Distribution questions for trace functions with values in
cyclotomic integers and their reductions

Corentin Perret-Gentil

ABSTRACT. We consider f-adic trace functions over finite fields taking
values in cyclotomic integers, such as characters and exponential sums.
Through ideas of Deligne and Katz, we explore probabilistic properties
of the reductions modulo a prime ideal, exploiting especially the deter-
mination of their integral monodromy groups. In particular, this gives
a generalization of a result of Lamzouri-Zaharescu on the distribution
of short sums of the Legendre symbol reduced modulo an integer to all
multiplicative characters and to hyper-Kloosterman sums.
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1. INTRODUCTION

The distribution of normalized exponential sums over finite fields in com-
pact subsets of the complex numbers is an interesting question that has been
studied by numerous authors such as Kummer, Hasse, Heath-Brown and Pat-
terson (cubic Gauss sums), Deligne (Gauss sums), Katz (hyper-Kloosterman
sums), or Duke, Friedlander and Iwaniec (Salié sums).

For example, Katz | | showed that for n > 2 and ¢ an odd prime
power, the normalized hyper-Kloosterman sums

—1)nt tr(zy + -+
Kiglo) = Sy 8 o™ Nec werp, @
q « p
T1,..., o€y
Tl Tn=C1T

for e(z) = %™ (z € C), are equidistributed as ¢ — +o0 in trSU,(C) if
n is odd (resp. trUSp,(C) if n is even), with respect to the pushforward
of the Haar measure. This result builds on Deligne’s construction of the
Kloosterman sums as ¢-adic trace functions on ]P’]qu [ |, through Deligne’s
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2 Distribution of values of trace functions in cyclotomic integers

general equidistribution theorem and Katz’s determination of monodromy
groups.

1.1. Exponential sums in cyclotomic fields. Exponential sums are usu-
ally considered as complex numbers, but in general they actually take values
in cyclotomic fields. For example, a multiplicative character of IF, of order
d has image in Q((y) < Q({p—1) for {4 € C* a primitive dth root of unity,
while an additive character has image in Q((p).

More generally, the functions we can form from additive and multiplicative
characters of I, by taking sums, products or convolutions (e.g. discrete
Fourier transform), will take values in Q((,)Q(¢p—1) = Q({pp—1))-

Fisher | | extended Katz’s vertical Sato-Tate law for (unnormalized)
Kloosterman sums mentioned above to this perspective by studying their dis-
tribution as elements of K = Q((,) via the Minkowski embedding K — RP™1,
with the hope of getting results on their distinctness. His equidistribution
result with respect to a product of the Sato-Tate measure amounts to show-
ing that it is possible to construct for every ¢ € Gal(K/Q) an ¢-adic trace
function on IP’%Fq corresponding to the o-conjugate of the Kloosterman sum.

1.2. Exponential sums in cyclotomic integers. A step further is to con-
sider exponential sums, and functions f : F, — C formed from them, as
having values in cyclotomic integers, say O = Z[(y] for some d > 1. This
holds true for characters and this property is again stable by the operations
we mentioned above.

Wan | | adopted such a point of view and studied the minimal poly-
nomial of Kloosterman sums, improving some of Fisher’s results.

Up to localizing”, we can also consider normalizations: indeed, by the
evaluation of quadratic Gauss sums, /p € Z[(sp], so for example Kl, 4(F;) =

Z[Capl yn—yr2-

1.3. Reductions of exponential sums in residue fields. For any nonzero
prime ideal [ < O (possibly restricted to be above a large enough prime to
handle normalizations), we can then study the reductions modulo [ of expo-
nential sums and related functions f : F; — O in the corresponding residue
field IF[ = O/[ = O[/[O[.

In the case of Kloosterman sums, if [ is a prime ideal of O = Z[(4,] above
an odd prime ¢ # p, then we have the reduction

Kl FS — O —F,.

Distribution questions concerning the values in F; as ¢ — +00 can then
be examined. For example, Lamzouri and Zaharescu | | studied the
distribution of short sums of the Legendre symbol x,, : [, — {£1} reduced
modulo an integer ¢ > 2. Specifically, they show that

\{1<k<p:2’;:1xp(x)sa (mod £)}| 1 Y 3
D :€+O<<logp> )

IFor o € O (resp. a prime ideal [ < O), we denote by O, (resp. ;) the localization at
a (resp. at [).
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uniformly with respect to a € Z/¢. A probabilistic model with sums of inde-
pendent random variables uniformly distributed in {1} is used; its accuracy
is proved through a bound derived from the Riemann hypothesis for curves
over finite fields.

1.4. Trace functions over finite fields. Additive and multiplicative char-
acters of finite fields, hyper-Kloosterman sums and more general exponen-
tial sums are particular examples of trace functions of constructible middle-
extension sheaves of Q-modules on IP’[qu, as they appear in particular in the

works of Katz (see for example | | and | |), and more recently in
the series of papers by Fouvry, Kowalski, Michel and others (see | ],
| , Section 6] or | | for surveys).

Herein, we will mainly consider:

— Multiplicative characters x : Fy — Z[(q] of order d, eventually com-
posed with a rational polynomial, realized as trace functions of Kum-
mer sheaves, with x(0) = x(o0) = 0.

— Hyper-Kloosterman sums (1) Kl 4 : Fg — Z[(ap] n-1)2, realized as
trace functions of Kloosterman sheaves, with Kl, 4(0) = (—,/g)' ™.

— Functions f : F; — N counting points on families of curves on ]P’]%,q
parametrized by an open of P!. For example, for f € F,[X] a fixed
squarefree polynomial of degree 2g > 2, we have the family of hyper-
elliptic curves given by the affine models

X. 1y = f(a)(x —2) (z € Fy),
as constructed by Katz-Sarnak | , Chapter 10].

The observations on the images of these functions from Sections 1.1-
happen to translate on the level of sheaves: they are actually sheaves of
O, < Qy-modules, where O is the ring of integers of a cyclotomic field and A
is an f-adic valuation corresponding to a prime ideal [ < O above an auxiliary

prime £ # p.
For the second example, this follows from the fact that the f-adic Fourier
transform is defined on the level of Oy-modules (see | , Chapter 5]).

1.4.1. Reductions. The reduction of the trace function modulo [ then cor-
responds to the trace function of the reduced sheaf of Fj-modules, for Fy >~
0, /10, the residue field. This implies that we can use the ¢-adic formalism
and the ideas of Deligne and Katz to study distribution questions of these
reduced trace functions.

As in | | (that we generalized in | |) and | |, a key idea is
to use a probabilistic model, based on Deligne’s equidistribution theorem.

1.4.2. Monodromy groups. For Kloosterman sums, an important input is the
determination of the Oy-integral monodromy groups of Kloosterman sheaves
[ ], analogous to the determination of the monodromy groups over Q,
by Katz | |, when ¢ is large enough depending only on the rank.

This was already known by results of Gabber, Larsen and Nori, but for ¢
large enough depending on ¢ and with an ineffective constant, which would
have been unusable for our applications.
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1.4.3. Other examples. The above setup also applies to other f-adic trace
functions such as hypergeometric sums (as defined by Katz in | , Chap-
ter 8|) and general exponential sums of the form

-1 5 (tr2f(y) + h(y) .
ﬁzF ( ! )x<g<y>>< eF,),

for f,g,h € Q(X) rational functions and x a multiplicative character on F;.

However, the determination of their Oy-integral monodromy groups is the
object of future work. If we showed that these are as large as possible (hence
classical groups), as is the case for the monodromy groups over Q, by Katz’s
work | |, the results below would hold as well.

1.5. Overview of the results. Given an abelian group A, a function f :
F, — A and a subset ¥ c F,, we denote by

S(f.B)= ), f()
zell
the partial sum over E. For x € Fy, we let E +x = {e + z : e € E} be the

translate of E by x. With the uniform measure on F,, we can consider the
A-valued random variable (S(f, E + ¥)),er,
1.5.1. Equidistribution for shifted sums. The first results concern the distri-
bution of short shifted sums, and are analogues of the questions answered in
| | and | | (where the random variables were shown to be gaussian
under some ranges, generalizing a result of Erdés-Davenport).

