
3.6, then Div(X(Γ)) is a R(Γ,∆)-module.
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Remark 3.19. We can define the map above in a more natural way as follows:
as in Proposition 3.2, let Γ(1) = Γ1 ∩ αΓ2α

−1 ⊂ Γ1 and Γ(2) = α−1Γ1α ∩ Γ2 =
α−1Γ(1)α ⊂ Γ2. We then have the commutative diagram

X(Γ(1))
∼= //

π1

��

X(Γ(2))

π2

��
X(Γ1) X(Γ2),

(3.4)

and the map Div(X(Γ2))→ Div(X(Γ2)) is the composition

Div(X(Γ2))
π∗

2 // Div(X(Γ(2))) // Div(X(Γ(1)))
(π1)∗ // Div(X(Γ1)).

Indeed, the map π∗2 is given by

[z] 7→
∑

[w]∈π−1
2 ([z])

multπ2([w])[w] ∈ Div(X(Γ(2))).

Writing Γ2 =
⊔
j Γ

(2)γj for γj ∈ Γ2, we have that π−1
2 ([z]) = {[γjz]} and the sum

above becomes
∑

j [γjz]. The image of [z] in Div(X(Γ1)) is thus

∑

j

[αγjz]Γ1 = [Γ1αΓ2][z]Γ2

since Γ1αΓ2 = ⊔jΓ1αγj by Proposition 3.2.

Hecke operators For any integer d and any integer n ≥ 1, we obtain operators
Tn and 〈d〉 on Div(X(Γ1(N))).

3.2. Action on Jacobians of modular curves

Let Γ1,Γ2 be congruence subgroups of SL2(Z).

Proposition 3.20. For any α ∈ GL+
2 (Q), the map [Γ1αΓ2] : Div(X(Γ2)) →

Div(X(Γ1)) induces a map Pic0(X(Γ2))→ Pic0(X(Γ1)).

Proof. The result is clear from the point of view of Remark 3.19, since push-
forwards and pullbacks of maps between curves to maps between divisor groups
induce maps between the respective Picard groups.

By the Abel-Jacobi theorem, Pic0(X(Γ)) ∼= Jac(X(Γ)) as groups, so for any
α ∈ GL+

2 (Q), Proposition 3.20 gives a map [Γ1αΓ2] : Jac(X(Γ2)) → Jac(X(Γ1))
such that

Jac(X(Γ2))
[Γ1αΓ2] // Jac(X(Γ1))

Pic0(X(Γ2))
[Γ1αΓ2] // Pic0(X(Γ1))

commutes.

Remark 3.21. Under the same hypotheses as in Remark 3.18, Pic0(X(Γ)) is a
R(Γ,∆)-module and Pic0(X(Γ)) ∼= Jac(X(Γ)) as R(Γ,∆)-modules, by definition.
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Proposition 3.22. The map [Γ1αΓ2] : Jac(X(Γ2))→ Jac(X(Γ1)) is given by the
composition

Jac(X(Γ2))
π∗

1 // Jac(X(Γ(2)))
∼= // Jac(X(Γ(1)))

(π2)∗ // Jac(X(Γ1)),

where Γ(i), πi are as in Diagram (3.4).

Proof. Since pushforwards (or traces) and pullbacks on divisor groups commute
with the Abel-Jacobi isomorphism, we obtain that the diagram

Jac(X(Γ2))
π∗

1 // Jac(X(Γ(2)))
∼= // Jac(X(Γ(1)))

(π2)∗ // Jac(X(Γ1))

Pic0(X(Γ2))

[Γ1αΓ2]

22
π∗

1 // Pic0(X(Γ(2)))
∼= // Pic0(X(Γ(1)))

(π2)∗ // Pic0(X(Γ1))

commutes (where the vertical maps are the isomorphisms given by the Abel-Jacobi
theorem), proving the statement.

Corollary 3.23. The map [Γ1αΓ2] : Jac(X(Γ2)) → Jac(X(Γ1)) is a morphism
of complex abelian varieties.

Proof. By Proposition 3.22, we obtain that the map is a smooth morphism of
complex Lie groups, since π∗1 and (π2)∗ are linear. By Corollary 1.20, it follows
that the map is a morphism of complex abelian varieties.

3.3. Action on moduli spaces

Recall that there is a bijection between the modular curve Y1(N) ⊂ X1(N) and
the moduli space S1(N) of enhanced elliptic curves for Γ1(N). Moreover, note that
the action of double cosets on Div(X1(N)) restricts to an action on Div(Y1(N)):

Div(S1(N))
T //

∼=

// Div(S1(N))

∼=

Div(Y1(N))
T //

��

Div(Y1(N))

��
Div(X1(N))

T // Div(X1(N)).

(3.5)

The same holds true for X0(N) and S0(N) (respectively X(N) and S(N)).

Remark 3.24. By Remark 3.18, Div(Y1(N)) is aR(Γ,∆)-submodule of Div(X1(N))
and Div(S1(N)) is a R(Γ,∆)-module isomorphic to Div(Y1(N)).

In this paragraph, we compute explicit expressions for the operators Tn and 〈d〉
on the moduli space. We will see that these are particularly simple.
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The diamond operators

Proposition 3.25. The operator 〈d〉 on Div(S1(N)) is given by

[E,Q] 7→ [E, [d]Q].

Proof. Without loss of generality, by Proposition 2.25, let [E,Q] = [C/Λz, [1/N ]] ∈
S1(N). Let γ =

(
a b
c d

)
∈ SL2(Z) such that γ ≡

(
d−1 0
0 d

)
(mod N). Then, identi-

fying Y1(N) and S1(N),

〈d〉[E,Q] = 〈d〉[z] = [γz] = [C/Λγz, [1/N ]].

If we let λ = cz + d, we get that λΛγz = Λz and an isomorphism C/Λγz → C/Λz
is given by [z] 7→ [λz], as in the proof of Proposition 2.25. Thus,

〈d〉[E,Q] = [C/Λz, [λ/N ]] = [C/Λz, [d/N ]] = [E, [d]Q]

since c ≡ 0 (mod N).

Similarly, we find that:

Proposition 3.26. The operator 〈d〉 on Div(S0(N)) is given by

[E, 〈Q〉] 7→ [E, 〈[d]Q〉].

The Tp operators

Proposition 3.27. Let p be a prime such that p ∤ N . The operator Tp on
Div(S1(N)) is given by

[E,Q] 7→
∑

C

[E/C, [Q]C ],

where C varies over all p-subgroups of E such that C ∩ 〈Q〉 = 0.

Remark 3.28. The quotient of an elliptic curve by a finite subgroup is made sense
of by Proposition 1.56 or [Sil09, III.4.12].

Proof. Let Γ1(N)
(
1 0
0 p

)
Γ1(N) =

⊔
j Γ1(N)βj as in Proposition 3.11 (where j =

0, . . . , p − 1,∞). By linearity and Proposition 2.25, it is sufficient to check the
identity for an element [E,Q] = [C/Λz, [1/N ]] ∈ S1(N), where z ∈ H. By defini-
tion, Tp[z] =

∑
j [βjz], thus

Tp[C/Λz, [1/N ]] =
∑

j

[C/Λβjz, [1/N ]].

− If 0 ≤ j < p − 1, we have βjz = (z + j)/p. Note that Λz ⊂ Λβjz, so that
C/Λβjz

∼= E/(Λβjz/Λz). The quotient Cj = Λβjz/Λz is a subgroup of C/Λ
of order p, such that Cj ∩ 〈[1/N ]〉 = 0.

− If j = ∞, we note that L∞ = (Nz + 1)Λβ∞z contains Λz, so C/Λβ∞z
∼=

C/L∞
∼= E/C∞ with C∞ = L∞/Λz, a subgroup of C/Λ of order p such

that C∞ ∩ 〈[1/N ]〉 = 0

Now, C0, . . . , Cp−1, C∞ are p + 1 subgroups of order p with trivial intersections,
contained in E[p] = (C/Λz)[p] ∼= (Z/p)2. Hence their union is E[p] and any
subgroup of order p of E is equal to one of the Cj . Thus, we finally get that the
sum above corresponds to the sum in the statement.
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4. Action on modular forms

Let Γ1 and Γ2 be congruence subgroups of SL2(Z) and k ∈ Z.

The space of meromorphic maps C(H) on H has a right-action [ · ]k of GL+
2 (Q)

(see Appendix B). By Proposition 3.3, there is a right-action of A(Γ1,Γ2) on
C(H)Γ1 ⊃Mk(Γ1).

Proposition 3.29. The right-action of A(Γ1,Γ2) on C(H)Γ1 induces mapsMk(Γ1)→
Mk(Γ2) given by

f 7→ fζ

for each ζ ∈ A(Γ1,Γ2). Moreover, these maps restrict and corestrict to maps
Sk(Γ1) → Sk(Γ2). Finally, if Γ = Γ1 = Γ2 and if Γ,∆ satisfy the hypotheses
of Proposition 3.6, then the space Mk(Γ) is a R(Γ,∆)-module with Sk(Γ) as a
submodule.

Proof. Explicitly, if ζ = Γ1αΓ2 for some α ∈ GL+
2 (Q), then

f [Γ1αΓ2]k =
n∑

j=1

f [βj ]k,

where Γ1αΓ2 =
⊔n
j=1 Γ1βj . First of all, let us prove that f [Γ1αΓ2]k is weakly

modular of weight k with respect to Γ2. Indeed, if γ2 ∈ Γ2, we have Γ1αΓ2 =
⊔jΓ1βjγ2 and thus

f [Γ1αΓ2]k[γ2]k =
n∑

j=1

f [βj ]k[γ2]k =
n∑

j=1

f [βjγ2]k = f [Γ1αΓ2]k.

Next, let us show that f [Γ1αΓ2]k is holomorphic at the cusps. If γ ∈ SL2(Z), then

f [Γ1αΓ2]k[γ]k =
n∑

j=1

f [βjγ]k,

but since f is holomorphic at the cusps, f [βjγ]k is holomorphic at∞, so the same
holds true for the sum. By the same equation, it is clear that if f ∈ Mk(Γ1)
vanishes at all the cusps, thus so does f [Γ1αΓ2]k ∈Mk(Γ2).

Remark 3.30. Suppose that Γ1,Γ2 are congruence subgroups of SL2(Z) such that
there exists α ∈ GL+

2 (Q) with αΓ2α
−1 ⊂ Γ1. Then we prove similarly that [α]k :

Mk(Γ1)→Mk(Γ2) is well-defined and (co)restricts to give [α]k : Sk(Γ1)→ Sk(Γ2).

Remark 3.31. Note that for any integer a and any modular form f of weight k,
we have f [σa] = 〈a〉f .

Remark 3.32. Recall that modular forms for SL2(Z) can also be seen as homoge-
neous functions from the set of lattices to C (Proposition 2.25). Under this point
of view, the Hecke operator Tn on f ∈Mk(SL2(Z)) has the very simple expression

Tnf(Λ) =
∑

Λ′

f(Λ′)

for any lattice Λ ⊂ C, where the (finite) sum is over all sublattices Λ′ ⊂ Λ of
index n. This generalizes to other congruence subgroups. See [Zag08, Section 4.1]
or [Lan76, Ch. II] for more details.
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4.1. Relationship with the action on Jacobians of modular curves

Let Γ1,Γ2 be a congruence subgroups of SL2(Z). In Section 3.3.2, we have defined
operators

[Γ1αΓ2] : Jac(X(Γ2))→ Jac(X(Γ1))

for all α ∈ GL+
2 (Q). On the other hand, recall that Jacobians of modular curves

are related to cusp forms by

Jac(X(Γi)) ∼= S2(Γi)
∗/Λi (i = 1, 2),

where Λi corresponds to the subgroup of periodsH1(X(Γi)) (see Paragraph 2.7.6).

We see that the operators on Jacobians are compatible with the operators on
modular forms, and they relate through composition.

Proposition 3.33. For any α ∈ GL+
2 (Q), the map [Γ1αΓ2] : S2(Γ2)

∗/Λ2 →
S2(Γ1)

∗/Λ1 is given by
[ψ] 7→ [ψ ◦ [Γ1αΓ2]2].

Remark 3.34. Under the same hypotheses as in Remark 3.18, this means that
S2(Γ)

∗/Λ ∼= Jac(X(Γ)) as R(Γ,∆)-modules.

Before proving this result, we interpret pushforwards and pullbacks of holomor-
phic forms in the point of view of S2(Γ):

Lemma 3.35. Let Γ1,Γ2 be congruence subgroups of SL2(Z) such that there exists
α ∈ GL+

2 (Q) with αΓ1α
−1 ⊂ Γ2, and consider the morphism h : X(Γ1)→ X(Γ2)

given by [z] 7→ [αz]. Then the diagrams

S2(Γ1)

��

∑
j [βj ]2 // S2(Γ2)

��

S2(Γ2)

��

[α]2 // S2(Γ1)

��
Ω1
hol(X(Γ1))

h∗ // Ω1
hol(X(Γ2)) Ω1

hol(X(Γ2))
h∗ // Ω1

hol(X(Γ1))

commute, where h∗ is the pullback, h∗ the trace map, and βj ∈ Γ2 are such that
Γ2 =

⊔
j(αΓ1α

−1)βj.

Proof. For i = 1, 2, let πi : H→ X(Γi) be the projection.

1. Let ω ∈ Ω1
hol(X(Γ1)) corresponding to f ∈ S2(Γ1) (i.e. π∗1(ω) = f(z)dz).

Let z ∈ H such that [αz] ∈ X(Γ2) is not a branch point of h. Away
from the finite subset of elliptic points and cusps, the preimage h−1([αz])
is [α−1Γ2αz] =

⊔
j [βjz], so we can choose a chart U in X(Γ2) around [αz]

such that h−1(U) is the disjoint union of charts Vj in X(Γ1) on which
hj := h|Vj = β−1

j . On U , h∗(ω) is then given by h∗(ω) =
∑

j(h
−1
j )∗(ω|Vj ).

Hence, locally,

π∗2(h∗(ω)) =
∑

j

(h−1
j ◦ π2)

∗(ω|Vj )

=
∑

j

(π1 ◦ βj)
∗(ω|Vj ) =

∑

j

(βj)
∗(π∗1(ω|Vj ))

=
∑

j

(βj)
∗(f(z)dz) =

∑

j

f [βj ]2(z)dz.

which shows that π∗2(h∗(ω)) = f [α]2dz.
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2. Let f ∈ S2(Γ2) and ω ∈ Ω1
hol(X(Γ2)) the differential form associated to f

(i.e. π∗2(ω) = f(z)dz). Then π∗1 ◦h
∗ = (h ◦π1)

∗ = (π2 ◦α)
∗ = α∗ ◦π∗2. Thus,

we get that

π∗1(h
∗(ω)) = α∗(π∗2(ω)) = α∗(f(z)dz) = f [α]2(z)dz.

Proof of Proposition 3.33. By Proposition 3.22 and Lemma 3.35, the diagram

S2(Γ2)
∗

(
∑

j [βj ]2)
∗

//

��

S2(Γ
(2))∗

([α]2)∗ //

��

S2(Γ
(1))∗

ι //

��

S2(Γ1)
∗

��
Jac(X(Γ2))

π∗

1 //

��

Jac(X(Γ(2)))
∼= //

��

Jac(X(Γ(1)))
(π2)∗ //

��

Jac(X(Γ1))

��
Pic0(X(Γ2))

π∗

1 // Pic0(X(Γ(2)))
∼= // Pic0(X(Γ(1)))

(π2)∗ // Pic0(X(Γ1))

commutes, where the star on the maps on the top row denote dualization and
Γ(2)\Γ2 = ⊔jΓ

(2)βj . But [α]2 ◦ (
∑

j [βj ]2) = [Γ1αΓ2]2 since Γ1αΓ2 = ⊔jΓ1αβj ,
whence the claimed equality.

4.2. Hecke operators explicitly

We now compute explicit expressions for the Hecke operators in the case Γ =
Γ1(N) and ∆ = ∆1(N) as in Example 3.7. By Lemma 3.10, Tn : Mk(Γ1(N)) →
Mk(Γ1(N)) is explicitly given by

Tnf =
∑

a

n/a−1∑

b=0

f

[
σa

(
a b
0 n/a

)]

k

, (3.6)

where the first sum is over the integers a > 0 such that a | n and (a,N) = 1.

Proposition 3.36. Suppose that (n,N) = 1. For f =
∑

m am(f)q
m ∈Mk(Γ1(N)),

the Fourier series of Tnf is given by
∑

m am(Tnf)q
m, where

am(Tnf) =
∑

d|(m,n)

dk−1amn/d2(〈d〉f).

Proof. For a ≥ 1 an integer, let ga = 〈a〉f =
∑

l≥0 al(ga)q
l. According to Equation

(3.6), we have

Tnf =
∑

a

n/a−1∑

b=0

ga

(
az + b

n/a

)
(n/a)−knk−1

=
∑

a

n/a−1∑

b=0

∑

l≥0

al(ga)(n/a)
−ke

(
az + b

n/a

)l
nk−1

=
∑

a

∑

l≥0

al(ga)(n/a)
−ke(a2z/n)lnk−1

n/a−1∑

b=0

e

(
l

n/a

)b

=
∑

l≥0

∑

a

χn/a(l)al(ga)a
k−1qla

2/n,
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where χn/a = 1 − 1n/a : Z/(n/a) → Z for 1n/a the trivial Dirichlet character
modulo n/a. This gives the result by identifying the coefficient of qm in this
expression for m ≥ 0.

Remark 3.37. This gives easily that

al(TmTnf) =
∑

d|(m,n)

dk−1al(Tmn/d2f)

for all l,m, n ≥ 0, hence proving Lemmas 3.15 and 3.12 where we see the Hecke
operators as operators on modular forms.

5. Modules over the Hecke ring

Let Γ,∆ satisfy the hypotheses of Proposition 3.6, so that we can consider the
Hecke ring R = R(Γ,∆). By the previous sections,

1. Div(X(Γ)) is a R-module, with Div(Y (Γ)) and Div0(X(Γ)) as submodules.

2. Pic0(X(Γ)) and Jac(X(Γ)) are isomorphic R-modules.

3. For all integers k, Mk(Γ) is a R-module with Sk(Γ) as a submodule.

Moreover, in the particular case Γ = Γ1(N), ∆ = ∆1(N), we have that

1. Div(S1(N)) is a R-module, isomorphic to Div(Y1(N)) (by transfer of struc-
ture).

2. S2(Γ1(N))∗/Λ ∼= Jac(X1(N)) as R-modules.

In what follows, let Γ = Γ1(N) and ∆ = ∆1(N).