Proposition 1.1 (Kloosterman sums). For n > 2, q¢ an odd prime power,
and | A Z[(ap| a prime ideal above a prime £ >, 1 distinct from p with £ =1
(mod 4), let Kl,, , : Fy — Ty be the reduction modulo U of the (normalized)
Kloosterman sum on IPIIFq. For any I c IFy of size L, the probability

P(S(Klyg, 1 +2) = a)

s given by
n2— n24fn—
L On (IR TR R R 2+"<"—1>—1q—é> if n odd
JEE— + 9
[ Oy | |Fi|~F s || Ea 2q_§> if n even

uniformly for all a € Fy. This also holds for unnormalized Kloosterman sums.

Remark 1.2. When p = 1 (mod 4) or n is odd, one may replace (4, by (p
and the result holds without restriction on ¢ (mod 4). The same remark will
apply to the subsequent statements involving Kloosterman sums.

A similar result is valid for point-counting functions on families of hyper-
elliptic curves.

Proposition 1.3 (Multiplicative characters). We let:
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(1) d =2 be an integer, | I O = Z[(4] be a nonzero prime ideal,
X: Fq — F[

be the reduction modulo | in Fy = O/l of a multiplicative character of
order d;

(2) f = fi1/f2 € Q(X) whose poles and zeros have order not divisible by d;

(3) 6 € (0,1) be such that’ d > |F|° and d/(d,|F*|) = [F||° for every proper
subfield F' < Fy;

(4) I < Fy of size L; if f # X, we assume moreover that |I| = 1 or I <
[1,p/deg(f1))¢ with respect to an arbitrary Fy-basis of Fy, identifying the
latter with {1,...,p}°.

Then there exists o = a(6) > 0 such that

1 1 dL+1
P<S(X of, I+ l‘) = a’) = m + Of <|F[|La + q1/2|F[|min(La,l)>

uniformly for all a € Fi. Moreover, if § > 1/2, we can choose a(d) = § —1/2;
if By = Fy with § > 1/3, we can choose

Bl e (1/3,1/2]
a(d) =< B2 ifse(1/2,2/3] (2)
§—2% ifse(2/3,1].

The ranges of the various parameters will be studied in due time. Propo-

sitions and will be particular cases of Theorem below.
1.5.2. Generalizations of [ | to trace functions: distribution of families
of short sums. Next, we generalize a result of Lamzouri-Zaharescu | |

to the distribution of various families of sums of reduced trace functions, in
particular multiplicative characters of any order and Kloosterman sums.

Proposition 1.4 (Shifts of small subsets). Let ¢ € (0,1/4) and lett : Fy —
Fy be either t = Kl,, 4 as in Proposition ort = xo f as in Proposition
OE n

. Let E c Fy, be a “small” subset. Then
( ) <|Elogm|>5>
1 , T/a—= log
P(S(t,E—i—m)Ea):——lr ! ! 1
Fl ] ( L (|E|logd>z>
e f ql/a—= log q

for Kloosterman sums, respectively multiplicative characters, uniformly for
all a € F[.

(This will be a particular case of Proposition , where the conditions
on E will be made precise).

The second example generalizes the result of | | to all multiplicative
characters:

2 F, = Fy, or if [Fy : F¢] is prime, or if § > 1/2, this condition is simply d > |F|°.
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Proposition 1.5 (Partial intervals). Let ¢ € (0,1/4) and let t = x o f :

Fp, — Iy be as in Proposition 1./. Then
1< k<p:S(xof{1,...,k}) =a}
p
18 equal to

1 1
1 1 logd) 2 |F| logp 2
— ) —_—
w0 <p1/4‘5 i <logp) oy < plogd
uniformly for all a € Fy.

(This will be a particular case of Proposition ).

The method does not allow this to be generalized to Kloosterman sums,
but we can nonetheless do the following:

Proposition 1.6 (Partial intervals with shifts of small subsets). We con-
sider the situation of Proposition with a fized choice of a F,-basis of IFy
giving an identification Fy = Fp = {1,...,p}*. We let Es,...,E. < F), be
“small” subsets. Then the density
H(z1,. . ze) {1, ..., p}¢: SEAL, ...,z x [[Lo(Ei + 25)) = a}
q

1
1 log [Fi| T[7_ | Ea] ) 2
1 OE,TL <q1/4—5 + ( log q
1

Fl log d]T5_, |Ei|
[ 1 0og = i 2
OE,f <q1/45 + < logq2 ) >

for Kloosterman sums, respectively multiplicative characters, uniformly for
all a € Fy.

1s equal to

(This will be a particular case of Proposition , where the condition on
E; will be made precise).

Again, these examples also apply to unnormalized Kloosterman sums and
functions counting points on families of hyperelliptic curves (normalized or
not).

1.6. Structure of the paper. This article is structured as follows:

— In Section 2, we set up the technical framework we will work in to
handle reductions of f-adic trace functions over finite fields, and we
define precisely the examples we will consider.

— In Section 3, we define a probabilistic model for short sums of ¢-adic
trace functions, inspired by Deligne’s equidistribution theorem.

— In Section 4, we prove that this model is accurate (akin to what is
done in | | for sheaves of Q,-modules).

— In Section 5, we make preliminary computations and observations in
the model, in particular regarding “Gaussian sums” in monodromy
groups.
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— In Sections 6 and 7, we finally prove the results introduced in Sections
and , respectively.

Acknowledgements. The author would like to thank his supervisor Em-
manuel Kowalski for guidance and advice during this project, as well as
the anonymous referees for careful readings and valuable comments. It is a
pleasure to acknowledge in particular the influence of the works of Etienne
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Michel and Alexandru Zaharescu. This work was partially supported by
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tions were made while the author was in residence at the Mathematical
Sciences Research Institute in Berkeley, California, during the Spring 2017
semester, supported by the National Science Foundation under Grant No.
DMS-1440140. The results also appear in the author’s PhD thesis | .

2. TECHNICAL SETUP AND EXAMPLES

Let F, be a finite field of odd characteristic p. For an integer d > 2, let
E = Q({q) be the dth cyclotomic field with ring of integers O. We fix an
auxiliary prime ¢ # p and a prime ideal [ < O above ¢, corresponding to a
valuation A of E extending the f-adic valuation on Q. Let E) and Oy be the
completions, and let

m: 0y — F
be the reduction map in the residue field Fy = O/l = 0,/10,.

2.1. Review of /-adic sheaves on ]P%Fq. In the following, let A be either
@E7 E)\? O)\ or F['

2.1.1. Definitions and basic properties. As in | |, we consider a con-
structible sheaf F of A-modules on P!/F, which is middle-extension, i.e. for
every nonempty open j : U — P! on which j*F is lisse, we have F = j,j*F.
For simplicity, we shall from now on simply call F an “¢-adic sheaf of A-
modules on }P’%q”.

We write Sing(F) = X (F,)\Ux(F,) for the set of singularities of F, where
Ur is the maximal open set of lissity of F.

We recall that the category of ¢-adic sheaves of A-modules of generic rank
n on ]P’Hl;q is equivalent to the category of continuous f-adic Galois represen-
tations

PF *Tl,q — GLn(A)a
for m 4 = Gal (Fq(T)*P/Fy(T)) the étale fundamental group (see | ,
Theorem 7.13|) and A = F5 for 77 the geometric generic point of IP’I%Q corre-
sponding to the chosen separable closure.

We say that F is irreducible (resp. geometrically irreducible) if pr (resp.
the restriction of pr to 7f,™ := Gal(F,(T)*P/Fy(T)) < m14) is an irre-
ducible representation.

For z € P1(FF,), we denote by

— I, < Dy < myq tnertia (resp. decomposition) groups at (the valua-
tion corresponding to) z.
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~ Frob, 4 € D,/I, =~ Gal(F,/F,) an element mapping to the geometric
Frobenius Frob,.

- ]-%I“” the space of invariants of /7 with respect to the action of I,.
Note that pz(Frob, 4) € GL(F;*) is well-defined.
— Swang (F) € Z=¢ the Swan conductor of F at x.

These are defined up to conjugation. As in the works of Fouvry-Kowalski-
Michel (see e.g. | |), we consider the conductor

cond(F) = rank(F) + | Sing(F)| + Z Swany, (F)
zeSing(F)
of F, which combines three invariants of the sheaf to measure its “complex-

ity” (with respect to dimension and ramification).

The trace function of F is the map
tr: PYF,) — A
T > tr (pf(Frobm,q) | ]:ﬁlz) .

If A has characteristic zero, we say that F is pointwise pure of weight 0
if for every finite extension Fy/F, and every x € Ur(Fy), the eigenvalues
of pr(Frob, ) are Weil numbers a of weight 0, i.e. o € Q and for any
embedding ¢ : Q — C, we have |t(a)| = 1. In this case,

Lo = max [u(tr(z))| < rank(F) < cond(F),

t
| | g zeP1(Fy)

for any such ¢, which is clear at lisse points and a result of Deligne | ,
(1.8.9)] at singularities.
For F,G two sheaves of A-modules on IP’lq, we denote by:

— F ® G the “middle tensor product”, i.e. the sheaf of A-modules on
IP)Ilgq corresponding to the representation pr ® pg

— D(F) the “dual sheaf”, i.e. the sheaf of A-modules on IP’Iqu corre-
sponding to the dual/contragredient representation of pr.

2.1.2. Sums of trace functions. Deligne’s analogue of the Riemann hypothe-
sis over finite field for weights of étale cohomology groups | | along with
the Grothendieck-Lefschetz trace formula and the Euler-Poincaré formula
of Grothendieck-Ogg-Safarevich gives the following asymptotic estimate for
sums of trace functions:

Theorem 2.1. If A as above has characteristic zero and if F is a sheaf of
A-modules on ]P’]%-q which is pointwise pure of weight 0, we have

Z tr(xz) =q-tr (Frobq |]—"7r11gi;)m) + O (E(F)\q)
zeUr (Fq)

with respect to an arbitrary embedding 1 : Q — C, where ]:wfe"m is the space
q

geom

Tq » with the action

of coinvariants of the representation pr restricted to w
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of Froby € Gal(F/Fy) = m1,4/75%"™, and

E(F) = rank(F) | | Sing(F)| — 1 + Z Swan, (F) | « cond(F)?%.
zeSing(F)

Moreover, the same relation holds for 3, cp tF(z).

Proof. See for example | , Exposé 6], | , Chapter 2|, | ,
Section 9] or | , Section 2.2]. O

It follows that geometrically irreducible ¢-adic trace functions on Plqu are
“almost orthogonal™

Corollary 2.2. If A as above has characteristic zero and if F, G are geo-
metrically irreducible sheaves of A-modules on ]P’IIFq which are pointwise pure
of weight 0, then

Y, tr(@)ig(x) = C(F,G)q + O(cond(F)? cond(G)*/a),

zely

with C(F,F) =1 and C(F,G) = 0 if F and G are not geometrically isomor-
phic, the conjugate being interpreted with respect to any embedding t : Q — C.

Proof. The sheaf H = F ® D(G) satisfies tr(z)tg(x) = ty(x) when = ¢
Sing(F) u Sing(G), and cond(H) « cond(F)? cond(G)? (see the references

above). Hence

D tr@itgl@) = ) tg(@) + O ([trtgllieo(| Sing(F)| + | Sing(G)])
z€F, zeUy (Fq)
- 2 tg(x) + O (cond(]—")2 cond(g)Q)
zely

= gq-tr <Frobq |7-L,rge0m> + O (cond(F)? cond(G)*\/q)

where the last equality is Theorem 2.1. By Schur’s Lemma, dim H__ geom = =1

if 7 and G are geometrically isomorphic, and is zero otherwise. If F = g the
action of the Frobenius on the 1-dimensional vector space H peom is moreover
»q

trivial. O
2.2. Reductions. Let F be an f-adic sheaf of Oy-modules on P%q, corre-
sponding to a representation

pr T, — GL,(O)).

By reduction modulo [, we obtain an ¢-adic sheaf of Fi-modules, correspond-
ing to the representation 7 o pr, with trace function w o tr.

tr

pF GLn(O)\) O)\ tr
T1,q Lﬂ' lﬂ-\ Fq
\ /

GLy (F)) o F|
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Remark 2.3. By the theory of ramification in cyclotomic fields, we have
|F(| = ¢™ with m the multiplicative order of £ modulo d (see | , Theorem
2.13|). In particular,

|F{f =1 (mod d) and d < |Fy|.

Moreover, F; = F; (i.e. ¢ splits completely) if and only if £ =1 (mod d).

Remark 2.4. In practice, tr : F;, — O, will actually have image in O or
O, for some a € O\l when we normalize (see the examples given in the
introduction). We recall that our motivation is to study the reduction of a
function F; — O modulo almost any prime ideal of O. The following diagram
summarizes the different rings considered and natural maps between them:

E——F),
T mod [
) Oa O[ 0)\ IF[-

2.3. Examples.
2.3.1. Kummer sheaves.

Proposition 2.5. Let O = Z[(4] and let x : F — O be a multiplicative
character of order d = 2, X be an £-adic valuation on O corresponding to a
prime ideal | above £, and f = fi/fa € Fg(X) which is not a d-power. We
assume that f has no zero or pole of order divisible by d. There exists a sheaf
Lypy = Ly(p).n of Ox-modules on Fy with:

(1) trace function x o f (under the convention that x(0) = x(0) = 0).
(2) tame singularities at the zeros and poles of f.

(3) cond(Ly(y)) < 1+ deg(f1) + deg(f2).

By reduction modulo 1, this gives a sheaf of Fi-modules with the same prop-
erties and trace function x o f (mod [), for Fy = O,/10,.

Proof. See e.g. | , Section 4.3]. O

NotATION 2.6. For f = fi/f2 € Fy
write deg(f) = max(deg(f1), deg(f2))

2.3.2. Kloosterman sheaves.

(X) with fi, fo € Fy[X] coprime, we
, s0 that cond(L,s)) « deg(f).

Proposition 2.7. Let n = 2 be an integer and X be an £-adic valuation
on O = Z[(sp] corresponding to a prime ideal | above {. There exists a
Kloosterman sheaf Kl, = Kl,, x of Ox-modules on IP’lq, of rank n and with

trace function corresponding to the Kloosterman sum

—1)nt r(zy + -+ 2
33'—>K1n,q(1:)=¢ Z e<t( 1+ + )> (:EGF;)’

n—1
¢ \ p
Z1,...,2n€Fg
T]...Tn=21

and Kl,, 4(0) = (—,/q)"" . Moreover, Kl,, is geometrically irreducible, lisse
on Gy, Swang, (Kl,) = 1, Swany(Kl,,) = 0, cond(Kl,,) = n + 3, and we note
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that
Kl q(7) € Oym-12 < O

forallz e Fy.
By reduction modulo 1, this gives a sheaf of Fi-modules on P%q with the

same properties and trace function equal to Kl,, ; (mod [), for Fy = O,/10,.
If p=1 (mod 4) orn is odd, we may replace O by Z[(p].