5.1. The Hecke algebra

Definition 3.38. The Hecke algebra TZ is the subring TZ = Z[{Tn, 〈n〉 : n ≥ 0}]
of the Hecke ring R(Γ,∆).

Definition 3.39. The Hecke algebra TZ of level k with respect to Γ is the image
of T in End(Sk(Γ)). The complex Hecke algebra TC of level k with respect to Γ
is the complex algebra generated by TZ in End(Sk(Γ)).

5.2. Duality between S2(Γ1(N)) and the complex Hecke algebra

By analyzing how Hecke operators act on coefficients of cusp forms, we find the
following:

Proposition 3.40. There is a perfect pairing TC×S2(Γ1(N))→ C, inducing an
isomorphism of TZ-modules TC ∼= S2(Γ1(N))∗.

Proof. We define Φ : TC × S2(Γ1(N))→ C by Φ(T, f) = a1(Tf), which is clearly
C-linear in both components. To prove nondegeneracy, we use the fact that for
T ∈ TC and f ∈ S2(Γ1(N)), we have by Proposition 3.36 that

a1(Tnf) = an(f)

for all n ≥ 0. If f ∈ S2(Γ1(N)) is such that Φ(T, f) = 0 for all T ∈ TC,
then an(f) = a1(Tnf) = Φ(Tn, f) = 0 for all n ≥ 0, so f = 0. On the other
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hand, if T ∈ TC is such that Φ(T, f) = 0 for all f ∈ S2(Γ1(N)), we get that
an(Tf) = a1(TnTf) = a1(TTnf) = Φ(T, Tnf) = 0 for all f and n ≥ 0, which
implies that T is the zero operator on S2(Γ1(N)).

6. Hecke operators on cusp forms

In this section, we study Hecke operators on the spaces of cusp forms in more
detail. In particular, we see that there exists a canonical basis for cusp forms at
any given level and weight, which is made of simultaneous eigenvectors for almost
all Hecke operators.

6.1. Normal Hecke operators

Let Γ be a congruence subgroup of SL2(Z). Recall the Petersson inner product
on the space of cusp forms of weight k with respect to Γ, defined by

〈 · , · 〉 : Sk(Γ)× Sk(Γ) → C

(f, g) 7→
1

Voldµ(X(Γ))

∫

X(Γ)
f(z)g(z) Im(z)kdµ(z),

where dµ is the measure on X(Γ) induced by the GL+
2 (R)-invariant hyperbolic

measure (dx ∧ dy)/y2 on H (see [Miy06, 1.9,2.2] and [DS06, 5.4]). Note that, al-
though f, g are not Γ-invariant, the integral makes sense since z 7→ f(z)g(z) Im(z)k

is.

Hence, Sk(Γ) is an inner product space.

Proposition 3.41. For n coprime to N , the Hecke operators Tn and 〈n〉 on
Sk(Γ1(N)) are normal. More precisely, we have 〈p〉∗ = 〈p〉 and T ∗

p = 〈p〉−1Tp for
p ∤ N .

Sketch of the proof. The first step is to prove that [ΓαΓ]∗k = [Γdet(α)α−1Γ]k for
all α ∈ GL+

2 (Q). From there, we can deduce the expressions for 〈p〉∗ and T ∗
p .

Since the Hecke algebra is commutative, it follows that 〈p〉 and Tp are normal.
The general result follows by Lemmas 3.12 and 3.15. See [DS06, 5.5] or [Miy06,
4.5] for the details.

This implies the following very important result:

Theorem 3.42. There exists a basis of S2(Γ1(N)) constituted of simultaneous
eigenvectors of the operators Tn, 〈n〉 for n coprime to N .

Proof. Immediately follows from the spectral theorem, since {Tn, 〈n〉 : (n,N) = 1}
is a commuting family of normal operators of the finite-dimensional inner-product
space S2(Γ1(N)).

6.2. Oldforms and newforms

The elements of the basis of Theorem 3.42 are a priori only simultaneous eigen-
vectors for the Hecke operators away from the level N . By distinguishing forms
“coming from” the lower level, this restriction can be removed.
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Let us fix a level N ≥ 1. For any M | N , we have an inclusion Γ1(N) ⊂ Γ1(M),
so an inclusion

Sk(Γ1(M)) ⊂ Sk(Γ1(N)).

For any d | N/M , we also have by Remark 3.30 an injective map Sk(Γ1(M)) →
Sk(Γ1(Md)), since αΓ1(Md)α−1 ⊂ Γ1(M) for α =

(
d 0
0 1

)
∈ GL+

2 (Q). Thus, we
get an injective map

ιd : Sk(Γ1(M))→ S1(Γ1(Md)) ⊂ S1(Γ1(N)).

To distinguish the forms coming from lower levels, we make the following defini-
tion:

Definition 3.43. The space of oldforms of Sk(Γ1(N)) is

Sk(Γ1(N))old =
∑

M |N


Sk(Γ1(M)) +

∑

d|N/M

ιd(Sk(Γ1(M)))


 ⊂ Sk(Γ1(N)).

Definition 3.44. The space of newforms Sk(Γ1(N))new is the orthogonal comple-
ment of Sk(Γ1(N))new in Sk(Γ1(N)) with respect to the Petersson inner product.

6.3. Canonical orthogonal basis of eigenforms

We will now see that the space of newforms has a canonical orthogonal basis with
eigenvectors for all Hecke operators (and not only those away from the level).
From this basis, it will be possible to obtain a basis of Sk(Γ1(N)).

Proposition 3.45. The subspaces Sk(Γ1(N))new and Sk(Γ1(N))old are stable un-
der the Hecke algebra.

Proof. This is a computation that can be found [DS06, Proposition 5.6.2].

Corollary 3.46. The spaces Sk(Γ1(N))new and Sk(Γ1(N))old both admit a basis
of simultaneous eigenvectors for the operators Tn, 〈n〉 for (n,N) = 1.

Definition 3.47. An eigenvector inMk(Γ1(N)) for all the Hecke operators Tn, 〈n〉
(n ≥ 1) on Mk(Γ1(N)) will be called a (Hecke) eigenform.

Definition 3.48. A newform for Sk(Γ1(N)) is a normalized (i.e. a1(f) = 1)
eigenform in Sk(Γ1(N))new.

Remark 3.49. Note that under this nomenclature, newforms are not the elements
of the space of newforms, only some particular elements.

The fundamental theorem is now the following:

Theorem 3.50. The set of newforms for Sk(Γ1(N)) is an orthogonal basis of
Sk(Γ1(N))new, and if f ∈ Sk(Γ1(N))new is a newform, then

Tnf = an(f)f for all n ≥ 0.

More precisely, any eigenvector in S2(Γ1(N))new for the Hecke operators Tn, 〈n〉
with (n,N) = 1 is a Hecke eigenform.

Proof.
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− The main step is the following result of Atkin and Lehner: if f ∈ Sk(Γ1(N))
is such that an(f) = 0 for all integers n ≥ 1 coprime to N , then f ∈
Sk(Γ1(N))old. For the details, see [DS06, 5.7] or [Miy06, 4.6].

− Let f ∈ Sk(Γ1(N)) be an eigenform for the operators Tn, 〈n〉 when (n,N) =
1. For any such n, let cn ∈ C be such that Tn(f) = cnf . By Proposition
3.36, we have

cna1(f) = a1(cnf) = a1(Tnf) = an(f)

when (n,N) = 1. If f ∈ Sk(Γ1(N))new is nonzero, this implies that a1(f) 6=
0 by the previous paragraph. By scaling f , we can suppose that a1(f) = 1.
For any n ≥ 0, the form gn = Tnf − an(f)f is an element of Sk(Γ1(N))new

and an eigenform for the operators Tm, 〈m〉 when (m,N) = 1. But

a1(gn) = a1(Tnf)− a1(an(f)f) = an(f)− an(f) = 0

by Proposition 3.36, so that gn ∈ Sk(Γ1(N))old, as above. It follows that
gn = 0, i.e. Tn(f) = an(f)f for all n ≥ 0.

− By Corollary 3.46, there exists a basis of Sk(Γ1(N))new composed of si-
multaneous eigenforms for the operators Tn, 〈n〉 when (n,N) = 1. By the
previous paragraph, we can suppose that these elements are normalized,
and we then get that they are newforms. Thus, S1(Γ1(N))new has a basis
of newforms by the previous paragraph.

− Finally, we prove that the set of newforms in S1(Γ1(N))new is linearly inde-
pendent. If there exist αi ∈ C (1 ≤ i ≤ n) such that

n∑

i=1

αifi = 0

for newforms fi ∈ S1(Γ1(N))new, then

n∑

i=1

αi(am(f1)− am(fi))fi = 0

for any integer m ≥ 0 by applying the operator am(f1)−Tm. If we suppose
that n ≥ 2 is the minimal number of basis elements needed to have a
relationship of linear dependence, it gives am(fi) = am(f1) for all integers
m ≥ 0 and i = 1, . . . , n. Hence, f1 = · · · = fn, a contradiction. This shows
that the set of newforms in S1(Γ1(N))new is a basis of that space.

6.4. Basis for the space of cusp forms

From this canonical basis, we can now obtain a basis of the full space of cusp
forms Sk(Γ1(N)). Recall that by definition,

Sk(Γ1(N)) = Sk(Γ1(N))new ⊕ Sk(Γ1(N))old

= Sk(Γ1(N))new ⊕
∑

M |N


Sk(Γ1(M)) +

∑

n|N/M

ιn(Sk(Γ1(M)))


 .

Since ιn(f)(z) = f(nz) for any f ∈ Sk(Γ1(M)), nM | N and z ∈ H, we get by
Theorem 3.50 that the set

Bk(N) = {f(nz) : f ∈ Sk(Γ1(M)) newform, nM | N}
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spans Sk(Γ1(N)). Actually, we find that these elements are linearly independent
as well:

Theorem 3.51. The set Bk(N) is a basis of Sk(Γ1(N)).

Proof. See [DS06, 5.8] for a sketch of the proof, using the Strong multiplicity one
Theorem.

Remark 3.52. Most of the above results also hold with Γ1(N) replaced by Γ0(N);
this is proven in [AL70].

7. L-functions

Recall that if f ∈ Mk(Γ1(N)), we defined a L-function associated to f by the

series L(f, s) =
∑

n≥0
an(f)
ns (see Appendix B).

Proposition 3.53. If f ∈ Mk(Γ1(N)) is a normalized eigenform, then we have
an Euler product expansion

L(f, s) =
∏

p

(1− ap(f)p
−s + pk−1−2s)−1.

Proof. By hypothesis, a1(f) = 1. By Lemma 3.12 or Remark 3.37, the arithmetic
function n 7→ an(f) is multiplicative, since f is a normalized eigenform. Thus, the
theory of Dirichlet series implies that we have an expansion L(f, s) =

∏
p Lp(f, s),

where the local factor is

Lp(f, s) =
∑

n≥0

apn(f)p
−ns = (1− ap(f)p

−s + pk−1−2s)−1.

The last equality comes from the fact that

apn(f) = ap(f)apn−1(f)− pe−1apn−2(f)

for all n ≥ 1 by Lemma 3.15 or Remark 3.37.

Remark 3.54. It is easy to show that the converse also holds true: if the L-function
of a modular form f ∈ Mk(Γ1(N)) has an Euler product expansion, then f is a
normalized eigenform. See [Miy06, Lemma 4.5.12] or [DS06, 5.9].

Note the similarity with the L-function of an elliptic curve E defined over Q,
whose local factor at a prime p of good reduction is (1 − ap(E)p−s + p1−2s)−1.
This gives an indication of the relationship between elliptic curves and modular
forms.

Remark 3.55. Hecke proved that L-functions of cusp forms extend to entire func-
tions satisfying a functional equation. See [Miy06, 4.3.5] or [Shi71, 3.6]. Hence,
the Hasse-Weil conjecture for elliptic curves over Q follows from the modularity
theorem.
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Associating abelian varieties to modular forms

For any newform f ∈ S2(Γ1(N))new, we will now construct an associated abelian
variety that satisfy the conditions enumerated in the introduction.

Note that since S2(Γ0(N)) ⊂ S2(Γ1(N)), the construction will actually be done
more generally than the setting presented in the introduction.

The main references for this chapter are [DS06, Ch. 6], [Shi71, Ch. 7] and [Kna92,
Ch. XI].

In what follows, TZ denotes the Hecke algebra of weight k with respect to Γ1(N).

1. Number field associated to an eigenform

Let f ∈ S2(Γ1(N))new be a newform. Since f is a simultaneous eigenform for all
Hecke operators, we have a homomorphism

λf : TZ → C

defined by Tf = λf (T )f for every T ∈ TZ. By definition, imλf = Z[{an(f)}].

Proposition 4.1. The ring Z[{an(f)}] is finitely generated, and Q({an(f)}) is
a number field of degree equal to the rank of Z[{an(f)}].

Proof. By Section 3.3.2, Hecke operators act on Jacobians of modular curves. In
particular, we have a map

TZ → End(H1(X1(N)).

This is actually injective. Indeed, by Section 2.7.6, recall that

Jac(X1(N)) ∼= S2(Γ1(N))∗/Λ

for Λ the lattice of periods, and the action on the right-hand side is given by
composition with Hecke operators on cusp forms. Since Λ⊗R = S2(Γ1(N))∗, the
action on S2(Γ1(N))∗ is determined by the action on Λ ⊂ S2(Γ1(N))∗, whence
the injectivity. Since Λ is a finitely generated Z-module, the same holds then
true for End(Λ) and TZ. Thus, imλf is finitely generated, as a quotient of a
finitely generated Z-module. Finally, dimQQ({an(f)}) = dimQ(Z[{an(f)}]⊗Q) =
rankZ[{an(f)}].

Thus, we can make the following definition:

Definition 4.2. The number field of f is the field Kf = Q({an(f)}).

Corollary 4.3. If f ∈ S2(Γ1(N))new is a newform, then all Fourier coefficients
an(f) are algebraic integers.

Proof. Clear, since an(f) lies in the ring of integers of the number fieldQ({an(f)}).

54
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Finally, we let If = kerλf , so that

TZ/If ∼= Z[{an(f)}].

1.1. Action on cusp forms

We see that the set of complex embeddings of the number field of a normalized
eigenform in S2(Γ1(N)) acts on the set of such forms.

Definition 4.4. For f =
∑

n an(f)q
n ∈ S2(Γ1(N)) and σ : Kf → C an embed-

ding, we denote by fτ the function
∑

n σ(an(f))q
n.

Theorem 4.5. Let f ∈ S2(Γ1(N)) be a normalized eigenform. If σ : Kf → C is
an embedding of Kf , then fσ belongs to S2(Γ1(N)). Moreover, fσ is a newform
if f is a newform.

Sketch of the proof. Recall that Hecke operators act on the Jacobian Jac(X1(N)) ∼=
S2(Γ1(N))∗/Λ by composition (Proposition 3.33). Let ϕ1, . . . , ϕr be a Z-basis of
the lattice of periods Λ ⊂ S2(Γ1(N))∗, and let V = Cϕ1 ⊕ · · · ⊕ Cϕr so that

S2(Γ1(N))∗ = Rϕ1 ⊕ · · · ⊕ Rϕr ⊂ V.

The action of TZ on Λ extends to an action of TC on V , say ϕ 7→ ϕAT with
AT ∈Mr(Z), for all Hecke operators T ∈ TZ.

The technical step is to show that there exists a TZ-module V ′ such that

V = S2(Γ1(N))∗ ⊕ V ′

as TZ-modules and such that the systems of eigenvalues for TZ on the right-hand
side correspond to the systems of eigenvalues for TZ on S2(Γ1(N)) (see [DS06,
Ch. 6.5]).

Note that if {aT : T ∈ TZ} ⊂ C is a system of eigenvalues for TC corresponding
to an eigenvector ϕ ∈ V , then the same holds true for {σ(aT ) : T ∈ TZ}. Indeed,

ϕσAT = σ(ϕAT ) = σ(aTϕAT ) = σ(aT )ϕσAT .

Hence, if f ∈ S1(Γ1(N)) is a normalized eigenform corresponding to the system
of eigenvalues λf : TZ → C, and if σ : Kf → C is an embedding, the technical
step implies that σ ◦ λf is the system of eigenvalues of an element in S2(Γ1(N)),
the function fσ. The fact that images of newforms are newforms is proved using
the basis of Theorem 3.51.

Thus, we can define an equivalence relation ∼ on newforms in S1(Γ1(N)) by f ∼ g
if f = gσ for some σ ∈ Aut(C).

By “averaging”, we also find that:

Corollary 4.6. S2(Γ1(N)) has a basis of forms with integral coefficients.

Proof. Let f ∈ S2(Γ1(M)) be a newform for someM | N . Let σ1, . . . , σr : Kf → C
be the complex embeddings of Kf and let α1, . . . , αr be a basis of the Z-module
OKf

. For i = 1, . . . , r, define

fi =
r∑

j=1

σj(αi)fσj .
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Then (fi)σj = fi for all i, j, whence fi has rational Fourier coefficients for all
i. Since the latter are algebraic integers by Corollary 4.3, we obtain that fi has
integral Fourier coefficients. Finally, since (σj(αi)) ∈ Mr(C) is invertible, we get
that span(fσj : 1 ≤ i ≤ r) = span(fi : 1 ≤ i ≤ r), so that f ∈ span(fi : 1 ≤ i ≤ r).
By Theorem 3.50, it follows that S2(Γ1(N)) is spanned by forms with integral
coefficients.

2. The abelian variety associated to an eigenform

We can now define the abelian variety associated to an eigenform. Recall that
the Jacobian J1(N) = Jac(X1(N)) is an abelian variety of dimension equal to the
genus g of X1(N). The Hecke algebra TZ acts on J1(N) by morphisms. Thus

Qf =
∑

α∈If

α(J1(N)) ⊂ J1(N)

is an abelian subvariety of J1(N) by Section 1.1.2. Therefore, the quotient

Af := J1(N)/Qf

is an abelian variety of dimension g − dimQf by Proposition 1.56.

Definition 4.7. We call Af the abelian variety associated to the newform f ∈
S2(Γ1(N))new.