Proof. Recall that

1 ifp=1 (mod 4)

EpVp € ZIG | with £, = {Z ifp=3 (mod 4)

by the evaluation of quadratic Gauss sums, so \/p € Z[(p, 4] < Z[(4p] and
VD € Z[(ap)[* since £ # p. The proposition is then a consequence of the
construction and investigation of the f-adic Fourier transform by Deligne,
Laumon and Brylinski: see | , Chapters 4, 5, 8|. O

2.3.3. Point counting on families of curves.

Proposition 2.8. For f € F,[X] a squarefree polynomial of degree 2g > 2,
such that its set of zeros Z; is contained in Fy, we consider the family of
smooth projective hyperelliptic curves of genus g parametrized by z € Fg\Zy
with affine models

X, iy’ = f(x)(z - 2).
Let X be an £-adic valuation on O = Z[(ap] corresponding to a prime ideal
[. There exists a geometrically irreducible sheaf of Ox-modules F = Fy on
IP’%Fq of generic rank 2g, corresponding to a representation p : m 4 — GL(V) =
GLag(Oy) such that for all z ¢ Zy,

det(1 — ¢"/2Tp(Frob,)) B ™
0T —qT) Z(X.,T) := exp <7§1 !XZ(Fqn)|n> ,

+1—|X(F
t]—'(Z) _ q q1|/2 ( Q)‘ c Oql/Q < O[.

Moreover:
(1) Sing(F) = {o} U Z; and F is everywhere tame. In particular,
cond(F) = 29 + | Z|.
(2) At any z € Z;, the quotient V/VI= is the trivial (one-dimensional)
1. —representation.
By reduction modulo |, this gives a sheaf of Fi-modules on P]%-q with the
same properties and trace function ty (mod [), where Fy = O)/10,.

Proof. By | , Section 10.1] or | , Section 4] (using middle-convolutions),
there exists a sheaf of Z,-modules on IP’IIFq of generic rank 2¢g, pointwise pure
of weight 1, such that for all z ¢ Z¢,

det(1 — Tp(Frob,))
(1=T)(1 —qT)

Z(X.,T) = and tr(z) = ¢ +1 - [X:(Fy)| (2 ¢ Zj),



12 Distribution of values of trace functions in cyclotomic integers

along with properties (1) and (2) above. Normalizing by a Tate twist gives
the sheaf with the desired properties.
O

Other examples of families of curves are given in | , Chapter 10].

3. PROBABILISTIC MODEL

Let F be a sheaf of Fi-modules on Pﬂqu: lisse on an open U, and corre-
sponding to a representation pr : 7 4 — GL,(IF;) = GL(V).

In this section, we set up a probabilistic model for short sums of the trace
function ¢t and show that it is accurate (with respect to density functions).

3.1. Monodromy groups.

DEFINITION 3.1. The arithmetic and geometric monodromy groups of F are
the groups Ggeom (F) = p;(wfqom) < Gaith (F) = pr(m1,q) < GL,(Fy).

DEFINITION 3.2. For G = Gaitn(F) or G = Ggeom(F), the inclusion G —
GL,, (F\) is called the standard representation of G.

The determination of integral or finite monodromy groups is usually more
difficult than that of monodromy groups over Q, (as Zariski closures of the
images of the representations), because we consider simply subgroups of
GL, (F() instead of (reductive”’) algebraic subgroups of GL,(C).

3.1.1. Examples. Nonetheless, for the examples we consider:

Proposition 3.3 (Kummer sheaves). The arithmetic and geometric mon-
odromy groups of a Kummer sheaf of Fi-modules as in Proposition are
equal to pq(Fy), the group of dth roots of unity in F\.

Proof. This is clear by the explicit construction of the Kummer sheaf (see
e.g. | , Section 4.7]). O

The following two propositions extend the results over Q, from | ],
respectively | |, and show that the finite monodromy groups are still as
large as possible.

Proposition 3.4 (Kloosterman sheaves). Let n > 2 be an integer coprime
with p and let Kl,, be the sheaf of F(-modules from Proposition 2.7. If £ », 1
with £ =1 (mod 4) and ([F( : F¢],n) = 1, then

SL,(Fy) if n odd

Sp,(Fy)  if n even.

If p=1 (mod 4) and O is replaced by Z[(p|, then this holds without restric-
tion on £ (mod 4).

Ggeom(]Cln) = Garith(lCln) = {

Proof. See | , Theorem 1.6]. O

3By a result of Deligne, the connected component at the identity of the geometric
monodromy group of a pointwise pure of weight 0 sheaf of Q,~-modules on ]P’]%q is semisimple,

see e.g. | ,9.0.12].
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Proposition 3.5 (Families of hyperelliptic curves). In the setting of Propo-
sition 2.8, assume that [ is completely split, i.e. By =Fy. For F the normal-
1zed sheaf of Fp-modules on ]P’]}q from Proposition 2.5, we have Ggeom(F) =

Garith(]:) = SpQQ(]FZ)~

Proof. Tt follows from a theorem of Hall | , Section 5| and Proposition
(i.e. the geometric monodromy group contains a transvection) that
Ggeom(F) = Spg,(F).

Since we normalized, | , Lemma 10.1.9] shows that the arithmetic
monodromy group preserves the same pairing (without normalization, it is
a group of symplectic similitudes with multiplicator ¢), so that Spy,(FF,) =
Ggeom<]:) < Garith(f) < SPQg(FZ)- O

3.2. Model. We are interested in the F(-valued random variable
(tr@) (3)
zelfy

with respect to the uniform measure on Fy.

Motivated by Chebotarev’s density theorem/Deligne’s equidistribution
theorem (see e.g. | , Chapter 9]), the idea is to model the Gyt (F)*-
valued random variable

(o)

by the random variable Y = 7(X), where X is uniformly distributed in
Garith(F), T ¢ Garitnh(F) — Garign(F)! is the projection to the conjugacy
classes, and pg_- : 7T§7q — Garitn (F )ﬁ is the natural map induced by pr.

zeU(Fq)

We shall then naturally model (3) by the random variable Z = tr(Y').
3.2.1. Shifts.

DEFINITION 3.6. For I < I, we define
Ur,1(Fq) = ﬂ(U}'(Fq) —a) = Fg\ U((Sing(f) nFq) — a),
ael ael

where £ —a = {z —a:z € E} for any E c F,; and a € .

For I c IF, of size L > 1, we will then model the random vector

(w0 g

ZZ‘EU]:J (Fq)

(with respect to the uniform measure on Ur ;(F,)) by the random vector
(Y1,...,Yr), for Y; independent distributed like Y.
Correspondingly, we will model the random vector ((tx(x + a))

(Z1,...,21), for Z; independent distributed like Z.

by

GEI)Iqu

Therefore, the sum of shifts

(S(t]:, I+ gc))IF - (Z tr(y + x))

yel
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will be modeled by the random walk S(L) = Z; + --- + Z, as in | |
and | | for multiplicative characters.

This is also to be compared with the model used in | | and | ]
for sheaves of Q-modules.

Remark 3.7. When x € Sing(F), pg_-(Frobxyq) is not a well-defined conjugacy
class in Garjen(F) (rather one in GL(V!#)). On the other hand, tz(x) is a
well-defined element of Fy for all x € PX(F,).

3.3. Coherent families. We define a family of sheaves for which this model
is accurate.

3.3.1. Definition.

DEFINITION 3.8. Let F be a sheaf of Fi-modules on ]P’]%-q corresponding to a

representation pr : m ¢ — GL,(F(). If o € Aut(F), we let o(F) be the sheaf
corresponding to the representation o o pr : 114 — GLy (F) — GL, (F)).

DEFINITION 3.9 (Coherent family). Let E be a number field and A be a set
of valuations on E. A family (F))xea, where F)y is an irreducible sheaf of
Fi-modules over a finite field F, = F,(y), for [ the prime ideal corresponding
to A, is coherent if:

(1) (Conductor) cond(F)) is uniformly bounded for A € A.
and either:

(2) Kummer case: There exists an integer d > 2 such that every F) is a
Kummer sheaf with monodromy group pq(Fy).
(2") Cyclic simple case: There exists a prime d > 2 such that for every
AeA:
(a) (Monodromy groups) The arithmetic and geometric monodromy
groups of F) coincide and are equal to uq(Fy).
(b) (Independence of shifts) There is no geometric isomorphism of
the form [+a]*Fy = FP for 1 <i<d, ae qu(/\).
(2") Classical case: There exists G € {SLy, : n = 2} J{Sp,, : n = 2 even}
such that for every A € A:
(a) (Monodromy groups) The geometric and arithmetic monodromy
groups of F) coincide and are conjugate to G(F) in GL,(F\)
(with respect to the standard representation).
(b) (Independence of shifts) There is no geometric isomorphism of
the form

[+a]* Fr = L& o(Fy) or [+a]*F\ = L& D(c(Fy)) (5)
for a € F;()\), o € Aut(Fy) and £ a sheaf of Fi-modules of generic

rank 1 on IP%F
a(X)

We call pg, resp. SL, or Sp,, the monodromy group structure of the fam-

ily, and a bound on the conductor of the family is any uniform bound for
cond(Fy) (A e A).

Remark 3.10. We fix the structure of the monodromy group, while we let I,
and F; vary to study for example the reductions of a trace function whose
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values do not depend on A, modulo various ideals (see Remark 2.1) as ¢ —
+00. We could also let d, resp. n vary (in the Kummer, resp. classical case),
but this is not a natural aspect in applications. Nonetheless, we note that
the implied constants will not depend on d in our results.

Remark 3.11. This is to be compared with the coherent families of sheaves
of Qy-modules on ]P’leq defined in | |.

3.3.2. Examples.

Proposition 3.12 (Kummer sheaves). Let d = 2 be an integer and let A be
a set of valuations of Q(Ca). A family (Ly(f,),3)xen of Kummer sheaves, with
monodromy group structure pig and deg(fy) bounded uniformly, is coherent.

Proof. By Propositions 2.5 and 3.3, Conditions (1) and (2) of Definition
are satisfied. O

Proposition 3.13 (Kloosterman sheaves). Let n > 2 be an integer and let
A be a set of valuations of Q(Cap). We assume that every X € A lies above a
prime £ », 1 with £ =1 (mod 4) and (n,[F(: F¢]) = 1 as in Proposition

A family (Kl x)xen of Kloosterman sheaves of rank n, as in Proposition 2.7,
s coherent.

Proof. By Propositions and 3.1, Conditions (1) and (2"a) of Definition
are satisfied. It remains to show the independence of shifts (Condition

(2"b)), which can be done exactly as in the Q, case in [ , Section 7| by
analyzing the local ramification on both sides of an isomorphism of the form
(5). O

Proposition 3.14 (Families of hyperelliptic curves). Let f € Z[X] be a
squarefree polynomial of degree 2g = 2 and let A be a set of valuations of
Q(Cap) of degree 1 (i.e. corresponding to completely split ideals). A family
(Fa)aer of sheaves of Fo-modules with respect to the reductions of f as in
Proposition s coherent.

Proof. By Propositions and 3.5, Conditions (1) and (2"a) of Definition
are satisfied, and it suffices to verify the independence of shifts (Condition

2"b)). Again, the argument is the same as the one over Q, in , Section
0
7). O
G | dimG rank G o(G)  B4(G) B-(G)
SL, n®—1 n—1 #21 nin=z nll)
n(n+1 n n(n+2 n(n+2 n2
Sp,, (n even) % 2 ” ) . ) n

TABLE 1. Constants for the groups considered.

3.4. Accuracy of the model.
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DEFINITION 3.15. Let (Fy)aea be a coherent family with monodromy group
structure G and let I < F,. We say that a sheaf of Fi-modules F) on IP’IIFq in
the family is I-compatible if either:
— The family is in the cyclic simple case or the classical case (cases (2')
and (2”) of Definition 3.9).
— The family is in the Kummer case (case (2) of Definition 3.9), so that
Fr = Ly for x : F — C* a character of order d, f = fi/f2 €
Fq(X) with (f1, f2) = 1, and we have that

in¢0foralla:1,...,xmel,1gmédeg(fl). (6)
i=1

Ezample 3.16. Condition (6) holds if deg(f) = 1 or if for an arbitrary IF,-
basis of F, with coordinates m; : F, — {1,...,p} we have max,es mi(a) <
p/deg(f1) for some 1 < i <e.

DEFINITION 3.17. Let L > 1 be an integer and G be the monodromy group
structure of a coherent family. We define

|| B+ (G)+26-(G) @ classical
E(G,L,F) = { d* G = pa, d prime

b+l otherwise

with 4 (G) = (dim G + rank G)/2, given in Table

Theorem 3.18. Let (Fi)xea be a coherent family with monodromy group
structure G. For A\ € A, let I < Fy = Fy) be of cardinality L and h :

(GF)H! - R be any function. If F = Fy is an I-compatible sheaf on IP’Iqu,
then

E [ (o (Frobesa)Jaer ) | = E (Y1, V) +O(LlIhllog™ V2 E(G, L, F)),

where the random variables Y; and probability spaces are as in Section ,
[h]]oo = max,eqmyeyr [(x)]. Moreover, if h takes values in Rxo, then the
above is

E(h(Yi,..., Y1) (1 + O(Lg V?E(G, L, IE‘[))) .

The implied constants depend only on the monodromy group structure and a
bound on the conductor of the family.

Remark 3.19. When I = {0}, this is Chebotarev’s theorem as it appears for
example in | |.

Corollary 3.20. Under the hypotheses of Theorem , for any function
h: F[] — R, we have

E[n((t7(@ + @)aer ) | = E (21, Z0)) + O(Lllhllwa™ 2 (G, L)),

where the random variables Z; and probability spaces are as in Section
If h takes values in Rsq, then the above is

E(h(Z, ..., Z5)) (1 + O(LgV2E(G, L,F[))) .
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The implied constants depend only on the monodromy group structure and a
bound on the conductor of the family.

Remark 3.21. Note that we must take L < ¢%? to have E(G,L,F)L =
0(¢'/?) as ¢ — +c0.

3.5. Comments on the ranges. Let us consider the above in the context
of Section and Remark 2.4, i.e. when the sheaf of Fj-modules on ]P’%q
from Theorem arises from the reduction of a sheaf of Z[(4] -modules,
allowing to study the reduction of a trace function t : F; — Z[(4] modulo
various ideals.

By Remark 2.3, recall that if Fy is the residue field of Z[(4]\ at some prime
ideal above ¢, then d < |F(| = ™, for m the order of £ in (Z/d)*.

3.5.1. Choice of the parameters. Thus, we may want to choose our param-
eters (g,4,1,d) so that d < |F(| < |F,| = p®. Given p, ¢ and d, this is holds

p(d)log ¢
log p

true for any [ above /¢ if e >

3.5.2. Limitation. Together with the condition

I lolggllg[l if G classical
<«
et G =
from Theorem , the relation d < |F|| implies that L « e if G is classical

and d = p (e.g. for Kloosterman sums). Hence, we must in this case take e
large enough with respect to L, which is a limitation of the method to keep
in mind. Note however that it is not unusual to encounter results stated
in fixed characteristic with the degree e going to infinity (see e.g. | ,

Chapter 9] and | , Chapter 3]).
4. PROOF OF THEOREM AND COROLLARY
In the following, we use the notations of Theorem and we let I =

{al, PN ,aL} (e Fq, V(Fq) = U]:’](Fq).