Remark 4.8. In [Shi71], the abelian variety considered is in fact the variety B
such that J1(N) is isogenous to B × Qf , given by Proposition 1.14. The final
results are the same since Af is isogenous to B. Actually, Shimura therefore
avoids Poincaré reducibility by using by Wedderburn’s theorem on semisimple
algebras to decompose TQ: we have

TQ ∼= R⊕K1 ⊕ · · · ⊕Kr,

where R is the nilradical and K1, . . . ,Kr are number fields (since TQ is commu-
tative). As above, consider the morphism λf : TQ → Kf , which is surjective.
For i = 1, . . . , r, this gives a morphism λf : Ki → Kf . Since λf (TQ) = Kf

and λf (R) = 0, this implies that there exists a unique i such that λf (Ki) 6= 0,
and λf (Ki) ∼= Kf . Supposing without loss of generality that i = 1, this yields
If = (R⊕K2 ⊕ . . .Kr) ∩ TZ.

2.1. The dimension of Af

We now compute the dimension of Af by finding a more explicit expression for
the complex abelian variety J1(N)/Qf as a complex torus.

Let S2 = S2(Γ1(N)) and Λ ⊂ S∗
2 the lattice of periods. Recall that there is:

1. an isomorphism between Ω1
hol(X1(N)) and S2 (Proposition 2.30), which

gives an isomorphism of TZ-modules between S∗
2 and Jac(X1(N)) (Proposi-

tion 3.33).

2. a duality between S2 and TC (Proposition 3.40).

Using these two relationships, we transfer Af from (a quotient of) Ω1
hol(X1(N))∗

to (a quotient of) the complex Hecke algebra. Let Λ be the image of Λ in S∗
2/IfS

∗
2 .
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We have

Af ∼=
S∗
2/Λ

If (S
∗
2/Λ)

∼=
S∗
2/Λ

(IfS
∗
2 + Λ)/Λ

∼=
S∗
2

IfS
∗
2 + Λ

∼=
S∗
2/IfS

∗
2

Λ
∼=
S2[If ]

∗

Λ|S2[If ]

as complex Lie group, where S2[If ] denotes the elements of S2 annihilated by If .
Using the duality of S2 and TC, we find that

S2[If ]
∗ ∼= TC/IfTC.

But there is a surjection (TZ/If )⊗ C→ TC/IfTC, so that

dim(S2[If ]
∗) ≤ dim((TZ/If )⊗ C) = rank(TZ/If ) = [Kf : Q].

If we let Vf ⊂ S2 be the C-linear span of {fσ : σ : Kf → C embedding}, we
note that dimVf = [Kf : Q] and Vf ⊂ S2[If ]. Thus, dimVf = dimS2[If ] and
therefore, we have S2[If ]

∗ = V ∗
f because the dimensions are equal. Hence,

Af ∼= V ∗
f /Λf

as complex Lie groups, where Λf = Λ|Vf
. Note that Λf is discrete in V ∗

f since Λ

is discrete is S∗
2 . From the compacity of Af , we finally obtain that Λf is a lattice

in V ∗
f . Hence, we get:

Proposition 4.9. The dimension of Af is equal to degKf . More precisely, we
have

Af ∼= V ∗
f /Λf ,

where V ∗
f is a complex vector space of dimension degKf and Λf is a lattice.

2.2. The action of Z[{an(f)}]

Note that by definition TZ/If ∼= Z[{an(f)}] acts on Af . Moreover, if an(f) is an
integer, it acts by multiplication. The following will be useful later:

Proposition 4.10. If x ∈ Z[{an(f)}] is nonzero, the morphism x : Af → Af is
surjective.

Proof. By Corollary 4.3, an(f) is an algebraic integer. Let Xr + · · ·+ b1X + b0 ∈
Z[X] be its minimal polynomial over Q. As an operator, an(f) therefore satisfies

an(f) ◦ (an(f)
r−1 + · · ·+ b1) = −b0.

Since multiplication by a nonzero integer is surjective (it is even an isogeny, see
Example 1.42), we have that an(f) : Af → Af is surjective and the general result
follows.

3. Decomposition of the Jacobian

We know that any complex abelian variety is completely reducible: it is isogenous
to a sum of simple abelian subvarieties (Corollary 1.16). Here, we decompose
J1(N) as a sum of varieties Af associated to newforms in S2(Γ1(N)).
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Theorem 4.11. There is an isogeny

J1(N) ∼
⊕

f

A
mf

f

where the sum is over a set of representatives of ∪Mf |NS2(Γ1(Mf )) by the actions
of the complex embeddings of Kf , and mf is the number of divisors of N/Mf .

Proof. For any integer n ≥ 1, let αn = ( n 0
0 1 ) ∈ GL+

2 (Q). By Theorem 3.50, a
basis of Sk(Γ1(N)) is given by

{f [αn]2 : f ∈ S2(Γ1(M)) newform, nM | N} .

For all nM | N and f ∈ S2(Γ1(M)), let

Φf,n : S2(Γ1(N))∗ → V ∗
f

be defined by Φf,n(ϕ)(h) = ϕ(h[αn]2) for any ϕ ∈ S2(Γ1(N))∗ and h ∈ Vf . We
note that Φf,n(Λ) ⊂ Λf . Indeed, let

∫
γ ∈ Ω1

hol(X1(N))∗ be a period corresponding

to ϕ ∈ Λ ⊂ S2(Γ1(N))∗, where γ is a curve in X1(N). In other words, for
g ∈ S1(Γ1(N)),

ϕ(g) =

∫

γ
ω,

where ω ∈ Ω1
hol(X1(N)) is such that π∗N (ω) = g(z)dz, with πN : H→ X1(N) the

projection. Then, for h ∈ S2(Γ1(M)),

Φf,n(ϕ)(h) = ϕ(h[αn]2) =

∫

γ
ω =

∫

γ̂
π∗N (ω) =

∫

γ̂
h[αn]2(z)dz =

∫

γ2

h(z)dz,

where

− ω ∈ Ω1
hol(X1(N)) is such that (πN )

∗(ω) = h[αn]2(z)dz.

− γ̂ is a curve in H such that (πN )∗(γ̂) = γ, i.e. any lift of γ in H.

− γ2 is the curve in H given by γ2(t) = nγ̂(t).

Let us take ω′ ∈ Ω1
hol(X1(M)) such that h(z)dz = π∗M (ω′). Therefore,

Φf,n(ϕ)(h) =

∫

γ2

(πM )∗(ω′) =

∫

(πM )∗(γ2)
ω′.

The curve γ2 is not closed in H, but (πM )∗(γ2) is. Indeed, let δN ∈ Γ1(N)) be
such that γ̂(0) = δN γ̂(1). Then

nγ̂(0) =

(
n 0
0 1

)
γ̂(0) =

[(
n 0
0 1

)
δN

(
n 0
0 1

)−1
]
nγ̂(1),

and the product in square brackets belongs to Γ1(M). Hence, we finally obtain
that Φf,n(ϕ) ∈ Λf as claimed.

Moreover, since Φf,n is clearly surjective, we get a surjective morphism

Φ : S2(Γ1(N))∗
⊕

f,n Φf,n
//
⊕

f,n V
∗
f
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such that Φ(Λ) ⊂
⊕

f,n Λf . This is actually an isomorphism. Indeed,

dim
⊕

f,n

V ∗
f =

∑

f

1

[Kf : Q]
dimS2(Γ1(N)) dimV ∗

f = dimS2(Γ1(N))∗.

Consequently, we get an isomorphism

Φ̂ : J1(N)→
⊕

f,n

V ∗
f /Φ(Λ).

The natural surjective map
⊕

f,n

V ∗
f /Φ(Λ)→

⊕

f,n

Af =
⊕

f,n

V ∗
f /Λf

has kernel
⊕

f,n Λf/Φ(Λ), which is finite since
⊕

f,n Λf and Φ(Λ) are two free
abelian groups of equal rank. Hence, by composing the two previous maps, we
get the desired isogeny J1(N)→

⊕
f,nAf .

The action of ap(f) on Af (see above) corresponds to the action of Tp on J1(N)
in the following way:

Proposition 4.12. If p ∤ N , there are commutative diagrams

J1(N)
Tp //

��

J1(N)

��

⊕
f,nAf

∏
f,n ap(f) //

��

⊕
n,f Af

��⊕
f,nAf

∏
f,n ap(f) //

⊕
n,f Af J1(N)

Tp // J1(N),

(4.1)

where the vertical map in the first diagram is the isogeny of Theorem 4.11, while
the vertical map in the second diagram is its dual isogeny.

Proof. 1. The map J1(N)→ ⊕f,nAf → ⊕f,nAf is given by

[ϕ] 7→ ([Φf,n(ϕ) ◦ Tp])f,n

while the map J1(N)→ J1(N)→ ⊕f,nAf is given by

[ϕ] 7→ ([Φf,n(ϕ ◦ Tp)])f,n.

Let nM | N and f ∈ S2(Γ1(M)). Note that for any g ∈ Vf ,

Φf,n(ϕ)(Tpg) = ϕ((Tpg)[αn]2)

Φf,n(ϕ ◦ Tp)(g) = ϕ(Tp(g[αn]2)),

so that it is sufficient to prove that the diagram

S2(Γ1(M))
Tp //

[αn]2
��

S2(Γ1(M))

[αn]2
��

S2(Γ1(Mn))

��

S2(Γ1(Mn))

��
S2(Γ1(N))

Tp // S2(Γ1(N))

(4.2)
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commutes, where the vertical arrows from the second row are the inclusions.
First of all, note that the result is obvious for 〈p〉 instead of Tp. By the
formula of Proposition 3.36, we have

am(Tpf) = amp(f) + pk−1χm(p)am/p(〈p〉f)

independently from the level, where χm = 1 − 1m : Z/m → Z for 1m the
trivial Dirichlet character modulom. Note that am([αn]f ) = χm(n)am/n(f),
thus

am(Tp(f [αn]2)) = amp(f [αn]2) + pk−1χm(p)am/p(〈p〉(f [αn]2))

= χmp(n)namp/n(f) + pk−1χm(p)am/p(〈p〉(f [αn]2))

= χmp(n)namp/n(f) + pk−1χm(p)am/p((〈p〉f)[αn]2)

= χmp(n)namp/n(f) + pk−1χm/p(n)χm(p)nam/(np)(〈p〉f)

am((Tpf)[αn]2) = χm(n)nam/n(Tpf)

= χm(n)n
(
amp/n(f) + pk−1χm(np)am/(np)(〈p〉f)

)
,

where the third equality used the commutativity of Diagram (4.2) for 〈p〉.
Since p ∤ N , it follows that (n, p) = 1 and that the two expressions above
are equal.

2. The diagram

J1(N)
Tp //

��

��

☎
✌
✖
✤
✭
✶
✿

J1(N)

��

��

✿
✶
✭
✤

✖
✌

☎

⊕
n,f Af

��

∏
f,n ap(f) //

⊕
n,f Af

��
J1(N)

Tp // J1(N)

is such that the top square commutes, the vertical arrows are surjective
(being isogenies), and the dotted arrows are multiplication by an integer
(the degree of the isogenies). Since multiplication by integers commutes
with Tp on J1(N), the outer square commutes. Hence, we get that the
bottom square commutes as well.

4. Construction for Γ0(N)

By Remark 3.52, the theory of newforms and oldforms for Γ1(N) also holds for
Γ0(N). Using the same constructions as above, we could also associate an abelian
variety to a newform in Γ0(N), and the same results would hold, with a decom-
position of J0(N) as in Theorem 4.11.

If f ∈ S2(Γ0(N)) is a newform, then f is also a newform in S2(Γ1(N)), and we
have two abelian varieties

Af = Jac(X1(N))/If Jac(X1(N)) and A′
f = Jac(X0(N))/If Jac(X0(N))

associated to f .
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Proposition 4.13. The complex abelian varieties Af and A′
f are isogenous.

Proof. Let again Vf be the linear subspace of S2(Γ0(N)) generated by the set
[f ] = {σf : σ : Kf → C embedding}. Then,

Af ∼= V ∗
f /Λf and A′

f
∼= V ∗

f /Λ
′
f ,

where Λ′
f = Λ′ |Vf for Λ′ the lattice of periods of S2(Γ0(N))∗. Consider the natural

surjective morphism ϕ : X1(N) → X0(N) and the induced homomorphism ϕ∗ :
H1(X1(N))→ H1(X0(N)). Then ϕ∗(H1(X1(N))) is a subgroup of H1(X0(N)) of
finite index. Indeed, the map ϕ∗ ◦ϕ

∗ : Ω1(X)→ Ω1(X) is given by multiplication
by degϕ, which implies that (degϕ)H1(X0(N)) ⊂ ϕ∗(H1(X1(N))). Hence,

H1(X0(N))/ϕ∗(H1(X1(N))) ∼=
H1(X0(N))/(degϕ)H1(X0(N))

ϕ∗(H1(X1(N)))/(degϕ)H1(X1(N))
,

which is a quotient of (Z/ degϕ)2g for g the genus of X0(N). It follows that Λf
is a subgroup of Λ′

f of finite index as well, so that the natural map Af → A′
f is

an isogeny.



Chapter 5

Definition over Q

A priori, the abelian varieties we associated to cusp forms in S2(Γ1(N)) in Chapter
4 are defined over C. However, in this chapter we will see that the modular curves
X1(N) and X0(N) (as algebraic curves), their Jacobians (as abelian varieties) and
the Hecke operators (as morphisms of abelian varieties) can be defined over Q,
showing that abelian varieties associated to newforms can actually be defined over
Q as well. In some sense, Corollary 4.6 gives an indication of that.

Since the abelian varieties obtained from Jac(X1(N)) are isomorphic to the abelian
varieties obtained from Jac(X0(N)) (see Proposition 4.13), we will mainly focus
on X1(N).

This chapter is based on [DS06, Ch. 7] and its exercises, which are a particu-
lar/explicit case of the work of Shimura on canonical models for modular curves
in [Shi71] (see Remark 5.2 below). Additional and more advanced details can be
found in [DI95, III.8].

Some parts of this chapter may seem a bit technical, but the underlying ideas are
very interesting: we relate functions on modular curves to coordinates of points of
an elliptic curve over Q(j) (as algebraic functions), to make use of the arithmetic
of elliptic curves, in particular the Weil pairing.

1. The modular curve is defined over Q

For Γ a congruence subgroup of SL2(Z), recall that X(Γ)alg is the unique complex
projective curve that is isomorphic to X(Γ) as compact Riemann surfaces. The
goal of this section is to prove the following:

Theorem 5.1. The curve X1(N)alg can be defined over Q, that is, there exists an
algebraic curve X1(N)Q defined over Q such that X1(N)Q ∼= X1(N)alg as complex
algebraic curves. The same result holds true for X0(N).

Remark 5.2. In [Shi71, 6.6-6.7], Shimura gives compatible models over number
fields for modular curves with respect to congruence subgroups. In Chapter 6, we
will see other models, in relation to moduli spaces of elliptic curves.

Remark 5.3. We will only prove Theorem 5.1 for X1(N), but the method for
X0(N) is exactly the same and would follow easily. Moreover, the proof will also
show that X(N) can be defined over Q(µN ), where µN ∈ C is a primitive Nth
root of unity.

To prove this result, we use the correspondence between function fields and curves
(see [Har77, I.6] and [Ful08, Ch. 7] for a more explicit point of view) and Galois
theory on the function fields.

62
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1.1. Function fields of modular curves

The first step is to determine the function fields of the modular curves X(N)alg
and X1(N)alg. Recall that these are equal to the function fields of the cor-
responding compact Riemann surfaces. By composition with the surjections
X(N)→ X1(N) and X1(N)→ X(1), we have inclusions

C(X(1)) ⊂ C(X1(N)) ⊂ C(X(N)).

Proposition 5.4. We have C(X(1)) = C(j).

Proof. Note that C(X(1)) is the space of meromorphic modular form of weight
0 with respect to SL2(Z). Hence, C(j) ⊂ C(X(1)). On the other hand, if f ∈
C(X(1)) is meromorphic, let z1, . . . , zn be its zeros and poles in Y (1). Then the
meromorphic function g ∈ C(X(1)) defined by g(z) =

∏n
i=1(j(z) − j(zi))

ordzi (f)

is such that f/g has no zeros or poles except possibly at [∞]. Since the degree of
the divisor of a meromorphic function on a compact Riemann surface is zero, it
follows that f/g is constant, whence f ∈ C(j).

Lemma 5.5. For any v = (v1, v2) ∈ Z2 − 0, the function fv : X(Γ(N)) → C of
Paragraph 2.6.2, defined by

fv(z) =
g2(z)

g3(z)
℘z

(
v1z + v2

N

)

belongs to C(X(N)). Moreover, fv = fw if and only if v ≡ ±w (mod N) and
fv(γz) = fγv(z) for all γ =

(
a b
c d

)
∈ SL2(Z), z ∈ H.

Proof. First of all, we note that if v = (v1, v2) ∈ Z2 − 0, γ ∈ SL2(Z) and z ∈ H,
then

fv(γz) = (cz + d)2
g2(z)

g3(z)
℘γz

(
1

cz + d

(av1 + bv2)z + (cv1 + dv2)

N

)
= fγv(z),

using that Λγz = (cz + d)−1Λz and ℘λz(λz) = λ−2℘z(z) for all λ ∈ C∗. The
assertion fv = fw if and only if v ≡ ±w mod N follows from the fact that
(℘z, ℘

′
z) gives an isomorphism from C/Λz to an elliptic curve. It remains to check

that fv is meromorphic on H and at the cusps. The first assertion is clear. For the
second, it suffices to show that fv is meromorphic at∞ for all v = (v1, v2) ∈ Z2−0
by the above transformation law. By invoking uniform convergence to permute
sums and limits, we see that limIm(z)→∞ ℘z((v1z + v2)/N) exists and is finite,
leading to the assertion.

Proposition 5.6. The field extension C(X(N))/C(1) is Galois with Galois group
SL2(Z/N)/±. Moreover, we have

C(X(N)) = C(j, {fv : v ∈ Z2 − 0}) and C(X1(N)) = C(j, f1),

where f1 = f (0,1)
t
.
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Proof.

− By Proposition 5.4 and Lemma 5.5, we have the inclusions

C(j) ⊂ C(j, {fv : v ∈ Z2 − 0}) ⊂ C(X(N)).