DEFINITION 4.1. For v = (vy,...,vr) € (G*)! and G the set of characters
of irreducible complex representations of G, we define

L L
E(v) = Z (H Xi(”z’)) \V&F)] 2 Xz‘(ﬂgr(FFObHai))-
q 1

Xl,...,XLeé i=1 zeV (Fq) i=
not all trivial

We start with the following relation between the expected values we are
interested in:

Proposition 4.2. For I ={a1,...,ar} c Fy, the expected value

E | (s (Frobsa))ae )| (7)
s given by

E(h(Ya,...,Y.) + O (||h E()|).
(0. Y2)) + 0 (Il max, B(o)])



18 Distribution of values of trace functions in cyclotomic integers

When h is nonnegative, (7) is also

E(h(Y1,..., Y1) {1 +0 ( max \E(U)|>] .

ve(GH)T

Proof. By definition, the left-hand side of (7) is

( Z h(ph(Frobga,), - ., ple(Frobesa,)) = Y. A(v)
q er]Fq ve(GH)T

where
D(v) = {z € V(F,) : ple(Frobyia,) = v (1 <i< L)}

for v = (v1,...,vp). By Schur’s orthogonality relations for the finite group
G,
|D(v)| Z H
- (Froby 4q
V(E,) 2 Lo,
1 L ‘U1| # _
1 wev (Fy) i=1 xe@
[Ty |vil 1 - -
- SEr X way [ [xi(o5(Frobe o)X (vi)
X1, XLEG zeV (Fq) i=1

[IE, Jo
= L (s B)),

where |v| denotes the size of a conjugacy class v € Gf. On the other hand,

E(h(Y1,..., YD) = =7 . h(v H]v,\

vE(Gﬁ

To prove Theorem , we thus want to show that the expression
2 HX% pr(Frobgiq,)) (8)
zeV (Fq) 1=1
in E(v) is small for x1,...,xz € G not all trivial and v € (G#)!.
4.1. Reinterpretation of (3).

DEFINITION 4.3. We fix an isomorphism of fields ¢ : Q, — C. Forn:G —
GL(V) a complex representation, we let F, be the sheaf of Q,-modules on
IP’%Q corresponding to the representation

v ronopr: T,y — G — GL(V) — GL(fl(V)),

Remark 4.4. Since G is discrete, there are no issues with the continuity of
the composition t = o5 o pr, even if ¢ is not continuous.
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Note that the trace function of F;, at unramified points is
X © pl o Frob : Ux, (Fg) — 7} , — G(F)* — C,

where x is the character of 7. Thus, we can rewrite (8) as

L
Z Ht]:i (z), where F; = [+a;]* Fy, 9)
weV (Fy) i=1

is a sheaf of Qy-modules on IP’Ilpq, for n; the representation corresponding to
Xi-

4.2. Sums of products of trace functions. The estimation of sums of
products of the form >, 5 [T, ti(x), for t; the trace function of a sheaf of

Q-modules on IF’lq, is precisely the question surveyed in | |.
We need the following estimate, where the dependency with respect to the
conductors is precisely tracked:

Proposition 4.5. Let (F;)1<i<r be a tuple of pointwise pure of weight 0
sheaves of Qp-modules on IP’IIFq, with corresponding trace functions (t; : Fg —
C)i<i<r- We assume that the arithmetic and geometric monodromy groups
of G = @le]-"i cotncide and are as large as possible, i.e. isomorphic to
Hz‘L=1 Ggeom (Fi). Then, for S = UiL=1 Sing(F;),

L
Z tl(x) e tL(l') =q Hdim(ﬂ)ﬁi})m + O(E\/a)
=1

zeF4\S

with an absolute implied constant, where

L L
E <« \/q (H rank(}'i)> <IS| + Z Z SW&Hm(E’)) :
i=1 zeSi=1
Proof. Let F = ®iL=1]:i, which satisfies Sing(F) < S. For any embedding
1:Q - C,
Yoti(r).tile) = D) tr(a)+O(||t]

zeF \S zeUr(Fq)

— Z tr(x) 4+ O (rank(F)|S]) .
zeUr (Fq)

By | , Lemma 1.3|, we also have Swan,(F) < rank(F) Zle Swang (F;)
for any x € Sing(F). Thus, Theorem yields

S ti(@). - tr(e) = q-tr(Froby | Fyeon)
zeF \S ’

voo - Lol S1)

L
+0 (ﬁrank(}“) <|5| +>) Swanx(}})>> .

zeSi=1
If F; corresponds to the representation p; : m 4 — GLy, (@4) with arithmetic
monodromy group G;, we let Std; : G; — GLy,(Qy) be the standard repre-

sentation of G;. If pg is the representation of m 4 corresponding to G, then
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the sheaf F corresponds to the representation A o pg for A = Z‘L=1 Std; and
’Fﬂ—l,q =~ AGarith(g), fﬂslz?;m x>~ Aggeom(g),

where Ay is the space of coinvariants of A with respect to the action of a
subgroup H < Gaith(G). If the geometric monodromy group of G is as large
as possible, then

~

‘Fﬂ'%,e;m = Achom(g) = @(Stdz)chom(‘/—-l)

If moreover Gyith(G) = Ggeom(G), the Frobenius acts trivially on fﬂ%eom ~
»q

AGgeom(g) = AGarith(g) and

L
tr (Frob | Fpgeom) = dim(Fpseon) = [ | dim($t) e (7
i=1

This leads to the following estimates for (8):

Proposition 4.6. For L > 1, let ay,...,ar, € Fy be distinct, and let n; be
complez irreducible representations of G, not all trivial, with characters x;
(1 <i<L). We assume that one of the following holds:

(1) The arithmetic and geometric monodromy groups of @, << [ +ai]* F,
coincide and are as big as possible, i.e. isomorphic to [ [, ;< G/kern;,
or

(2) F is a{ay,...,ar}-compatible Kummer sheaf L, ).

Then, if L < q,

21116 L 2L
max |F(v)| « cond(F)7|GI° Z (H dim m) Z dim 7,
i=1

g
ve(GH)! \/5 Y1xneGt \i=1
with 6 = 0 in case and 6§ = 1 otherwise.

Proof. Tt suffices to show that the sum of products (8) is

L L
« +/qcond(F)?G|° (H dimm) Z dim7;
i=1 i=1

whenever x1,...,xz are not all trivial, since we then have

L 2L
q . .
|E(v)| < cond(}")2|G|5|V\(§)‘ Z (Hdlmm) Zdunm
q Xl’"iiXLEél i=1 i=1
not all trivia,

and /q/|V (Fy)| < ¢~ '/?|1 — ¢~*L cond(F)|.

(1) We note that 7, is geometrically irreducible, rank(F,) = dim 7, Sing(F;,)
is contained in Sing(F) and Swan,(F;,) < dimnSwan,(F) for all = €
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PL(F,) (by | , 3.6.2]). By Proposition 1.5 applied with F; = [+a;]*F,,
the sum (8) is thus

[] dim(FS)+0 ( 2 cond(F (H dim m) > dim m) .

1<i<L

By Schur’s Lemma, dim(}"g ) is equal to 1 if 7; is trivial, zero otherwise.
(2) For every i = 1,..., L, there exists an integer 0 < b; < d such that n; is
the one- dlmenswnal representation x — z%. By multiplicativity,

1 2 HXZ Pe(Frobsa,)) = Z tg(x)

xqu i=1 zelFy

where G = F,(, with g(X) = Hz‘L=1 f(X + a;)%. Since cond(G) <
1 + deg(g ) 1 + Lddeg(f), Corollary gives

. Z tg - 59 is a d—power + O(Ld d€g(f)q71/2)

zqu

Asin | , Section 4], we see that, under the compatibility assumption,
g cannot be a d-power unless all b; are zero.

O

4.3. Finite Goursat-Kolchin-Ribet criteria. It remains to determine
when Hypothesis of Proposition holds. For sheaves of A = Q-
modules, this is handled by the Goursat-Kolchin-Ribet criterion of Katz (see
[ |). We give here an analogue for sheaves of Fi-modules.

4.3.1. Preliminaries. First, recall the classical Goursat Lemma:

Lemma 4.7 (Goursat). Let G1, G2 be groups (resp. Lie algebras) and H <
G1 x Gg be a subgroup (resp. Lie subalgebra) such that the two projections
pi: H— G; (i =1,2) are surjective.

G1/kerps

/j’? }

H —— G1 x Go — (G1/kerpa) x (Ga/kerp)

\¢ |

Gy GQ/ ker p;

Then the image of H in G1/ker pa x Ga/ ker py is the graph of an isomorphism
G1/kerps = Gy/kerp;. In particular, if G1, G2 are simple, then either H =
G1 x Ga, or H is the graph of an isomorphism G1 = Gs.