Let us consider the action of SL2(Z) on C(X(N)) given by composition:
γf = f ◦ γ for γ ∈ SL2(Z). This is well-defined, since if γN ∈ Γ(N), then
γNγ ≡ γγN (mod Γ(N)), so that f([γγNz]) = f([γNγz]) = f([γz]) for all
z ∈ H. For v ∈ Z2− 0, Lemma 5.5 says that the action of γ ∈ SL2(Z) on f

v

is given by
γfv = fγv.

If we let Φ : SL2(Z) → Aut(C(X(N))) be the associated homomorphism,
we note that ±Γ(N) ⊂ kerΦ by Lemma 5.5. Conversely, if γ ∈ kerΦ, we
get fvγ = fv for all v ∈ Z2 − 0, so vγ ≡ ±v (mod N); this implies that
γ ∈ ±Γ(N). Hence, kerΦ = ±Γ(N) and we have an isomorphism

SL2(Z)/± Γ(N) ∼= Φ(SL2(Z)) ⊂ Aut(C(X(N))).

By Galois theory, C(X(N))/C(X(N))Φ(SL2(Z)) is a Galois extension with
Galois group SL2(Z)/ ± Γ(N) ∼= SL2(Z/N)/±. An element f ∈ C(X(N))
belongs to C(X(N))Φ(SL2(Z)) if and only if it is SL2(Z)-invariant, i.e. f ∈
C(X(1)).

− As we have just seen, Gal(X(N)/C(j, {fv : v ∈ Z2 − 0})) is the trivial
subgroup in SL2(Z/N)/±, so C(j, {fv : v ∈ Z2 − 0}) = C(X(N)).

− Note that f1 ∈ C(X1(N)), so that C(j, f1) ⊂ C(X1(N)). Indeed, if γ ∈
Γ1(N), we have f1(γz) = fγ(0,1)

t
(z) = f1(z) for all z ∈ H.

Then, we note that Gal(C(X(N))/C(j, f1)) = ±Γ1(N)/±Γ(N). Indeed, if γ
belongs to this Galois group, we have f1 = γf1 = fγ(0,1)

t
, so γ ∈ ±Γ1(N)/±

Γ(N) and conversely. By definition, C(X(N))±Γ1(N)/±Γ(N) = C(X1(N)),
thus C(X1(N)) = C(j, f1) as claimed.

Remark 5.7. We can very similarly determine the function field of C(X0(N)), see
[DS06, 7.5.1].

Corollary 5.8. For all v ∈ Z2 − 0, we have fv ∈ C(j).

1.2. Outline of the proof of Theorem 5.1

By the previous paragraph, we have

C(X(1)) ⊂ C(X1(N)) ⊂ C(X(N))

C(j)) ⊂ C(j, f1) ⊂ C(j, {fv : v ∈ Z2 − 0}).

Let us write Q(j, f1) = Q(j)[X]/(p1) for p1 ∈ Q(j)[X] the minimal polynomial of
f1 over Q(j). Suppose that we can prove the two following points:

Lemma 5.9. Q(j, f1) is a function field over Q.

Lemma 5.10. The minimal polynomial of f1 over C(j) is still p1.
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Then, by Lemma 5.9, there would exist a curve C defined over Q such that

Q(C) ∼= Q(j, f1) ∼= Q(j)[X]/(p1).

Over the complex numbers, we get that

C(C) ∼= C(j)[X]/(p1) ∼= C(j, f1)

by Lemma 5.10, which gives Theorem 5.1.

1.3. The function field of X(N) and the universal elliptic curve

To prove the two Lemmas above, we begin with a more natural way to see f1 that
is related to elliptic curves. This occurs naturally, as modular curves correspond
to moduli spaces of elliptic curves.

Recall that for any z ∈ H, we have an isomorphism (℘z, ℘
′
z) : C/Λz → E, where

E is a complex elliptic curve of j-invariant j(z). If j(z) 6= 0, 1728, composing
with the change of variable (x, y) 7→ (u2x, u3y) for u = (g2(z)/g3(z))

1/2 gives the
elliptic curve

Ej(z) : y
2 = 4x3 −

(
27j(z)

j(z)− 1728

)
x−

(
27j(z)

j(z)− 1728

)
,

isomorphic to E. Thus, any elliptic curve over C with j-invariant j(z) 6= 0, 1728
is isomorphic to Ej(z).

Lemma 5.11. For any z ∈ H such that j(z) 6= 0, 1728, we have

x(Ej(z)[N ]) = {fv(z) : v ∈ Z2 − 0},

where x(Ej(z)[N ]) ⊂ C denotes the set of first coordinates of affine points of
Ej(z)[N ].

Proof. For any z ∈ H, we have seen above that Ej(z) ∼= C/Λz as abelian varieties.
In particular,

Ej(z)[N ] ∼= (C/Λz)[N ] = 〈[1/N ]Λz , [z/N ]Λz〉.

By computing the image of v1[1/N ]Λz + v2[z/N ]Λz ∈ (C/Λz)[N ] by the above
isomorphism for v = (v1, v2) ∈ Z2 − 0, we directly find that the first coordinate
of the corresponding point in Ej(z)[N ] is

g2(z)

g3(z)
℘z

(
v1z + v2

N

)
= fv(z).

Extension to algebraic functions By considering j as a variable, we can further-
more consider the universal elliptic curve

Ej : y
2 = 4x3 −

(
27j

j − 1728

)
x−

(
27j

j − 1728

)

defined over Q(j). Lemma 5.11 then extends as follows:
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Proposition 5.12. Considering fv as an element of C(j) for all v ∈ Z2 − 0, we
have

x(Ej [N ]) = {fv : v ∈ Z2 − 0},

where x(Ej [N ]) ⊂ C(j) denotes the set of first coordinates of affine points of
Ej [N ].

Before giving the proof, we review a few facts from the theory of algebraic func-
tions (see [vdW03, XIII.92]). For an algebraically closed field k, let us consider
the function field k(X) and its algebraic closure k(X). An algebraic function f ,
i.e. f ∈ k(X), can be seen as a partial multi-valued function on k. Indeed, let
ϕ ∈ k(X)[Y ] be the minimal polynomial of f over k(X), and let ϕ1, . . . , ϕn be
the denominators of its coefficients, where we suppose without loss of generality
that all coefficients are reduced fractions. For each x ∈ k−V (ϕ1, . . . , ϕn), we can
consider the polynomial ϕx ∈ k[Y ] given by the evaluation of the coefficients of
ϕ at X = x, and we call such an x an admissible argument. The values of f at x
are then

f(x) := V (ϕx) = {y ∈ k : ϕx(y) = 0}.

The following result generalizes the fact that a polynomial in k[X] vanishes if and
only if it is zero as a function on k.

Lemma 5.13. Let f ∈ k(X) and F ∈ k[X,Y ]. Then F (X, f) = 0 ∈ k(X) if and
only if F (x, y) = 0 ∈ k for any admissible argument x ∈ k and y ∈ f(x).

Proof. See the two theorems of [vdW03, XIII.92].

Proof of Proposition 5.12. Let v ∈ Z2 − 0 and let ϕ ∈ C(j)[X] be the minimal
polynomial of fv ∈ C(j). Since ϕ(fv) = 0, Lemma 5.13 gives that ϕj(z)(f

v(z)) = 0
for almost all z ∈ H. Moreover, Proposition 5.6 shows that the values for fv at z
are fw(z) for w ∈ Z2−0. By [Sil09, Ex. III.3.7], there is a polynomial ψN ∈ Z[j,X]
such that for x ∈ C(j), we have

f ∈ x(Ej [N ]) ⊂ C(j) if and only if ψN (j, f) = 0.

If z ∈ H is such that j(z) 6= 0, 1728, then Ej specializes to the curve Ej(z) and
also

x ∈ x(Ej(z)[N ]) ⊂ C if and only if ψN (j(z), x) = 0.

Thus, by Lemma 5.11, we have ψN (j(z), f
v(z)) = 0 for all z ∈ H such that

j(z) 6= 0, 1728 and for all v ∈ Z2 − 0, which implies that ψN (j, f
v) = 0 by the

Lemma. Hence, fv ∈ x(Ej [N ]) and

{fv : v ∈ Z2 − 0} ⊂ x(Ej [N ])− {0}.

By Lemma 5.5, the left-hand side set has size

|((Z/N)2 − 0)/± | = |(Z/N)2/± | − 1 =

{
N2/2 + 1 if N is even

(N2 + 1)/2− 1 if N is odd.

On the other hand |Ej [N ]| = N2, and an element in x(Ej [N ])− 0 corresponds to
two points in Ej [N ] except in the case that it corresponds to one of the points
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(xi, 0) ∈ E (i = 1, 2, 3). Since [N ](xi, 0) = 0 if N is even and [N ](xi, 0) = (xi, 0)
otherwise, we find that

|x(Ej [N ])| =

{
N2/2 + 2 if N is even

(N2 + 1)/2 if N is odd,

whence the result.

Corollary 5.14. We have C(X(N)) = C(j, x(Ej [N ])).

Proposition 5.15. The field extension C(j, π(Ej [N ]))/C(j) is Galois and there
is a commutative diagram

Gal(C(j, π(Ej [N ]))/C(j))
Φ
∼=

//

��

SL2(Z/N)

��
Gal(C(j, x(Ej [N ]))/C(j))

∼= // SL2(Z/N)/±,

where the bottom isomorphism is the one defined in Proposition 5.6.

Proof. The field C(j, π(Ej [N ])) is obtained from C(j, x(Ej [N ])) by adjoining a

square root for each element of x(Ej [N ]). Since Ej [N ] ⊂ C(j) is finite, the exten-
sion C(j, π(Ej [N ])) is finite over C(j) as well. Moreover, it is then also normal:

if σ : C(j, π(Ej [N ])) → C(j) is a C(j)-embedding, then the restriction of σ on
C(j, x(Ej [N ])) has its image in C(j, x(Ej [N ])). Since σ permutes x(Ej [N ]), it per-
mutes the square roots adjoined so that σ is an automorphism of C(j, π(Ej [N ])).

Let G = Gal(C(j, π(Ej [N ]))/C(j)). By taking a Z-basis (P,Q) for Ej [N ] ∼=
(Z/N)2, we obtain a faithful representation Φ : G → GL2(Z/N). We will now
show that imΦ = SL2(Z/N).

− On one hand, for any σ ∈ G, the Weil pairing eN satisfies (see [Sil09, III.8])

eN (P,Q) = σ(eN (P,Q)) = eN (σ(P ), σ(Q)) = eN (P,Q)detΦ(σ), (5.1)

where the first equality comes from the fact that σ fixes C, which contains
all roots of unity. Since eN (P,Q) is a primitive Nth root of unity, we can
conclude that detΦ(σ) ≡ 1 (mod N), so that imΦ ⊂ SL2(Z/N).

− On the other hand, if we let J = Gal(C(j, π(Ej [N ]))/C(j, x(Ej [N ]))), we
get that G/J ∼= SL2(Z/N)/±, thus

|G| = |J |
| SL2(Z/N)|

2
.

The following diagram summarizes the setting:

C(j, π(Ej [N ]))

J

GC(j, x(Ej [N ]))

SL2(Z/N)/±

C(j).

It is then sufficient to show that that |J | = 2. Remark that Φ(J) ⊂ {±I}:
if σ ∈ J , then σP (resp. σQ) has the same x-coordinate as P (resp. Q),
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so that σP = ±P and σQ = ±Q; since Φ(σ) ∈ SL2(Z/N), we must have
σ ∈ {±I}. Conversely, note that Φ−1({±I}) ⊂ J . Indeed, if σ ∈ G is such
that Φ(σ) = −I, we have σ(R) = −R for all R ∈ Ej [N ], whence σ ∈ J .

Suppose that |J | = 1, or equivalently −I 6∈ Φ(G) by the above. Then
| ± imΦ| = 2|G| = | SL2(Z/N)|, which implies that ± imΦ = SL2(Z/N).

Hence, −I =
[
±
(
0 −1
1 0

)]2
∈ imΦ, a contradiction.

Thus, imΦ = SL2(Z/N). Since a Z-basis of Ej [N ] is given by f (1,0)
t
, f (0,1)

t
, the

diagram of the statement is commutative.

1.4. Function fields over Q

By the above, we get the field extensions

C(j) ⊂ C(j, f1) ⊂ C(j, x(Ej [N ])) ⊂ C(j, π(Ej [N ])) ⊂ C(j),

where π(Ej [N ]) ⊂ Q(j) denotes in this context the set of first and second coordi-
nates of the affine points of Ej [N ]. Moreover, we can also consider Ej as a curve
defined over Q(j) and get the field extensions

Q(j) ⊂ Q(j, f1) ⊂ Q(j, x(Ej [N ])) ⊂ Q(j, π(Ej [N ])) ⊂ Q(j).

Note that to prove Lemma 5.9, it suffices to prove that

Q(j, f1) ∩Q = Q,

since Q(j, f1) has transcendence degree 1 over Q.

Proposition 5.16.

a) The field extension Q(j, π(Ej [N ]))/Q(j) is Galois.

b) All N th roots of unity are contained in Q(j, π(Ej [N ])).

c) We have Q(j, µN ) = C(j) ∩Q(j, π(Ej [N ])).

d) The diagram

Gal(C(j, π(Ej [N ]))/C(j))
Φ
∼=

//

∼=
��

SL2(Z/N)

��

Gal(Q(j, π(Ej [N ]))/Q(j, µN ))

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

��
Gal(Q(j, x(Ej [N ]))/Q(j))

∼= // GL2(Z/N)

commutes.

Proof.

a) This is proved as in Proposition 5.15.

b) We prove that all Nth roots of unity are contained in Q(j, π(Ej [N ])) so
that, even if we restricted from C to Q, we will still be able to use the ideas
of Proposition 5.15. As before, let

G = Gal(Q(µN , j, π(Ej [N ]))/Q(j))
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where µN ∈ Q is a primitive Nth root of unity, and consider the represen-
tation

ρ : G→ GL2(Z/N)

obtained as above by acting on a basis of Ej [N ] ∼= (Z/N)2. By Equation
(5.1) (except the first equality), we have

σ(µN ) = µ
det ρ(σ)
N

for any σ ∈ G. Consider the intermediate field Q(j, π(Ej [N ])). If σ ∈ G
fixes π(Ej [N ]) pointwise, then ρ(σ) = ±I, which implies that σ(µN ) = µN .
Thus, µN ∈ Q(j, π(Ej [N ])) and G = Gal(Q(j, π(Ej [N ]))/Q(j)).

c)-d) Consider now the following tower of extensions:

C(j, π(Ej [N ]))
SL2(Z/N)

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠

❚❚❚❚
❚❚❚❚

❚❚❚❚
❚❚❚

C(j)

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗
Q(j, π(Ej [N ]))

❥❥❥❥
❥❥❥❥

❥❥❥❥
❥❥❥

H

☎
✁

⑧
⑤

③
①

✈tr♣♥♠
G

✌
☛

✡
✟

✞
✆

✄
✁

⑧
⑤

③
②

✇
✉

C(j) ∩Q(j, π(Ej [N ]))

Q(j, µN )

(Z/N)×

Q(j)

Let H = Gal(Q(j, π(Ej [N ]))/Q(j, µN )) ⊂ G. Arguing as in the complex
case, we get a faithful representation Φ : H → SL2(Z/N). But

SL2(Z/N) ∼= Gal(C(j, π(Ej [N ]))/C(j)) (5.2)
∼= Gal(Q(j, π(Ej [N ]))/C(j) ∩Q(j, π(Ej [N ]))) ⊂ H.

On the other hand, H injects into Φ(H) ⊂ SL2(Z/N), so H ∼= SL2(Z/N)
since these are finite groups of the same size. Moreover, since Gal(Q(µN )/Q) =
(Z/N)×, we getG/H ∼= (Z/N)×. To conclude, note that ρ : G→ GL2(Z/N)
is faithful. Since GL2(Z/N)/ SL2(Z/N) ∼= (Z/N)×, the groups G and
GL2(Z/N) have the same cardinality, so the representation is an isomor-
phism.

1.5. Proof of Lemma 5.9

Lemma 5.17. We have Q(j, π(Ej [N ])) ∩Q = Q(µN ).

Proof. This follows directly from Proposition 5.16(c), intersecting Q(j, µN ) =
C(j) ∩Q(j, π(Ej [N ])) with Q.

Proposition 5.18. Let

ρ : Gal(Q(j, π(Ej [N ]))/Q(j))→ GL2(Z/N)
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be the isomorphism of Proposition 5.16. Then an intermediate field K of
Q(j, π(Ej [N ]))/Q(j) is a function field over Q if and only if

det ρ : Gal(Q(j, π(Ej [N ]))/K)→ (Z/N)×

surjects.

Proof. Since K has transcendence degree 1 over Q, it is a function field if and
only if K ∩ Q = Q. By Lemma 5.17, this rewrites as K ∩ Q(µN ) = Q. Consider
the following tower of extensions:

Q(j, π(Ej [N ]))

G

rrr
rrr

rrr
rr

❖❖❖
❖❖❖

❖❖❖
❖❖

K

▲▲▲
▲▲▲

▲▲▲
▲▲▲

Q(µN )

♦♦♦
♦♦♦

♦♦♦
♦♦

(Z/N)×

K ∩Q(µN )

Q

Let G = Gal(Q(j, π(Ej [N ]))/K). By Proposition 5.16, det ρ : G → (Z/N)×

describes the action of G on Q(µN ) through the surjective morphism G →
Gal(Q(µN )/K ∩ Q(µN )) →֒ (Z/N)×. Then det ρ : G → (Z/N)× surjects if and
only if Gal(Q(µN )/K ∩ Q(µN )) ∼= (Z/N)×, which is equivalent to K ∩ Q(µN ) =
Q.

Proof of Lemma 5.9. According to Proposition 5.18, it suffices to determine the
image of G = Gal(Q(j, π(Ej [N ]))/Q(j, f1)) by ρ. By Proposition 5.16, σ ∈ G acts
on fv as σfv = fσv, so we find that

ρ(G) = {±
(
a b
0 1

)
: a ∈ (Z/N)×, b ∈ Z/N}.

Thus, the surjectivity of det ρ : G→ (Z/N)× is clear.

1.6. Proof of Lemma 5.10

Proof of Lemma 5.10. Let pC (resp. pQ) be the minimal polynomial of f1 ∈
Q(j)[X] over C(i) (resp. Q(i)). Certainly, pC divides pQ and the two polyno-
mials are monic, so it suffices to prove that their degree are equal to obtain that
they are equal. The degree of pC is equal to

|Gal(C(j, f1)/C(j))| =
|Gal(C(j, π(Ej [N ]))/C(j))|

|Gal(C(j, π(Ej [N ]))/C(j, f1))|
=

| SL2(Z/N)|

| ± Γ1(N)/Γ(N)|
.

On the other hand,

deg(pQ) =
|Gal(Q(j, π(Ej [N ]))/Q(j))|

|Gal(Q(j, π(Ej [N ]))/Q(j, f1))|
=

|GL2(Z/N)|

| ± {
(
a b
0 1

)
∈ GL2(Z/N)}|

.
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SL2(Z/N)

C(j, π(Ej [N ]))

±Γ1(N)/Γ(N)

Q(j, π(Ej [N ]))

±{
(
a b
0 1

)
}

GL2(Z/N)C(j, f1) ∼= C(j)[X]/(pC) Q(j, f1) ∼= Q(j)[X]/(pQ)

C(j) Q(j)

Now, note that:

− | ± Γ1(N)/Γ(N)| = | ± {
(
1 b
0 1

)
∈ SL2(Z/N)}| = 2N if N > 2, and N if

N = 1, 2.

− | ± {
(
a b
0 1

)
∈ GL2(Z/N)}| = 2ϕ(N)N if N > 2 and ϕ(N)N if N = 1, 2.

− |GL2(Z/N)| = ϕ(N)| SL2(Z/N)|.

Thus, we can conclude that the degrees agree as needed.

1.7. Planar models

Recall from Section 2.4 that we have a planar model for X1(N)alg given by

X1(N)planar = {(j, x) ∈ C
2
: p̂1(j, x) = 0}

for p̂1 the minimal polynomial of f1 over C(j), with a birational map (j, f1) :
X1(N)alg → X1(N)planar. By Theorem 5.1 and its proof, we have p̂1 ∈ Q(j)[X]
and we obtain a corresponding planar model

X1(N)planarQ = {(j, x) ∈ Q
2
: p̂1(j, x) = 0}

of X1(N)Q with the birational map (j, f1) : X1(N)Q → X1(N)planarQ .

1.8. Example

Let us illustrate the content of the previous section with the case N = 1. We have
X1(1) = X(1) = SL2(Z)\H

∗. The j-invariant j : H → C gives an isomorphism
X(1) ∼= P1(C). Then, by the results above:

− The algebraic modular curve X(1)alg is P1(C) as an algebraic curve.

− The function field of X(1) is C(j).

− The rational algebraic modular curve is X(1)Q = P1(Q) with function field
Q(j).

We will complete this example later.

2. The Jacobians are defined over Q

Lemma 5.19. For all N ≥ 1, we have X1(N)Q(Q) 6= ∅.

Proof. First, note that the planar model shows that the cusp 0 belongs toX1(N)Q(Q).
We prove by induction on N that it belongs to X1(N)Q(Q). If N = 1, the as-
sertion is clear by Section 5.1.8. Let us suppose that the assertions holds for
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some N and let p be a prime. From Section 2.3, we can compute that the
projection π : X1(Np) → X1(N) has degree p or p + 1, which is equal to the
degree of the algebraic map π : X1(Np)Q → X1(N)Q, which is defined over
Q. If P ∈ X1(Np)Q is the point corresponding to the cusp 0, then Section 2.3
also shows that π has ramification degree p at P . Let us consider the pullback
π∗ : Div(X1(N)) → Div(X1(Np)). We have π∗(π(P )) = p(P ) or p(P ) + (Q) for
some Q ∈ X1(N)alg, Q 6= P . By hypothesis

σ(π∗(π(P ))) = π∗(π(σ(P ))) = π∗(π(P ))

which implies that σ(P ) = P , for all σ ∈ Gal(Q/Q). Hence, P ∈ X1(N)Q(Q).

Theorem 5.20. The Jacobian variety Jac(X1(N)) can be defined over Q: there
exists an abelian variety Jac(X1(N))Q defined over Q such that Jac(X1(N))Q ∼=
Jac(X1(N)) as complex abelian varieties. The same result holds true for Jac(X0(N)).

Proof. By Proposition 1.73 and Lemma 5.19, we have

Jac(X1(N)) ∼= Jac(X1(N)alg) ∼= Jac(X1(N)Q)

as complex abelian varieties. By the work of Weil and Chow (Theorem 1.70),
Jac(X1(N)Q) is an abelian variety defined over Q.

By construction, we have the following containments:

Jac(X1(N)Q)
∼=

⊂ Jac(X1(N))
∼=

Pic0(X1(N)Q) ⊂ Pic0(X1(N))

Div0(X1(N)Q)

OO

⊂ Div0(X1(N)).

OO
(5.3)

3. The Hecke operators are defined over Q

Recall that the Hecke algebra TZ acts on Div(X1(N)), so that it also acts on
Div(X1(N)alg).

Proposition 5.21. For α ∈ TZ, the homomorphism

α : Div(X1(N)alg)→ Div(X1(N)alg)

(co)restricts to a homomorphism on Div(X1(N)Q).

Proof.

− For 〈d〉, note that the map Div(X1(N)alg) → Div(X1(N)alg) is induced by
the morphism 〈d〉 : X1(N)alg → X1(N)alg. Since the j-invariant is SL2(Z)-
invariant, the corresponding morphism of function fields is

C(j, f1) → C(j, f1)

j 7→ j f1 7→ f (0,d)
t

.

To obtain the result, it suffices to prove that f (0,d)
t
∈ Q(j, f1). We proved

that Gal(Q(j, π(Ej [N ]))/Q(j, f1)) corresponds to the subgroup

H = {±
(
a b
0 1

)
: a ∈ (Z/N)×, b ∈ Z/N}
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in Gal(Q(j, π(Ej [N ]))/Q(j, f1)) ∼= GL2(Z/N). Since γf (0,d)
t
= fγ(0,d)

t
=

f (0,d)
t
for any γ ∈ H , it follows that f (0,d)

t
∈ Q(j, f1) as wanted.

− For Tp, the proof is a bit harder since the map on divisors groups is not
directly induced by a morphism on X1(N), as above. However, we can
show that there exists a congruence subgroup Γ of SL2(Z) such that Tp is
given by a composition

Div(X1(N))
(ϕ1)∗ // Div(X(Γ))

ϕ∗

2 // Div(X1(N)),

where ϕ1 : X1(N) → X(Γ) and ϕ2 : X(Γ) → X1(N) are morphism (see
[DI95, 8.3] or [DS06, Ex. 7.9.3] for the details). As above, it is relatively
easy to show that X(Γ) and ϕ1, ϕ2 can be defined over Q, giving the result.
The result for Tn (n ≥ 1 an integer) is deduced as in the proof of Proposition
3.41.

Corollary 5.22. For α ∈ TZ, the morphism

α : Jac(X1(N))→ Jac(X1(N))

(co)restricts to a morphism α : Jac(X1(N))Q → Jac(X1(N))Q defined over Q.

Proof. By Proposition 5.21 and Diagram (5.3), the diagram

Jac(X1(N))
α //

∼=

Jac(X1(N))
∼=

Pic0(X1(N)) // Pic0(X1(N))

Pic0(X1(N)Q) //

OO

Pic0(X1(N)Q)

OO

Jac(X1(N))Q
α // Jac(X1(N))Q

commutes, giving the result.

4. The abelian variety associated to a newform is defined over Q

We can finally prove the following:

Theorem 5.23. Let f ∈ S2(Γ1(N))new be a newform. Then, the abelian variety
Af associated to f can be defined over Q, i.e. there exists an abelian variety
(Af )Q defined over Q such that (Af )Q ∼= Af as complex abelian varieties.

Proof. Recall that
Af = Jac(X1(N))/If Jac(X1(N)),

for If an ideal in TZ. But:

− Jac(X1(N)) can be defined over Q by Theorem 5.20.

− By Corollary 5.22, (Qf )Q = If Jac(X1(N))Q is a subvariety of Jac(X1(N))Q,
defined over Q. Moreover, (Qf )Q ∼= If Jac(X1(N)) as complex abelian
varieties.
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Hence, the quotient (Af )Q = Jac(X1(N))Q/(Qf )Q is an abelian variety defined
over Q (see Remark 1.58). From the universal property of the quotient (Proposi-
tion 1.56), we have Af ∼= (Af )Q as complex abelian varieties.

5. Moduli spaces algebraically

Let us now consider S1(N)Q, the “rational” moduli space, i.e. the moduli space of
enhanced elliptic curves defined over Q, defined as in Definition 2.24. Note that
we can see S1(N)Q as a subset of S1(N): if E,E′ are two elliptic curves defined
over Q, then E ∼= E′ over C if and only if j(E) = j(E′), which holds if and only
if E ∼= E′ over Q, since j(E), j(E′) ∈ Q.

Example 5.24. In the example from Section 5.1.8, we considered the curveX1(1) =
X(1). Note that S1(1) ∼= C and S1(1)Q ∼= j−1(Q).

5.1. Hecke operators

Proposition 5.25. The operator Tp on Div(S1(N)) induces an operator

Tp : Div(S1(N)Q)→ Div(S1(N)Q).

Proof. By Proposition 3.27, Tp on Div(S1(N)) is given by

Tp[E,Q] =
∑

C

[E/C, [Q]C ],

where the sum is over all subgroups C ⊂ E of order p such that C ∩ 〈Q〉 = 0.
Suppose that E is defined over Q and Q ∈ E(Q). Since E[p] ∼= (Z/p)2 ∼= E(C)[p],
it follows that the set of subgroups of order p of E(C) is equal to the set of
subgroups of order p of E. By [Sil09, III.4.12] (or Remark 1.58), we have that
[E/C, [Q]C ] ∈ S1(N)Q for all subgroups C of order p in E.

5.2. The map S1(N)→ X1(N) algebraically and over Q

Recall that S1(N) identifies with Y1(N) ⊂ X1(N) ∼= X1(N)alg. First, we give a
more explicit form for the map S1(N)→ X1(N)alg using the planar model of the
modular curve:

Lemma 5.26. The composition S1(N)→ X1(N)alg → X1(N)planar is defined on
S1(N)′ = {[E,Q] ∈ S1(N) : j(E) 6= 0, 1728} and is given by

[E,Q] 7→ (j(E), x(Q)),

where x(Q) ∈ C is the first coordinate of Q ∈ E(C).

Proof. The rational map of the statement is given by

[C/Λz, [1/N ]] 7→ [z] 7→ (j(z), f1(z)).

If j(z) 6= 0, 1728, we have that C/Λz ∼= Ej(z) and f1(z) is the first coordinate of
[1/N ] ∈ C/Λz.
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Example 5.27. Continuing Example 5.24, we get that the map S1(1)→ X1(1)alg
is given by [E] 7→ j(E).

The map S1(N) → X1(N)alg restricts to a map S1(N)Q → X1(N)alg. We note
that the image has rational points, allowing us to obtain a version of Diagram
(3.5) over Q:

Proposition 5.28. The map S1(N)Q → X1(N)alg corestricts to a map S1(N)Q →
X1(N)Q, and gives a commutative diagram for any prime p

Div(S1(N)Q)
Tp //

��

Div(S1(N)Q)

��
Div(X1(N)Q)

Tp // Div(X1(N)Q),

which induces a commutative diagram

Div0(S1(N)Q)
Tp //

��

Div0(S1(N)Q)

��
Pic0(X1(N)Q)

Tp // Pic0(X1(N)Q).

(5.4)

Lemma 5.29. Let f : X → Y be a surjective morphism of curves defined over
Q inducing a morphism fC : XC → YC of complex curves. Then f−1

C (YC(Q)) ⊂
XC(Q).

Proof. Let y ∈ YC(Q) and x ∈ f−1
C (y). If σ ∈ AutQ(C), we see that

y = σ(y) = σ(fC(x)) = fC(σ(x)),

and thus σ(x) ∈ f−1
C (y), which implies that x has finitely many conjugates with

respect to AutQ(C). Thus, there exists a polynomial ϕ ∈ CAut
Q
(C)[X] such that

ϕ(x) = 0. The extension C/Q is transcendental, but transcendental Galois theory

still gives CAut
Q
(C) = Q (see [Mil14, Theorem 9.29]). Hence, x is algebraic over

Q, so that x ∈ XC(Q) as stated.

Proof of Proposition 5.28. The surjective morphism

X1(N)→ X1(1)

induces morphisms X1(N)alg → X1(1)alg and X1(N)Q(C) → X1(1)Q which are
compatible with the isomorphisms X1(·)Q ∼= X1(·)alg of complex curves. Consider
the commutative diagram

S1(N)alg //

��

S1(1)alg

��
X1(N)alg // X1(1)alg.

According to Example 5.27, the composition S1(N)alg → S1(1)alg → X1(1)alg is
given by [E,Q] 7→ j(E). If E is an elliptic curve over Q, we have that j(E) ∈ Q,
whence the image of [E,Q]Q lies in X1(1)Q = P1(Q). By Lemma 5.29 applied to
the morphism X1(N)alg → X1(1)alg, it follows that the image of S1(N)Q through
the map S1(N)alg → X1(N)alg lies in X1(N)Q as wanted.



Chapter 6

Reductions and the Eichler-Shimura relation

Let us fix an integer N ≥ 1. In what follows, we will denote by Xi(N) the
modular curve associated to Γi(N), seen as an algebraic curve defined over Q (i.e.
Xi(N)Q), for i = 0, 1. The goal of this section will be to study the following result,
relating the reduction of the Hecke operator Tp on Pic0(X0(N)) to the Frobenius
morphism:

Theorem (Igusa, Eichler-Shimura). For every prime p ∤ N , the modular curve
X0(N) has good reduction modulo p and we have the Eichler-Shimura relation,
the commutative diagram

Div0(X0(N))
Tp //

��

Div0(X0(N))

��
Pic0(X0(N)p)

(σp)∗+(σp)∗ // Pic0(X0(N)p).

This will be the key to proving the relationship between a newform and its asso-
ciated abelian variety through their L-functions.

The heart of the proof is a result of Igusa (in the classical setting), Katz-Mazur and
Deligne-Rapoport, which asserts the existence of a solution to a moduli problem
generalizing the moduli space Si(N). As a consequence of this, the modular curve
Yi(N) admits a model such that reduction modulo a prime p is compatible with
“reducing the moduli space” modulo p. The Eichler-Shimura relation is then
proved in the moduli space, and finally transferred back in the setting of the
modular curve.

The main references for this chapter are [DS06, Ch. 8], [Shi71, Ch. 6-7] and
[DI95, II.8-10]. For the theory of reduction of curves and varieties, we refer to
[Liu06, Chapter 10]. Note that in [Shi71], Shimura proves the Eichler-Shimura
relation by means of the theory of complex multiplication. The simpler proof
described above was given in [Shi58].

1. Generalized moduli spaces and Igusa’s theorem

1.1. Generalized moduli spaces

Let us define a moduli problem generalizing the moduli space S1(N) defined in
Chapter 2.

Definition 6.1. A family of elliptic curves over a scheme S is a smooth proper
group scheme E over S whose geometric fibers1 are elliptic curves.

Example 6.2. A complex elliptic curve can be given the structure of a smooth
proper group scheme over C (as a closed subscheme of P2

C), and be viewed as a

1If s ∈ S, recall that the geometric fiber of E at s is E ×S k(s), for k(s) the residue field of S
at s.
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family of elliptic curves over C. A more interesting example is that an elliptic
curve defined over Q with good reduction at all primes except p1, . . . , pr can
be given the structure of a family of elliptic curves over Z[1/(p1 · · · pr)]. More
generally, the Néron model (see Section 1.8) of an elliptic curve E defined over
Q can be seen as the best smooth group scheme over Z extending E (but whose
fibers may not all be elliptic curves). See [Sil94, Chapter 4], [Liu06, Chapter 10.2]
or more globally [KM85, Chapter 2].

Example 6.3. The universal elliptic curve consider in Section 5.1.3 can be seen as
a closed subscheme E of P2

S , for S = Spec(Z[j, j−1(j − 1728)−1). If K is a field
and j0 ∈ K is not equal to 0 or 1728, then EK (obtained from the geometric point
SpecK → S given by j 7→ j0) is an elliptic curve over K with j-invariant j0.

Definition 6.4. Let E be a family of elliptic curves over a Z[1/N ]-scheme S. A
section P ∈ E(S) has order N if P ◦s has order N in E(k) for all geometric points
s : Spec(k)→ S.

We define a contravariant functor F1(N) from the category of schemes over Z[1/N ]
to the category of sets by

− If S is a scheme over Z[1/N ], then F1(N)(S) is the set of isomorphism classes
of pairs (E ,P), where E is a family of elliptic curve over S and P ∈ E(S)
has order N .

− If ϕ : S → S′ is a morphism of Z[1/N ]-schemes, then F1(N)(ϕ) : F1(N)(S′)→
F1(N)(S) is defined by base change.

Example 6.5. We have F1(N)(C) = S1(N) and F1(N)(Q) = S1(N)Q, as defined
in the previous chapters.

Example 6.6. If p is a prime not dividing N , then Fp is a scheme over Z[1/N ]
(induced by the ring homomorphisms Z[1/N ]→ Fp), and we define

S1(N)p = F1(N)(Fp),

the “reduction” of the moduli space S1(N).

Example 6.7. Let p be an ideal of Z, the ring of algebraic integers in Q, above the
rational prime p. If p ∤ N , consider the localization Zp of Z at p. We have a ring
homomorphism Z[1/N ] → Zp, which shows that S = SpecZp is a scheme over
Z[1/N ]. The spectrum of Zp has two elements: p and the zero ideal. A family of
elliptic curves over S corresponds to an enhanced elliptic curve over Q with good
reduction at p. We define

S1(N)p−good = F1(N)(Zp).

The reduction map
πp : Zp → Zp/p ∼= Z/p ∼= Fp

gives a morphism of schemes SpecFp → S, which induces by functoriality a map

S1(N)p−good → S1(N)p.

Elementarily, this map sends [E,Q] to [πp(E), πp(Q)] if E is an elliptic curve
defined over Q with good reduction at p and Q ∈ E(Q) a point of order N .