Proof. See for example | , Lemma 5.2.1]. O

Lemma 4.8 (| , Lemma 5.2.2 and p. 791]). Let Gi,...,G, be non-
trivial finite groups with no proper nontrivial abelian quotients and let G <
G1 x - x Gy, be such that every projection G — G; x G (i # j) is surjective.
Then G = Gy x --- x Gy
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Proof. In | |, this is stated when G; has no nontrivial abelian quotient,
and the condition is used at the end of the proof of the sublemma, | ,
p. 764]. In the notations of the latter, B’/K’ is abelian, and if B’ = S,
has no proper nontrivial abelian quotient, then either K/ = B’ and one can
conclude, or K’ is trivial, which implies that S,, is trivial. O

DEFINITION 4.9. Let k be a field. A pair (G; — GL(V;))i=12 (or (Gi —
PGL(V;))i=1,2) of faithful group representations over k is Goursat-adapted if
every isomorphism G1 = (s is of the form

X — Ao(X)A™1 for an isomorphism A : Vi — V5 or
X — Ac(X)7tA71 for an isomorphism A : Vi* — Vs

with o € Aut(k), o = id unless k is finite.

Ezample 4.10. Let G € {PSLy(k) : n = 2} J{PSp,,/2(k) : n > 2 even} for k
a finite field. If G, Gy are conjugate to G, then (Gj, Std);—1,2 is Goursat-
adapted, where Std is the natural embedding in PGL,, (k). Indeed, by | ,
4.237] and | , Theorem 12.5.1], if G is a finite simple group of Lie type
defined over k, every automorphism can be written as the product of an
inner, graph, diagonal, and field automorphism; more precisely,

Out(G) = (Diag(G) Aut(k)) . Graph(G),

where Diag(G) (resp. Graph(G)) is the group of diagonal automorphisms
(resp. the group of graph automorphisms of the corresponding Dynkin dia-
gram). But for n > 2, Graph(A4,,—1) = Z/2 (corresponding to the transpose-
inverse map) while Graph(C),) is trivial, with the standard nomenclature for
Dynkin diagrams.

4.3.2. Finite groups of Lie type.

Proposition 4.11 (Goursat-Kolchin-Ribet for quasisimple groups). Let 7
be a topological group, k be a finite field, F' be a field, and fori=1,... N,
let p; : m — GL(V;) be a finite-dimensional representation over k with fi-
nite monodromy group G; = pi(m) < GL(V;), and n; : G; — GL(W;) be a
nontrivial representation over F.

We consider the representation p = @N.((ni o pi) : 7 — GL(@N,W;) =
Hf\il GL(W;) with monodromy group G = p(r).

T P Gi —> 1i(Gi) — GL(W;)

be
G
|

[T, mi(Gi) =TT, (Gi/ ker ;)
|
Hé\; GL(Wi)

We assume that:
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(1) The groups G; are quasisimple, i.e. they are perfect (G; = GS°*) and
G, = G;/Z(G;) is simple.

(2) For everyi # j, (G} — PGL(VZ))l:M is Goursat-adapted.

(8) For every i # j, there is no isomorp}wsm

pi = X ®0(pj) or pi = x ® D(o(p;))
for x a 1-dimensional representation of m over k and o € Aut(k).
Then G is as large as possible, i.e. G = [[,(G;/kern;).

Proof. Since G; is quasisimple, note that we have either:

~ G; = Z(G;)kern;. By taking derived subgroups, this gives G =
G; < (kerm;)d < kerm;, so kern; = Gy and 7; is trivial, which is
excluded;

— kern; < Z(Gl)

For H any group, let us continue to denote H' = H/Z(H). By perfectness,
it is enough to show that G’ = [[,(G;/kern;) = [, G-

Since a quasisimple group has no nontrivial abelian quotient (the derived
subgroup is the smallest normal subgroup with an abelian quotient), it is
enough to treat the case n = 2 by Lemma

By Goursat’s Lemma and the simplicity of G}, either G' = G x G,
or G’ is the graph of an isomorphism G| =~ G). In the second case, since
the center of GL is the group of scalar matrices, the isomorphism given by
hypothesis lifts to an isomorphism contradicting (3). O

Remarks 4.12. Proposition should be compared with Katz’s version
over an algebraically closed field | , 1.8.2]. Here, we more generally
compute the monodromy group of @i]\i 1(ni o p;) instead of @i]\i 1pi, while still
assuming Condition only on p; (and not on 7;0p;). Over an algebraically
closed field, the 1-dimensional representations appear when passing from G
to GOder while in Proposition they appear when passing from G to
G’. Moreover, the assumption of quasisimplicity here plays the role of the
semisimplicity hypothesis in | |.

Ezample 4.13. Let k be a finite field and n > 1 be an integer. By | ,
Theorem 24.17], SL,(k) and Spy, (k) with their standard representations
are quasisimple as soon as |k| > 3. Hence, by Example , conditions

and of Proposition hold if there exists G € {PSL,(k) : n >
2} U {PSp,,, (k) : n = 1} such that every G; is conjugate to G.

4.3.3. Roots of unity. Lastly, we give a version of the Goursat-Kolchin-Ribet
criterion for cyclic groups of prime order.

Proposition 4.14. Fori=1,...,L, let p; : 71 — k* be a one-dimensional
representations over a field k of a topological group 7, with monodromy group
G; = pi(m) = Z/d (d prime), and let n; : G; — F* be a nontrivial representa-
tion over a field F'. Consider the representation p = @;(n;op;) : m — | [, F*
with monodromy group G = p(w). If there is no isomorphism of the form
pi = p?“ fori# j,1<a<d, thenG is as large as possible, i.e. G =[], Z/d.
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Proof. Since Z/d is simple, we can apply Lemma to reduce to the case
of two representations as before. By Goursat’s Lemma 1.7, either G is as
large as possible, or it is the graph of an isomorphism G; — (G2. Since
Aut(Z/d) =~ (Z/d)*, this proves the statement. O

4.4. Sums of dimensions of irreducible representations.

DEFINITION 4.15. For a finite group G and m > 1 an integer, we define
dn(G) = ¥, g (dim )™

Lemma 4.16. For any finite group G, di(G) < |G|?|GHY?, do(G) = |G|
and for every m = 3, dp,(G) < |G|"™?|GE|. Moreover:
(1) If G is abelian, d,,(G) = |G| for every m = 1.
(2) If G < GLy(k) is a finite classical group of Lie type over the fi-
nite field k, we have' di(G) < [k| 7275 dy(G) = O, (|K[A™E),
GH = Ou([K[™C), and d(G) < [k EFE
m = 3.
(3) If G = SL, (k) or Sp,,(k) (n even), the upper bounds can be improved

dim(G)+(2—m) rank(G)
t0 dp(G) <y [k T

for every

for every m = 1.

Proof. The relations for finite and finite abelian groups are well-known (see

e.g. | , Proposition 5.2|), the ones for classical groups follow from the
former and | , Corollary 24.6, Corollary 26.10], while the ones for SL,
and Sp,, are | , Proposition 5.4]. O
Remark 4.17. According to Remark , we do not keep track of implied

constants depending on the rank of the monodromy group.

4.5. Conclusion.

Proof of Theorem . By Proposition 4.2,

E [h((pﬁf(Frobm))ae,)] — E(h(W,...,Y1))

+O | ||k E
(1l ma £ )

By Proposition (which applies by Propositions and ) and Lemma

)

L 2L
max,ec)r | E(v)|/q . .
cond(FRjGp € 2 (L[| 3, dim,
X1, XL€G N=1 i=1
= Ldi(G)rds(G).
The case h nonnegative is treated similarly by the second part of Proposition
O

‘Here, the notation f1(G) = ©O,(f2(G)) means that there exists constants
C1(n),C2(n) > 0 depending only on n such that Ci(n)f2(G) < f1(G) < Ca2(n)f2(G)
for all G.
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Proof of Corollary . By writing

B (e + aaer) | = gy [0 ) (i (Frobasa)aer )|

E [ (o tr) (% (Frobsa)aer ) |
+0 (qilﬂh\ loo L cond(]—")) ,

the first relation follows by Theorem , and one argues similarly for the
second one. (|

5. COMPUTATIONS IN THE MODEL

In this section, we carry out preliminary computations and observations
in the probabilistic model.