Chapter 6. Reductions and the Eichler-Shimura relation 78

1.2. Igusa’s theorem

The important result we announced in the introduction is the following, which
asserts the existence of a solution to the moduli problem set above, and thus
giving a model for Y1(N), which is compatible with the moduli spaces.

Theorem 6.8 (Igusa ([Igu59]), Katz-Mazur ([KM85]), Deligne-Rapoport). There
exists a smooth scheme Y1(N) of relative dimension one over Z[1/N ] which rep-
resents the functor F1(N): for any scheme S over Z[1/N ], there is a bijection
functorial in S

Y1(N)(S) ≡ F1(N)(S).

Moreover, Y1(N) has irreducible geometric fibers.

Corollary 6.9. A model for Y1(N) over Z[1/N ] is given by Y1(N). The modular
curve Y1(N) has good reduction modulo p for all primes p ∤ N .

Proof. By considering the scheme S = Q, we find that Y1(N)(Q) ≡ S1(N)Q by
Example 6.5. This induces an isomorphism Y1(N)(Q) ∼= Y1(N), so that Y1(N) is
a model for the modular curve Y1(N). Since the prime ideals of Z[1/N ] correspond
to the primes not dividing N , it follows that Y1(N) has good reduction modulo
any prime not dividing N .

Remark 6.10. By taking S = Y1(N) itself in Theorem 6.8, we get that F1(N)(Y1(N))
is reduced to an element, say (Euniv,Puniv). Hence, if (E ,P) ∈ F1(N)(T ) for T a
scheme over Z[1/N ], Theorem 6.8 implies that (E ,P) is obtained from (Euniv,Puniv)
by a unique base-change T → Y1(N), by functoriality.

The particular case we will be interested in is the following:

Corollary 6.11. The morphism of schemes SpecFp → SpecZp induces a com-
mutative diagram

S1(N)p−good
//

��

Y1(N)(Q)

��
S1(N)p // Y1(N)p(Fp).

(6.1)

Proof. Follows immediately from the functoriality in Theorem 6.8 and Corollary
6.9, with S = SpecZp, respectively S = SpecFp.

In other words, reducing the modular curve is compatible with reducing the moduli
space.

Results for X1(N) By the work of Deligne and Rapoport, similar results can
be obtained for X1(N), considering moduli spaces of enhanced generalized elliptic
curves to interpret the cusps. The reader can refer to [DI95, II.9.2] for the details.

Results for Γ0(N) Similar constructions can be made with Γ0(N), but this is
more delicate, and it yields a slightly weaker result; see [DI95, II.8]. In what
follows, we will only consider Γ1(N) for simplicity, obtaining an Eichler-Shimura
relation for X1(N), while keeping in mind that all the results generalize to Γ0(N).
Moreover, we will note that the relation we obtain for X1(N) is more general in
some sense.
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2. The Eichler-Shimura relation in the moduli space

As sketched in the introduction of this chapter, we now prove an analogue of
the Eichler-Shimura relation in the context of the moduli space S1(N). Using
Diagram (6.1), which shows the compatibility of the reduction of the modular
curve and the moduli space, we will be able to transfer this in the context of the
modular curve.

2.1. Reduction of the moduli space

In what follows, we fix a prime number p ∤ N and a prime ideal p of Z above p.

In the previous section, we defined the reduced moduli space S1(N)p, the subset
S1(N)p−good ⊂ S1(N), and the reduction map

S1(N)p−good → S1(N)p.

Note that the latter is surjective since the reduction map E[N ] → Ep[N ] is sur-
jective2 for all elliptic curves E over Q with good reduction at p.

The moduli-space analogue of the Eichler-Shimura relation will be to obtain a
commutative diagram

Div(S1(N)p−good)
Tp //

��

Div(S1(N)p−good)

��
Div(S1(N)p) //❴❴❴❴❴ Div(S1(N)p)

where the dotted map is to be determined.

2.2. Hecke operators on the reduced space

Recall that by Propositions 3.27 and 3.25, the action of Hecke operators on the
moduli space can be described quite easily:

− Tp : Div(S1(N))→ Div(S1(N)) is given by

[E,Q] 7→
∑

C

[E/C, [Q]C ],

where C sums on all subgroups of order p of E with C ∩ 〈Q〉 = 0.

− 〈d〉 : Div(S1(N))→ Div(S1(N)) is given by

[E,Q] 7→ [E, [d]Q].

In this paragraph, we compute reductions of these operators in the reduced moduli
space S1(N)p.

2By [Sil09, VII.3.1(b)], the map E[N ] → Ep[N ] is injective. Since p ∤ N , we have that
E[N ] ∼= Z/N ∼= Ep[N ], so that the map is bijective.
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The Diamond operators on S1(N)p

Proposition 6.12. There is a commutative diagram

Div0(S1(N)p−good)
〈d〉 //

��

Div0(S1(N)p−good)

��
Div0(S1(N)p)

〈d〉p // Div0(S1(N)p),

where the map 〈d〉p : S1(N)p → S1(N)p is given by 〈d〉p[E,Q] = [E, [d]Q].

Proof. Follows directly from Proposition 3.25.

The Tp operators on S1(N)p Then, we obtain an closed expression for Tp on the
reduced moduli space S1(N)p. This is the main part of the proof.

Proposition 6.13. If Q is a point of order N of an elliptic curve E defined over
Q with good reduction at p, then

∑

C

[(E/C)p, [Q]p] = (σp + p〈p〉pσ
−1
p )[Ep, Qp],

where σp is the Frobenius morphism, and the sum is over all subgroups C of order
p in E such that C ∩ 〈Q〉 = 0.

Proof. For C a subgroup of E of order p, let us consider the isogeny f : E → E/C
and the dual isogeny f̂ : E/C → C, such that f ◦ f̂ = [p] ∈ End(E/C) and
f̂ ◦ f = [p] ∈ End(E). By [Sil09, VII.7.2], it follows that E/C has good reduction
at p. By [Sil09, II.2.12], recall that fp : Ep → (E/C)p factors as

fp = f sepp ◦ σep : Ep

σe
p // σep(Ep)

f sepp // (E/C)p

with f sepp a separable morphism of degree degsep(fp) and degins(fp) = pe. Sim-

ilarly, we have f̂p = f̂ sepp ◦ σfp , where f̂ sepp is a separable morphism of degree

degsep(f̂p) and degins(f̂p) = pf . The degree of an isogeny is preserved under
reduction3, so that

deg fp = deg f̂p = deg f = p and deg([p]p) = deg[p] = p2.

We distinguish two cases:

− Suppose that E has ordinary reduction at p, so that Ep[p] ∼= Z/p, the kernel
of the map [p] : Ep → Ep. Hence,

degsep([p]p ∈ End(Ep)) = | ker[p]p| = |Ep[p]| = p,

so degins([p]p ∈ End(Ep)) = p as well, since the total degree is equal to
the product of the separable and the inseparable degree. Since ordinary/-
supersingular reduction is preserved under isogeny, it similarly follows that
(E/C)p[p] ∼= Z/p, so that

degsep([p]p ∈ End((E/C)p)) = degins([p] ∈ End((E/C)p)) = p.

3Indeed, the reduction End(E) → End(Ep) preserves dual isogenies (this is clear from the
construction of the dual isogeny by pushforwards on Picard groups, cf. [Sil09, III.6]), so that
multiplication by deg f is equal to multiplication by deg fp on Ep, for all f ∈ End(E). We
conclude using that Z → End(Ep) is an injective homomorphism ([Sil09, III.4.2]).
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Since separable and inseparable degrees are multiplicative, two cases can
arise:

degsep(fp) degsep(f̂p) degins(fp) degins(f̂p)

Case 1 1 p p 1
Case 2 p 1 1 p

In the first case, we get fp = i ◦ σp, where i : σp(Ep) → (E/C)p is an
isomorphism such that i(σp(Qp)) = [Q]p. Thus,

[(E/C)p, [Q]p] = [σp(Ep), σp(Qp)] = σp[Ep, Qp].

In the second case, we similarly get f̂p = i◦σp, where i : σp((E/C)p)→ Ep is

an isomorphism such that i(σp([Q]p)) = (f̂p ◦ fp)(Q) = [p]Q. The Frobenius
morphism is an isomorphism, so that

[(E/C)p, [Q]p] = [σ−1
p (Ep), σ

−1
p ([p]Qp)] = 〈p〉pσ

−1
p [Ep, Qp].

− Suppose now that E has supersingular reduction at p, i.e. Ep[p] = 0. Thus,
degsep([p]p ∈ End(Ep)) = 1, degins([p]p ∈ End(Ep)) = p2, degsep([p]p ∈
End((E/C)p)) = 1 and degins([p]p ∈ End((E/C)p)) = p. It follows that

degsep(fp) = degsep(f̂p) = 1 and degins(fp) = degins(f̂p) = p. Hence,

fp = i1 ◦ σp and f̂p = i2 ◦ σp

where i1 : σp(Ep) → (E/C)p and i2 : σp((E/C)p) → Ep are isomorphisms,
which implies as before that

[(E/C)p, [Q]p] = 〈p〉pσ
−1
p [Ep, Qp] = σp[Ep, Qp].

Now, note that the sum in the statement is in fact on all subgroups of order p of
E, since Q has order N and p ∤ N . Since any subgroup of order p is contained in
E[p] ∼= Z/p× Z/p, there exist (p2 − 1)/(p− 1) = p+ 1 such subgroups. Thus, it
suffices to prove that the Case 1 above occurs for exactly one such subgroup to
get that ∑

C

[(E/C)p, [Q]p] = (σp + p〈p〉pσ
−1
p )[Ep, Qp].

Suppose again that E has ordinary reduction at p and let C0 be the kernel of
the map E[p] → Ep[p]. This map is surjective4, so that C0 has order p2/p = p.
Let C be a subgroup of E of order p. Similarly, the kernel C ′

0 of the reduction
(E/C)[p]→ (E/C)p[p] has order p.

− If C = C0, then ker f̂p = (E/C)p[p], so that degsep(f̂p) = | ker f̂p| = p, and

Case 1 holds. These assertions are proved as follows: since f ◦ f̂ = [p], we
have that ker f̂ ⊂ (E/C)[p] and similarly that ker f̂p ⊂ (E/C)p[p]. On the

other hand, f̂((E/C)[p]) ⊂ ker f = C for the same reason, implying that
f̂((E/C)[p]) has order 1 or p. We have

f̂((E/C)[p]) ∼= (E/C)[p]/(ker f̂ ∩ (E/C)[p]) = (E/C)[p]/ ker f̂ ,

4When have seen in note 2 on page 79 that this result holds true for E[N ] → Ep[N ] when
p ∤ N . For E[p] → Ep[p], this result quoted in [DS06, Proposition 8.4.4], but without proof nor
further reference. This is probably true for abelian varieties as well, but we have not found a
reference about that so far.
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which implies that f̂((E/C)[p]) has order p2 or p. Hence, f̂((E/C)[p]) = C
since we then have an inclusion of groups of the same order. In other words,
the right-outer composition of the commutative diagram

(E/C)[p]
f̂ //

��

E[p]

��
(E/C)p[p]

f̂p // Ep[p]

is zero by the definition of C = C0. Since the right vertical map is surjective,
it follows that (E/C)p[p] ⊂ ker f̂p as wanted.

− If C 6= C0, then Case 2 holds. Indeed, let us consider the image f(C0).
Since C 6= C0, we have C ∩ C0 = 0, thus f(C0) ∼= C0. On one hand, we see
as before that f(C0) ⊂ ker f̂ , so f(C0) = ker f̂ since both groups have order
p. On the other hand, since the diagram

E[p]
f̂ //

��

(E/C)[p]

��
Ep[p]

f̂p // (E/C)p[p]

commutes, it follows that f(C0) ⊂ C ′
0, so f(C0) = C ′

0 again because both
groups have order p. Hence, C ′

0 = ker f̂ . The previous argument with E

(resp. C, f) replaced by E/C (resp. C ′
0, f̂) shows that p = degsep(

ˆ̂
fp) =

degsep(fp), so that the second case holds.

This analysis concludes the argument.

In other words, Proposition 6.13 shows that we have a commutative diagram

S1(N)p−good
Tp //

��

Div(S1(N)p−good)

��
S1(N)p

σp+p〈p〉pσ
−1
p // Div(S1(N)p)

which restricts and corestricts to a commutative diagram

Div0(S1(N)p−good)
Tp //

��

Div0(S1(N)p−good)

��
Div0(S1(N)p)

σp+p〈p〉pσ
−1
p // Div0(S1(N)p)

(6.2)

This computation of Tp on the reduced moduli space is the equivalent in the
moduli space of the Eichler-Shimura relation.

3. The reduced modular curve and the reduced moduli space

As explained, the goal is now to transfer Diagram (6.2) back to modular curves.
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3.1. Planar models and Igusa’s theorem

Since continuing to study the modern approach sketched in Section 6.1 would be
too long for us (see [DI95, II.7-10] for a survey), we return to the classical setting
developed by Igusa in [Igu59] and exposed in [DS06]. In particular, we give the
classical formulation of Theorem 6.8.

Reduction of the planar model In what follows, let us continue to denote
X1(N)Q by X1(N). Recall the planar model of X1(N) given by

X1(N)planar = {(j, x) ∈ Q
2
: p1(j, x) = 0},

where p1 ∈ Q[j,X] is obtained from the minimal polynomial of f1 ∈ Q(j). We
saw in the previous chapter that f1 is equal to the first coordinate of the point
Q0 = [z/N ]Λz ∈ Ej [N ], where Ej is the “universal” elliptic curve, defined over
Q(j).

Consider the reduction X1(N)planarp defined by the polynomial πp(p1), where πp :
Q(p) → Fp is the projection. Note that the universal elliptic curve Ej can also

be seen as a curve over Fp(j). As in characteristic zero, we can consider the

first coordinate (f1)p ∈ Fp(j) of the point Q0 ∈ Ej [N ](Fp(j)). Then, πp(p1) is
also equal to the polynomial in Fp[j,X] obtained from the minimal polynomial of
(f1)p.

Igusa’s theorem The version of Theorem 6.8 shown by Igusa is the following (see
[Igu59, Theorem 1]5):

Theorem 6.14. The field Fp(j, (f1)p) is a function field and there exists a model
of X1(N) whose reduction X1(N)p at p has function field Fp(j, (f1)p). In other

words, there are birational maps X1(N)planar → X1(N) and X1(N)planarp →
X1(N)p such that the diagram

X1(N)planar //

��

X1(N)

��
X1(N)planarp

// X1(N)p

commutes where it is defined.

Compatibility with the moduli space Let us see how Theorem 6.14 also gives a
compatibility of reductions between the curve and the moduli space. By Lemma
5.26, the map S1(N)′p−good → X1(N)planar is given by [E,Q] 7→ (j(E), x(Q)). If
we let S1(N)′p be the image of S1(N)′p−good by the map S1(N)p−good → S1(N)p,

there is similarly a map S1(N)′p → X1(N)planarp given by [E,Q] 7→ (j(E), x(Q))

5The introduction of [Igu59] summarizes particularly well the contents of the article: “We
shall construct a non-singular projective model of the field of modular functions of level N in
characteristic zero over the field of rational numbers such that its reduction with respect to every
prime number p ∤ N is a non-singular projective model of the field of modular functions of level
N in characteristic p over the prime field.”.
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such that
S1(N)′p−good

//

��

X1(N)planar

��

S1(N)′p // X1(N)planarp

commutes, and the vertical maps are surjective. If we again denote by S1(N)′p−good

(resp. S1(N)′p) the subset of S1(N)′p−good (resp. S1(N)′p) of finite complement

needed to have a well-defined composition S1(N)′p−good → X1(N)planar → X1(N)

(resp. S1(N)′p → X1(N)planarp → X1(N)p), we obtain a commutative diagram

S1(N)′p−good
//

��

X1(N)planar

��

// X1(N)

��
S1(N)′p // X1(N)planarp

// X1(N)p,

(6.3)

analogous to (6.1). The maps in the Diagram (6.3) restrict and corestrict to
induce a commutative diagram

Div0(S1(N)′p−good)
//

��

Pic0(X1(N))

��
Div0(S1(N)′p) // Pic0(X1(N)p).

(6.4)

Proposition 6.15. The two compositions from the top-left to the bottom-right in
Diagram (6.4) are surjective.

Lemma 6.16. Let C be a nonsingular projective curve and S ⊂ C a finite subset.
Then the map

{D ∈ Div0(C) : D(P ) = 0 if P ∈ S} → Pic0(C)

is surjective.

Proof. See [DS06, Proposition 7.3.1].

Proof of Proposition 6.15.

− The reduction map S1(N)′p−good → S1(N)′p is surjective, so the same holds

for the induced map Div0(S1(N)′p−good)→ Div0(S1(N)′p).

− The map S1(N) → X1(N) is surjective up to finitely many points in the
image (the cusps). Since X1(N) is birationally equivalent to X1(N)planar,
the same holds true for the map S′

1(N) → X1(N)planar. By (6.3) and the
surjectivity of the vertical maps, the map S1(N)′p → X1(N)p is also surjec-

tive up to finitely many points. By the Lemma, the map Div0(S1(N)′p) →

Pic0(X1(N)p) is surjective, so that the composition

Div0(S1(N)′p−good)→ Div0(S1(N)′p)→ Pic0(X1(N)p)

is surjective as well.
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3.2. Operators on the reduced modular curve and on the reduced moduli
space

Igusa’s theorem shows that there is a model for the modular curve such that
reducing the latter is compatible with reducing the moduli space. Furthermore,
we show how operators on the reduced moduli space correspond to operators on
the reduced modular curve.

Proposition 6.17. The diagrams

Div(S1(N)′p)
σp //

��

Div(S1(N)′p)

��

Div(S1(N)′p)
pσ−1

p //

��

Div(S1(N)′p)

��
Div(X1(N)p)

(σp)∗ // Div(X1(N)p) Div(X1(N)p)
(σp)∗ // Div(X1(N)p)

commute, where σp : Div(S1(N)p)→ Div(S1(N)p) is given by [E,Q] 7→ [σp(E), σp(Q)].

Proof. First, note that the same diagrams with X1(N)planarp instead of X1(N)p
commute. Indeed, recall that the map S1(N)′p → X1(N)planarp is given by [E,Q] 7→
(j(E), x(Q)); if [E,Q] ∈ S1(N)′p, we have

σp([E,Q]) = [σp(E), σp(Q)] 7→ (j(σp(E)), x(σp(Q)))

= (σp(j(E)), σp(x(Q))) = (σp)∗(j(E), x(Q))

and6

pσ−1
p ([E,Q]) = p[σ−1

p (E), σ−1
p (Q)] 7→ p(j(σ−1

p (E)), σ−1
p (Q))

= p(σ−1
p (j(E)), σ−1

p (x(Q))) = (σp)
∗(j(E), x(Q)).

We can then conclude by using the fact that the diagram

Div(X1(N)planarp )
(σp)∗ //

��

Div(X1(N)planarp )

��
Div(X1(N)p)

(σp)∗ // Div(X1(N)p)

commutes where defined by the properties of the Frobenius morphism, where the
vertical maps are induced by the birational equivalence between X1(N)planarp and
X1(N)p, and similarly for σ∗p.

4. The Eichler-Shimura relation

We can finally prove the Eichler-Shimura relation for the modular curve.

4.1. Reduction of the Hecke operators

By Igusa’s theorem, the modular curve X1(N) reduces modulo p for any prime
p ∤ N .

6Recall that the Frobenius is purely inseparable of degree p, see [Sil09, II.2.11].
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Consider the Jacobian variety Pic0(X1(N)) (see Section 1.7) and its Néron model
P for it (see Section 1.8). By the universal property of Néron models, the mor-
phism Tp on Pic0(X1(N)) extends to a morphism on P. For all but finitely many
primes q, the Jacobian variety has good reduction mod q (i.e. the fiber Pq is an
abelian variety) and Tp reduces to a morphism on Pic0(X0(N))q := Aq.

By [BLR90, Theorem 9.5.1] (see also [DI95, II.10.1-2]), we have Pic0(X1(N))p ∼=
Pic0(X1(N)p), so that there is good reduction at p when p ∤ N by Theorem 6.8,
and we obtain a commutative diagram

Pic0(X1(N))
Tp //

��

Pic0(X1(N))

��
Pic0(X1(N)p)

(Tp)p // Pic0(X1(N)p).

(6.5)

The same holds true for the diamond operators 〈d〉.

4.2. Pushforward of the map σp + p〈p〉pσ
−1
p

The last step before being able to transfer Diagram (6.2) from the moduli space to
the modular curve is to transfer the map σp + p〈p〉pσ

−1
p from the reduced moduli

space to the reduced modular curve, via the map S1(N)′p → X1(N)p.

Lemma 6.18. We have a commutative diagram

Div0(S1(N)′p)
〈d〉p //

��

Div0(S1(N)′p)

��
Div0(X1(N)p)

〈d〉p // Div0(X1(N)p).

Proof. Consider the diagram

Pic0(X1(N))
〈d〉 //

��

Pic0(X1(N))

��

Div0(S1(N)′p−good)
〈d〉 //

��

55❧❧❧❧❧❧❧
Div0(S1(N)′p−good)

��

55❦❦❦❦❦❦❦

Pic0(X1(N)p)
〈d〉p // Pic0(X1(N)p).

Div0(S1(N)′p)
〈d〉p //

55❧❧❧❧❧❧❧
Div0(S1(N)′p)

55❦❦❦❦❦❦❦

where

− The top face commutes by definition of the Hecke operators on the moduli
space.

− The sides are the commutative diagram (6.4).

− The front face is the commutative diagram of Proposition 6.12.

− The back face commutes by the analogue of (6.5) for 〈d〉.

Since the map Div0(S1(N)′p−good) → Div0(S1(N)′p) is surjective, we get that the
bottom side commutes as well.
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Proposition 6.19. The diagram

Div0(S1(N)′p)
σp+p〈p〉pσ

−1
p //

��

Div0(S1(N)′p)

��
Pic0(X1(N)p)

(σp)∗+(〈p〉p)∗(σp)∗ // Pic0(X1(N)p)

(6.6)

commutes, the vertical maps being those of Theorem 6.8.

Proof. Follows directly from Propositions 6.17 and Lemma 6.18.

4.3. Transfer to the modular curve

Putting the previous sections together, we finally get the following vertically-
symmetric cube-shaped diagram:

Pic0(X1(N))
Tp //

��

Pic0(X1(N))

��

Div0(S1(N)′p−good)
Tp //

��

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧
Div0(S1(N)′p−good)

��

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧

Pic0(X1(N)p)

(Tp)p

11
(σp)∗+(〈p〉p)∗(σp)∗ //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ Pic0(X1(N)p)

Div0(S1(N)′p)
σp+p〈p〉pσ

−1
p //

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧
Div0(S1(N)′p)

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧

− The two sides are the commutative diagram (6.4): the compatibility of the
reduction of moduli spaces and modular curves.

− The top face is the commutative diagram (5.4): the compatibility of Tp on
modular curves and moduli spaces.

− The front face is the commutative diagram (6.2): the reduction of Tp on the
moduli space.

− The bottom face with (σp)∗+(〈p〉p)∗(σp)
∗ is the commutative diagram (6.6):

the transfer of the map σp + p〈p〉pσ
−1
p on Div0(S1(N)′p) to Pic0(X1(N)p).

− The back face with (Tp)p is the commutative diagram (6.5): the reduction
of Tp.

Moreover, note that the composition

Div0(S1(N)′p−good)→ Pic0(X1(N))→ Pic0(X1(N)p)

is surjective by Proposition 6.15.

Thus, we get that the back diagram with (σp)∗+ 〈p〉p(σp)
∗ is commutative by the

following general result:
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Lemma 6.20. Let

C //

��

C

��

A //

��

77♥♥♥♥♥♥♥♥♥♥
A

��

77♥♥♥♥♥♥♥♥♥♥

D
ϕ

33
ψ //❴❴❴❴❴❴❴❴❴❴❴ D

B //

77♥♥♥♥♥♥♥♥♥♥
B

77♥♥♥♥♥♥♥♥♥♥

be a diagram in an additive category C, such that

1. The top, left and right faces are commutative.

2. The back face with ϕ is commutative.

3. The bottom face with ψ is commutative.

4. The composition A→ C → D in the left-side face is surjective.

Then the back side with ψ is commutative.

Proof. Let us consider the map A → B → D
ψ
−→ D from the top-left to the

right-back-bottom of the diagram. Then:

− On one hand, since the left face commutes, it is equal to the composition

A→ C → D
ψ
−→ D.

− On the other hand:

– it is equal to A → B → B → D, since the bottom face with ψ com-
mutes;

– the previous map is equal to the composition A→ A→ B → D, since
the front face commutes;

– since the right face commutes, it is equal to the composition A→ A→
C → D;

– this is equal to the composition A → C → C → D, since the top face
commutes;

– finally, since the back face with ϕ is commutative, this is equal to
A→ C → D

ϕ
−→ D.

Hence, ϕ = ψ since the composition A→ C → D is surjective.

Therefore, we finally obtain:

Proposition 6.21 (Eichler-Shimura relation). We have commutative diagrams

Pic0(X1(N))
Tp //

��

Pic0(X1(N))

��
Pic0(X1(N)p)

(σp)∗+(〈p〉p)∗(σp)∗// Pic0(X1(N)p)

and

Pic0(X0(N))
Tp //

��

Pic0(X0(N))

��
Pic0(X0(N)p)

(σp)∗+(σp)∗ // Pic0(X0(N)p).
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Remark 6.22. The second diagram is obtained similarly, using the generalizations
to Γ0(N) evoked in the text. More precisely, we obtain that Tp on Pic0(X0(N)p)
is given by (σp)∗+(〈p〉p)∗(σp)

∗ as for Γ1(N). But we have a commutative diagram

S0(N)′p
〈p〉p //

��

S0(N)′p

��
X0(N)p

〈p〉p // X0(N)p.

as in Lemma 6.18. By Proposition 3.26, if [E, 〈Q〉] ∈ S1(N)p, we have 〈p〉p[E, 〈Q〉] =
[E, 〈[p]Q〉]. Since p ∤ N , this implies that 〈[p]Q〉 = 〈Q〉 and that 〈p〉p acts triv-
ially on S0(N)p. The vertical maps S0(N)′p → X0(N)p are surjective up to finitely
many points, so that 〈p〉p is trivial on all but finitely many points ofX1(N)p. Since
a rational map between curves uniquely extends to a morphism, we get that 〈p〉p
acts trivially on X0(N)p. Hence, Tp on Pic0(X0(N)p) is given by (σp)∗ + (σp)

∗.



Chapter 7

Equality of L-functions

In this last chapter, we finally conclude the proof of the theorem we have been
interested in (up to finitely many primes for the last point):

Theorem 7.1 (Eichler-Shimura, Carayol, Langlands, Deligne). Let f ∈ S2(Γ0(N))
be a newform. There exists an abelian variety Af such that

1. Af is defined over Q;

2. Af has dimension [Kf : Q];

3. Af and f are related by their L-functions: we have

L(Af , s) =
∏

τ

L(fτ , s),

where the product is over the complex embeddings τ : Kf → C. Alterna-
tively, ap(Af ) =

∑
τ ap(fτ ) for all primes p.

In what follows, we let f ∈ S2(Γ0(N)) be a fixed newform. In the previous
chapters, we have constructed an abelian variety Af associated to f satisfying
the first two properties of Theorem 7.1. It remains to prove the relationship with
f through the L-functions.

Our approach combines ideas from [DS06, Chapter 8] and [Shi71, Chapter 7]. In
[DS06, Chapter 8], the proof is not explicitly given, and the method would work
only for elliptic curves.

1. Idea of the proof

The reason why the relationship between f and Af holds true is the following:
recall the Eichler-Shimura relation, given by the commutative diagram

Pic0(X0(N))
Tp //

��

Pic0(X0(N))

��
Pic0(X0(N)p)

(σp)∗+(σp)∗ // Pic0(X0(N)p),

when p ∤ N (Proposition 6.21). Using the surjective morphism Jac(X0(N)) →
(Af )C, we will transfer the Eichler-Shimura relation to Af , obtaining a commu-
tative diagram

Af
Tp=ap(f) //

��

Af

��
(Af )p

σp+σ̂p // (Af )p

(7.1)

for every prime p ∤ N of good reduction for Af . In other words,

(Tp)p = σp + σ̂p ∈ End((Af )p). (7.2)

90
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Let ρp : EndQ((Af )p)→M2d(Qℓ) be the ℓ-adic representation, for ℓ 6= p a prime,
after choosing a Zℓ-basis for Tℓ(Af )p. From relation (7.2), we can compute the
characteristic polynomial of ρp(σp) in terms of the characteristic polynomial of
ρC(Tp), where ρC is the representation ρC : End(Af ) → End(V ∗

f ). But ρC(Tp)
with respect to a basis of Kf -conjugates of f is diagonal, with entries given by
the eigenvalues ap(fσ), which gives the relationship between the L-function of Af
and the L-functions of the conjugates of f .

When Af is an elliptic curve (i.e. Kf = Q), this last step can be done more simply.
For elliptic curves, we have L(Af , s) = L(f, s) if and only if ap(Af ) = ap(f) for
all primes p. From Diagram (7.1), we obtain a commutative diagram

Af
ap(f) //

��

Af

��
Pic0((Af )p)

(σp)∗+(σp)∗ // Pic0((Af )p).

But (σp)∗ + (σp)
∗ on (Af )p is equal to the multiplication by ap(Af ). Hence, we

have a commutative diagram

Af
ap(f)−ap(Af ) //

��

Af

��
Pic0((Af )p)

0 // Pic0((Af )p),

implying that ψ = ap(f)− ap(E) does not surject on Af . This morphism induces

a morphism ψ̂ : (Af )C → (Af )C. Since a morphism of curves (resp. of compact
Riemann surfaces) is either constant or surjective (see [Har77, II.6.8] and [Mir95,
Proposition 3.11]), we have that ψ̂ does not surject either. By Proposition 4.10,
this implies that ap(f) = ap(Af ).

The equality at all primes results from the work of Carayol, who also proves that
when Af is an elliptic curve, its conductor is equal to N .

2. Transferring the Eichler-Shimura relation to the abelian variety

In what follows, let p ∤ N be a prime number of good reduction for the abelian
variety Af . In other words, if Af is the Néron model for Af , then we suppose
that the fiber (Af )p = (Af )p is an abelian variety (see Section 1.8).

2.1. Transfer of analytic maps to the algebraic setting

Recall that (Af )C is defined as a quotient of Jac(X0(N)) by an abelian subvariety.
Let us consider the projection

α : Jac(X0(N))→ (Af )C

as a morphism of compact Riemann surfaces. It is induced by the morphism
α̂ : Pic0(X0(N))→ Af of algebraic curves defined over Q.

Proposition 7.2. The morphism α̂ is surjective.

Proof. The morphism α is clearly surjective. By Lemma 5.29, α−1((Af )C(Q)) ⊂
Pic0(X0(N))C(Q), which implies that the morphism α̂ is still surjective.
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2.2. Reduction modulo p

As a morphism between abelian varieties, it follows from the properties of Néron
models (see Section 1.8) that α̂ reduces mod p to induce a morphism α̂p :
Pic0(X0(N)p) ∼= Pic0(X0(N))p → (Af )p and a commutative diagram

Pic0(X0(N))
α̂ //

��

Af

��
Pic0(X0(N)p)

α̂p // (Af )p.

(7.3)

Similarly, the morphism ap(f) : Af → Af reduces mod p to ap(f)p, giving a
commutative diagram

Af
ap(f) //

��

Af

��
(Af )p

ap(f)p // (Af )p.

(7.4)

2.3. Transferring the Eichler-Shimura relation to the abelian variety

Proposition 7.3. The diagram

Af
ap(f) //

��

Af

��
(Af )p

σp+σ̂p // (Af )p

commutes, where ap(f)p is the reduction of ap(f) on (Af )p.

Proof. As in the proof of the Eichler-Shimura relation, we have a cube-shaped
diagram

Af
ap(f) //

��

Af

��

Pic0(X0(N))
Tp //

��

α̂

88 88♣♣♣♣♣♣♣♣♣♣♣♣
Pic0(X0(N))

��

88♣♣♣♣♣♣♣♣♣♣♣♣

(Af )p
ap(f)p

22
σp+σ̂p //❴❴❴❴❴❴❴❴❴❴❴❴❴ (Af )p

Pic0(X0(N)p)
(σp)∗+(σp)∗ //

88♣♣♣♣♣♣♣♣♣♣
Pic0(X0(N)p)

88♣♣♣♣♣♣♣♣♣♣

Let us note that:

− The front face commutes by the Eichler-Shimura relation (Proposition 6.21).

− The side faces are commutative Diagram (7.3).

− The bottom face with σp+ σ̂p commutes by the properties of the Frobenius.

− The top face commutes by Proposition 4.12.
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− The back face with ap(f)p is commutative Diagram (7.4).

− The map α̂ is surjective by Proposition 7.2.

− The reduction map Af → (Af )p is surjective.

By Lemma 6.20, it follows that the back face with σp + σ̂p commutes.

3. Equality of L functions (up to finitely many factors)

We can finally prove that the L functions agree up to finitely many Euler factors:

Proposition 7.4. We have

L(Af , s) =
∏

τ

L(fτ , s)

up to a finite number of Euler factors, where the product is over complex em-
beddings τ : Kf → C. More precisely, we have Lp(Af , s) =

∏
τ Lp(fτ , s) for all

primes p ∤ N such that Af has good reduction at p.

Proof. Let d = dimAf and let p ∤ N be a prime of good reduction for Af . Recall
that we have compatible representations

ρ : End(Af ) → M2d(Qℓ)

ρp : End((Af )p) → M2d(Qℓ),

where ℓ 6= p is any prime (see Section 1.9). Moreover, we also have compatible
representations

ρC : End(Af )→ End(Af (C)) → HomC(V
∗
f )
∼=Md(C)

ρZ : End(Af )→ End(Af (C)) → HomZ(Λf ) ∼=M2d(Z) ⊂M2d(C)

(see Section 1.4.1). We begin to note that:

1. ρZ is equivalent to ρC + ρC. Indeed, for α ∈ End(Af ) let us denote again
ρC(α) ∈ Md(C) the matrix of ρC(α) with respect to any complex basis of
V ∗
f . Let us choose a Z-basis b1, . . . , b2d of Λf which is a R-basis of V ∗

f and
denote again by ρZ(α) ∈ M2d(R) the matrix of ρZ(α) with respect to this
basis. If we denote by B ∈Md×2d(C) the transition matrix, we get that

ρC(α)B = BρZ(α).

Hence, ρC(α)B = BρZ(α), which implies that

(
B

B

)
ρZ(α) =

(
ρC(α) 0

0 ρC(α)

)(
B

B

)
.

To conclude, it suffices then to show that C = (B B)t ∈M2d(C) is invertible.
Suppose that there exist λ1, . . . , λ2d ∈ C such that

∑
λibi =

∑
λibi = 0.

This implies
∑

(λi + λi)bi = 0 and
∑

(iλi + iλi)bi = 0, which gives λi = 0
for all i since bi is a R-basis for V ∗

f .

2. ρ is equivalent to ρZ. Indeed, let α ∈ End(Af ) and let n ≥ 1. By Example
1.42, Af (C)[ℓ

n] ∼= Λf/ℓ
nΛf so that if we fix a Z-basis of Λf as above, we

get that the matrix of αℓ : A[ℓ
n]→ A[ℓn] in M2d(Z/ℓ

n) is the projection of
ρZ(α) ∈M2d(Z). Passing to the limit gives the result.
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3. ρp(σp) and ρp(σ̂p) have the same characteristic polynomial. This follows by
point 4. of Theorem 1.76, since the degree is invariant by isogeny.

By Proposition 7.3, we have (Tp)p = σp + σ̂p on (Af )p, so that

(1− ρp(σp)X)(1− ρp(σ̂p)X) = 1− ρp((Tp)p)X + pX2

= 1− ρ(Tp)X + pX2.

By the three assertions above, this implies that

det(1− ρp(σp)X)2 = det(1− ρZ(Tp)X + pX2)

= det(1− ρC(Tp)X + pX2)2,

whence det(1 − ρp(σp)X) = det(1 − ρC(Tp)X + pX2). Let σ1, . . . , σd : Kf → C
be the complex embeddings of Kf , so that fσ1 , . . . , fσd is a basis for Vf . Since
Tp(fσi) = ap(fσi)fσi by Theorem 4.5, it follows that ρC(Tp) with respect to this
matrix is diagonal and

det(1− ρp(σp)X) =
∏

τ

(1− ap(fτ )X + pX2), (7.5)

where the product is over complex embeddings τ : Kf → C. By definition of the
local factors, this is implies that Lp(Af , s) =

∏
τ Lp(fτ , s).

Remark 7.5. If Af is an elliptic curve, then the condition on p rephrases as “p ∤
NNAf

, where NAf
is the conductor of Af .

Corollary 7.6. We have ap(Af ) =
∑

τ ap(fτ ) for all primes p ∤ N such that Af
has good reduction modulo p, where the sum is over complex embeddings τ : Kf →
C.

Proof. Let d be the dimension of Af . By Theorem 1.76, ap(Af ) is equal to
the coefficient of X2d−1 in det(1 − ρp(σp)X). On the other hand, it is equal to∑

τ ap(fτ ) by Equation (7.5).

4. Equality at all primes

In Proposition 7.4, we had to exclude finitely many primes, corresponding the the
places of bad reduction for the modular curve and the abelian variety associated
to the modular form.

The equality Lp(f, s) = Lp(Af , s) at all primes follows from the work of Carayol
[Car86]1. If Af is an elliptic curve (i.e. [Kf : Q] = 1), then the conductor of Af
is equal to the level of the form.

These are hard theorems, which use more advanced tools and results, and we shall
therefore stop there for now.

1See the Corollaire of Théorème(A) in Paragraph (0.8).



Perspectives

The following topics would naturally extend the discussions of this document:

− Correspondences We could have viewed Hecke operators as correspondences
on modular curves. The Eichler-Shimura relation translates to an equality
between correspondences. See [DI95, II.8.5] and [RS11, Chapter 12].

− Another proof of the Eichler-Shimura relation and various generalizations:
In [Shi71], the Eichler-Shimura relation is proven using the theory of com-
plex multiplication, along with many generalizations.

− Unicity of Af We could wonder whether there exists a unique abelian variety
whose L-function agrees with that of a given newform. Faltings’ isogeny
theorem asserts that two such varieties are indeed isogenous. Thus, the
modularity theorem means that the Eichler-Shimura construction gives all
isogeny classes of rational elliptic curves.

− Galois representations, and generalization of the construction By consider-
ing the Tate module of Af as we did in the last chapter, we can associate 2-
dimensional ℓ-adic Galois representations to weight-2 modular forms. Then,
the Eichler-Shimura construction can be generalized to higher-weight modu-
lar forms by associating higher-dimensional representations. This was done
by Deligne in 1971 and a generalization for the weight 1 was done by Deligne
and Serre in 1974. An appendix by Brian Conrad in Ribet-Stein’s notes on
Serre’s conjecture (2010) gives the weight-2 version of Deligne’s proof.

− Hasse-Weil conjecture for Jacobians of modular curves In [Shi71, 7.5], the
Hasse-Weil conjecture is proved for Jacobians of some modular curves by
computing the L-functions explicitly as we did in the last chapter, through
(generalizations of) the Eichler-Shimura relation, relating them with Dirich-
let series.

− Endomorphisms of Af We have seen that the Hecke algebra acts on Af by
morphisms, so that there is an injection Kf → EndQ(Af ). We could actu-
ally have shown that this is an isomorphism. Recall that dimAf = dimKf .
By the first chapter, there is a faithful representation ρC : EndQ(A) →
MdimAf

(C). To conclude, it would have sufficed to show that there is sim-
ilarly a faithful representation ρQ : EndQ(Af ) → MdimAf

(Q), since this
would show that dimEndQ(Af ) = dimMdimAf

(Q).

− Abelian varieties of the form Af Ribet and Serre conjectured that an abelian
variety A over Q comes from the Eichler-Shimura construction if and only
if EndQ(A) is a number field of degree dimA (see also the previous point).
This now follows from Serre’s modularity theorem (established in 2008).

− Numerical examples We could consider examples of the association for mod-
ular curves of higher genera. This is done for Γ0(389) (whose modular curve
has genus 32) in [RS11, Chapter 26].

− Relationships between the different forms of the modularity theorem We
could have proven some of the relationships between the different formu-
lations of the modularity theorem. See [DI95, III.13] and [DS06].
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− Relationship with distribution problems In [Per13], we studied the Sato-Tate
and Lang-Trotter conjectures. By the Eichler-Shimura construction and
the modularity theorem, these questions rephrase in the setting of modular
forms. We wonder whether this gives interesting ideas about these problems.

− Finally, a very interesting account of the “big picture” of the Eichler-
Shimura relation is given by Kevin Buzzard’s message in [YEB].



Appendix A

Numerical examples

In this appendix, we give some examples of the association of abelian varieties to
newforms in S2(Γ0(N)) in a simple case. Let N ≥ 1 and let f ∈ S2(Γ0(N)) be a
newform. By Proposition 4.9, the abelian variety Af associated to f is isomorphic
to the complex torus

V ∗
f /Λf ,

where Vf is the C-linear span of {fσ : σ : Kf → C embedding} and Λf is the
restriction of the elements in Λ to Vf . This point of view is useful to compute
explicit examples.

The simplest case is when f has rational Fourier coefficients: by Theorem 7.1,
this means that Af is an elliptic curve defined over Q, and hence has an easy
description with a Weierstrass equation. Let us suppose furthermore that X0(N)
has genus 1. Since a curve of genus 1 is isomorphic to its Jacobian, we get:

Proposition A.1. If X0(N) has genus 1, then Af is an elliptic curve and Af ∼=
Pic0(X0(N)) ∼= X0(N).

To compute an equation for Af in this case, we can therefore:

1. Compute the period lattice Λ of X0(N);

2. Compute invariants of the elliptic curve C/Λ;

3. Determine an equation over Q with these invariants.

Using the theory of modular symbols, the homology of X0(N) can be computed
very explicitly, and therefore the period lattice too. The invariants c4, c6 are in
fact integers by a result of Edixhoven, and from there it is easy to determine
an equation for the curve. Moreover, the newform in S2(Γ0(N)) can also be
computed. Algorithms for this are developed in [Cre97].

For higher genera, we would need to compute a basis for Γ0(N), and then a basis
for Λf . This is also developed in [Cre97].

The genus one cases when N < 1000

The integers N ≤ 1000 with X0(N) having genus 1 are 11, 14, 15, 17, 19, 20, 21,
24, 27, 32, 36, 49. The following table gives for each of these integers the first
Fourier coefficients of the newform in S2(Γ0(N)), an equation over Z for Af , and
the coefficients ap(Af ) and ap(f).
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Level N newform f ∈ S2(Γ0(N))new Af ap(Af ) for p ≤ 7 ap(f) for p ≤ 7

11 q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 +O(q10) y2 + y = x3 − x2 − 10x− 20 (-2, -1, 1, -2, -, 4) (-2, -1, 1, -2, -, 4)

14 q − q2 − 2q3 + q4 + 2q6 + q7 − q8 + q9 +O(q10) y2 + xy + y = x3 + 4x− 6 (-, -2, 0, -, 0, -4) (-, -2, 0, -, 0, -4)

15 q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 +O(q10) y2 + xy + y = x3 + x2 − 10x− 10 (-1, -, -, 0, -4, -2) (-1, -, -, 0, -4, -2)

17 q − q2 − q4 − 2q5 + 4q7 + 3q8 − 3q9 +O(q10) y2 + xy + y = x3 − x2 − x− 14 (-1, 0, -2, 4, 0, -2) (-1, 0, -2, 4, 0, -2)

19 q − 2q3 − 2q4 + 3q5 − q7 + q9 +O(q10) y2 + y = x3 + x2 − 9x− 15 (0, -2, 3, -1, 3, -4) (0, -2, 3, -1, 3, -4)

20 q − 2q3 − q5 + 2q7 + q9 +O(q10) y2 = x3 + x2 + 4x+ 4 (-, -2, -, 2, 0, 2) (-, -2, -, 2, 0, 2)

21 q − q2 + q3 − q4 − 2q5 − q6 − q7 + 3q8 + q9 +O(q10) y2 + xy = x3 − 4x− 1 (-1, -, -2, -, 4, -2) (-1, -, -2, -, 4, -2)

24 q − q3 − 2q5 + q9 +O(q10) y2 = x3 − x2 − 4x+ 4 (-, -, -2, 0, 4, -2) (-, -, -2, 0, 4, -2)

27 q − 2q4 − q7 +O(q10) y2 + y = x3 − 7 (0, -, 0, -1, 0, 5) (0, -, 0, -1, 0, 5)

32 q − 2q5 − 3q9 +O(q10) y2 = x3 + 4x (-, 0, -2, 0, 0, 6) (-, 0, -2, 0, 0, 6)

36 q − 4q7 +O(q10) y2 = x3 + 1 (-, -, 0, -4, 0, 2) (-, -, 0, -4, 0, 2)

49 q + q2 − q4 − 3q8 − 3q9 +O(q10) y2 + xy = x3 − x2 − 2x− 1 (1, 0, 0, -, 4, 0) (1, 0, 0, -, 4, 0)

This table was computed using sage (sagemath.org), which implements some of John Cremona’s algorithms.

sagemath.org
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Modular forms

In this appendix, we briefly recall the definition and fundamental properties of
modular forms, as well as the notations used, to serve as a reference in the text.
Details can be found in [DS06], [Miy06] or [Lan76].

1. Weakly-modular functions

1.1. Factor of automorphy

Definition B.1. For γ =
(
a b
c d

)
∈ GL2(C), the factor of automorphy is the

function j(γ, ·) : C→ C defined by

j(γ, z) = cz + d.

Lemma B.2. The factor of automorphy has the following elementary properties
for z ∈ C, γ, γ′ ∈ GL2(C):

1. j(γγ′, z) = j(γ, γ′z)j(γ′, z).

2. j(γ)−1 = j(γ−1, γz).

3. dγ(z)
dz = det(γ)j(γ, z)−2.

1.2. Action of GL2(C)
+ on C(H)

Definition B.3. For k ∈ Z an integer and γ ∈ GL+
2 (C), the weight-k operator

[γ]k on meromorphic functions on H is defined by

f [γ]k(z) = det(γ)k−1j(γ, z)−kf(γz)

for f ∈ C(H) and z ∈ H.

Proposition B.4. For every integer k ∈ Z, the weight-k operators give a right-
action of GL+

2 (C) on C(H).

1.3. Meromorphic modular forms

In what follows, let us fix a congruence subgroup Γ of SL2(Z) and k ∈ Z an
integer.

Definition B.5. A fixed point of C(H) with respect to the weight-k-action of Γ
is called a weakly-modular function of weight k with respect to Γ.

In other words, a weakly-modular function of weight k with respect to Γ is a
meromorphic function f : H→ C such that

f

(
az + b

cz + d

)
= (cz + d)kf(z) for all

(
a b
c d

)
∈ Γ, z ∈ H.
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2. Meromorphic modular forms

In what follows, we fix a congruence subgroup Γ of SL2(Z) and an integer k ∈ Z.

Let us consider the Riemann surface Ĥ = H ∪ {∞} with the topology given
in Section 2.3.3 (which is not the subspace topology from the compactification
P1(C)).

Definition B.6. A meromorphic modular form of weight k with respect to Γ is
a weakly-modular function f of weight k with respect to Γ such that f [γ]k is
meromorphic at ∞ (i.e. f [γ]k ∈ C(Ĥ)) for all γ ∈ SL2(Z). The complex vector
space of meromorphic modular forms of weight k with respect to Γ is denoted by
Ak(Γ).

Remark B.7. By Γ-invariance of f for the weight k, the second condition needs
only to be checked for representatives γi of Γ\ SL2(Z). Since {[γi∞]} is the set of
cusps of X(Γ), it is often phrased as “f is meromorphic at the cusps of X(Γ)”.

2.1. Fourier expansion

Let f ∈ Ak(Γ) be a meromorphic modular form. By hypothesis, there exists an
integer M ≥ 1 such that U = {z ∈ Ĥ : Im(z) > M} is an open neighborhood of
∞ where f has no poles.

Since Γ is a congruence subgroup of SL2(Z), there exists an integer h ≥ 1 such
that

(
1 h
0 1

)
∈ Γ. Hence, we have

f(z + h) = f(z)

where this is defined. Thus, the function g : B(0, e−2πM/h)→ C given by g(q) =
f(log(q)h/2πi) is well-defined and meromorphic, so that we have a power series
development

f(z) =
∑

n≥−m

anq
n (q = e(z/h)) (B.1)

valid for all z ∈ U ∩ H, where an ∈ C and m ∈ Z is an integer. We note that
this is the Laurent series of f at ∞ obtained by taking the chart e(z/h) : U →
B(0, e−2πM/h) near ∞.

3. Modular forms

Definition B.8. A modular form of weight k with respect to Γ is a meromorphic
modular form of weight k with respect to Γ that is holomorphic on H and at the
cusps. The complex vector space of modular forms of weight k with respect to Γ
is denoted by Mk(Γ).

By Section B.2.1, if f ∈Mk(Γ), there is a Fourier expansion

f(z) =
∑

n≥0

anq
n (q = e(z/h)) (B.2)

valid for all z ∈ H, where h is as above and an ∈ C.

The most important property of the space of modular forms Mk(Γ), its finite-
dimensionality as a complex vector space, is explained in Chapter 2.
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3.1. Cusp forms

Definition B.9. We say that a modular form f ∈Mk(Γ) vanishes at ∞ if a0 = 0
in the Fourier series (B.2) of f . For α ∈ SL2(Z), we say that f vanishes at the
cusp [α∞] ∈ X(Γ) if f [α]k vanishes at ∞.

Remark B.10. Note that f [α]k is weakly-modular of weight k with respect to
α−1Γα, which is again a congruence subgroup by Proposition 2.4. The Fourier
series (B.2) is not uniquely determined, but the vanishing of the first coefficient
is. Moreover, if α, β ∈ SL2(Z) are such that [α∞] = [β∞] ∈ X(Γ), then f [α]k
vanishes at ∞ if and only if f [β]k vanishes at ∞. Hence, the definition makes
sense.

Definition B.11. A cusp form of weight k with respect to Γ is an element of
Mk(Γ) that vanishes at all cusps. The set of cusp forms is denoted by Sk(Γ).

3.2. L-functions

Definition B.12. The L-function associated to a modular form f =
∑

n≥0 an(f)q
n ∈

Mk(Γ) is the series

L(f, s) =
∑

n≥0

an
ns
.

Proposition B.13. If f ∈ Mk(Γ1(N)), the series L(f, s) converges absolutely
for Re(s) > k. If f is a cusp form, then L(f, s) converges absolutely for Re(s) >
k/2 + 1.

Proof. See [DS06, 5.9]. If f is a cusp form, the result follows by using Cauchy’s
integral formula and the fact that |f(z)| Im(z)k/2 is bounded on H. If f is an
Eisenstein series, the result follows from the explicit expressions for the Fourier
coefficients. The general result follows from these two cases since a modular form
is the sum of a cusp form and an Eisenstein series.
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tions. Kanô memorial lectures. Princeton University Press, 1971.

[Sil94] Joseph Silverman. Advanced topics in the arithmetic of elliptic curves.
Springer, Berlin New York, 1994.

[Sil09] Joseph Silverman. The arithmetic of elliptic curves. Springer, Berlin New
York, 2009.

[tD87] Tammo tom Dieck. Transformation groups. W. de Gruyter, Berlin New York,
1987.

[Var84] Veeravalli S. Varadarajan. Lie groups, Lie algebras, and their representations.
Springer, Berlin New York, 1984.

[vdGM14] Gerard van der Geer and Ben Moonen. Abelian varieties, 2014.
http://staff.science.uva.nl/~bmoonen/boek/BookAV.html.

[vdW03] Bartel L. van der Waerden. Algebra. Springer, Berlin New York, 2003.

[Wer11] Kay Werndli. Elementary GAGA. Master’s thesis, Universität Basel, 2011.

[YEB] Qiaochu Yuan, Matthew Emerton, and Kevin Buzzard. In-
tuition behind the eichler-shimura relation. MathOverflow.
http://mathoverflow.net/q/19390 (version: 2010-03-26).

[Zag08] Don Zagier. Elliptic modular forms and their applications. In Kristian Ranes-
tad, editor, The 1-2-3 of Modular Forms, Universitext, pages 1–103. Springer,
2008.

www.jmilne.org/math/
http://sma.epfl.ch/~cperret/
http://wstein.org/books/ribet-stein/main.pdf
http://staff.science.uva.nl/~bmoonen/boek/BookAV.html
http://mathoverflow.net/q/19390

	Introduction
	Abelian varieties
	Abelian varieties over an arbitrary field
	Algebraic geometry and analytic geometry
	Complex abelian varieties
	Complex tori
	Quotients of complex abelian varieties
	Jacobians of compact Riemann surfaces
	Jacobians of algebraic curves
	Néron models
	L-functions

	Modular curves
	Congruence subgroups and their action on the upper half-plane
	Modular curves
	Compactification
	Modular curves algebraically
	Jacobians varieties
	Moduli spaces
	Relationship with modular forms

	Hecke operators, modular curves and modular forms
	Double cosets
	The Hecke ring
	Actions on modular curves, their Jacobians, and moduli spaces
	Action on modular forms
	Modules over the Hecke ring
	Hecke operators on cusp forms
	L-functions

	Associating abelian varieties to modular forms
	Number field associated to an eigenform
	The abelian variety associated to an eigenform
	Decomposition of the Jacobian
	Construction for 0(N)

	Definition over Q
	The modular curve is defined over Q
	The Jacobians are defined over Q
	The Hecke operators are defined over Q
	The abelian variety associated to a newform is defined over Q
	Moduli spaces algebraically

	Reductions and the Eichler-Shimura relation
	Generalized moduli spaces and Igusa's theorem
	The Eichler-Shimura relation in the moduli space
	The reduced modular curve and the reduced moduli space
	The Eichler-Shimura relation

	Equality of L-functions
	Idea of the proof
	Transferring the Eichler-Shimura relation to the abelian variety
	Equality of L functions (up to finitely many factors)
	Equality at all primes

	Perspectives
	Numerical examples
	Modular forms
	Weakly-modular functions
	Meromorphic modular forms
	Modular forms

	Bibliography