Throughout, we let G < GL,(Fy), Xi,..., X independent random vari-
ables uniformly distributed in G, ¥; = 7(X;) for 7 : G — G* the projection,
and Z; = trY;.

5.1. Random walks in monodromy groups.

Proposition 5.1. Forall A c Fyand L > 1, the probability P(Z1+---+Zp, €
A) is given by

L
A0 max
‘IF | 0¢¢€F(

D (—a

acA

In particular, for a € Fy,

1
PZi+ -+ Zp=aqa) = i +0 Oin;);
€y

2 P(trz)

1
|G|

Proof. By Schur’s orthogonality relations for the finite group Fy,

v = (v1,...,v0) € GE:tr Y v; = q
P(Zy 4+ 7y = —
(Z1 + +Zp =a) ‘G|L
= |G‘L Z 5tr21)1—a
veGL

) L

= WZ¢(_G)< Elbtl“?f)
0 ek, |

_ I?[! L+ Y (- (metrv)L

OinF[ veG

The first statement follows from summing the previous equation over a €

A. O
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5.1.1. Gaussian sums. For ¢ a nontrivial character of IF|, we will call the sum
D veq Y(trv) a “Gaussian sum over G”, by analogy with the case G = pq(IFy)
(see Section 5.2 below). We can expect it to be small uniformly with respect

to v, say
el D w(tro) « |[Fi| =9 (10)

1
‘ |’U€G

with a(G) > 0, and square-root cancellation corresponds to o(G) = ;?fg'ﬁ;ld.

Alternatively, we can also write
D p(trv) « |GIY) with o/ (G) < 1. (11)
veG
Similarly, if A is “well-distributed” in F|, we expect

1

] D (=) « [F|7*W (12)

zeA

for some a(A) > 0, uniformly with respect to ¢ € Iﬁ‘[. The trivial bound
corresponds to a(A) = 0.
Thus, we can rewrite Proposition as:

Corollary 5.2. Let A < Fy. If the bounds (10) and (12) hold, then

14 !
P(Zl 4+ -4 ZL € A) = m 1+0 ‘F[’LQ(G)+Q(A)71

for all L = 1. In particular,

1 1

uniformly for all a € Fy.

It is insightful to distinguish the following cases to analyze the ranges of
the parameters in Corollary

(1) If either
- a(G) > 1, or
- a(G)<1land L > 1/a(G),
we have equidistribution of Z; + --- + Zp in Fy as |F{| — +o0.
(2) If «(G) <1 and L < 1/a(G), then we have P(Z1 + -+ Z, = a) «
|F;|~£(@) | which shows that Z; + - - -+ Z[, is “not too concentrated”
at any point a € [F.

Ezample 5.3. We will see that for G = SL,,(F) or Sp,,(F), we always have
a(G) > 1. On the other hand, a(uq(Fy)) < 1.

In the next two sections, we investigate bounds of the form (10) (or (11))
for the monodromy groups G we are interested in: roots of unity and classical
groups over finite fields.
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5.2. Gaussian sums in p4(F(): exponential sums over subgroups of
F*. We assume that F contains a primitive dth root of unity. For G =
pa(F) < F[, the sum (10) is a “character sum with exponentials”

d
DT () = DI w(E),
=1

vepg(Fr)

or equivalently a sum over a subgroup of F*.

For Fy = Fy, the latter appear in works of Korobov, Shparlinski, Heath-
Brown-Konyagin, Konyagin, Bourgain-Glibichuk-Konyagin and others, which
give nontrivial bounds for d not too small compared to £. Square-root can-
cellation corresponds to a(G) = 21(1)5 gde, and h’éz < 1since £ =1 (mod d).

We first review the results of Heath-Brown-Konyagin which give explicit
bounds for d at least of the order of £1/3.

Theorem 5.4 (| , Theorem 1]). For v a nontrivial additive character
of Fy, (10) holds with G = puq(F¢) and o(G) = « in any of the following three

cases:

0<a<1/16 and d» (/383 (13)
0<a<1/6 and d>» (¥5+8e/5 (14)
0<a<1/2 and d>» 0>+ (15)

On the other hand, the results of Bourgain and others give (non-explicit)
bounds for d as small as desired:

Theorem 5.5 (| , Theorem 2.1]). Let x,y € F, and let d be the order
of y. For every § > 0, there exists o = a(8) > 0 such that if d = 09, then

d
2 Y(y'z) « di™
=1

uniformly for all nontrivial ¢ € I/E“:g, with an absolute implied constant. Thus,

(10) for G = ug(Fy) holds with a(G) = «(0) if d = £°.

Remark 5.6. The «(d) arising in Theorem are not estimated explicitly
in | |7, but one typically expects them to be very small.

The situation is more complicated when [y has nonprime order:

By using the formalism of trace functions (or the properties of general
Artin-Schreier sheaves in the case of additive characters), we can get a result
valid in the range of Korobov’s:

Proposition 5.7. Let H be a subgroup of ¥y of index k and t : Fy — C be
a trace function corresponding to a geometrically irreducible £-adic sheaf F
on ]P’leq. If either rank(F) > 1 or if the function x — t(z*) is nonconstant

5This could be done with some effort using e.g. | | (see also | D.
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for 2% € Ux(F,), then

Z t(z) « cond(F)?/q.

reH
Proof. Since F7 is cyclic, we have H = {2V x e Fr}and 3 cqt(z) =
%Z%qu t(z*). The sheaf ' = [z — xF]*F is geometrically irreducible and
tz(z) = t(x) when z* € Ux(F,). By Theorem 2.1, the sum is

! /
<« rank(F )kcond(]-" ) NORS rank(f-')llicond(f) V/q < cond(F)*/q,

unless F' is geometrically trivial. In the latter case F' ~ a® Q, for some
a € Qq by Clifford theory (since my /7™ = Gal(Fy/F,)), so that tr(a¥) =
« whenever z* € Uz(F,). O

Corollary 5.8. The bound (10) for G = ug(F) holds uniformly with respect
to all nontrivial 1 € F with a(G) = a € (0,1/2) whenever d = |Fy|/2+,

Remark 5.9. Alternatively, one could also proceed by completion as in | |.

By | |, the results of Bourgain and others (Theorem 5.5) generalize
to all finite fields, up to adding an assumption involving subfields:

Theorem 5.10 (| , Theorem 2|). For every 6 > 0, there exists o =
a(d) > 0 such that with a(G) = «, (10) for G = pgq(Fy) holds if
d
d > |F(|° and ———— = |F|° (16)
(d, [F™])

for all proper subfields F' < Fy.

Remark 5.11. Note that Condition (16) amounts to d > || in the following
situations:

— d is prime and Fy = Fy(ugq), or

— FFy = Fy (recovering Theorem 5.5) or [Fy: F/] is prime, or

— 0 > 1/2 (recovering Corollary 5.8).

5.3. Gaussian sums in classical groups over finite fields. Let us now
assume that G is a finite classical group of Lie type in GL,, (Fy).

Proposition 5.12. Let Fy be a finite field and n = 2 be an integer. The
bound (10) holds for

G a(G)
GL, (Fy) D)
SL, (F)) w1
Sp, (F1), SO;, (Fy) (n even) | mrt2)
SO, () (n odd) =
SO (Fy) (n even) @
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Remark 5.13. By Lemma ,

log |G| . ( 1 )
—dimG+0, [ —— ),
log [IFy| log [IFy|

so square-root cancellation corresponds to a(G) > dim(G)/2. Hence, by the
dimensions given in Table 1, there is square-root cancellation in the special
linear case, but not for the others. Note that the quality of the bounds
improves as n grows.

Proof. We use the explicit evaluation of Gaussian sums over finite classical
groups carried out in | I, | | and | | using the Bruhat
decomposition. Let a € F[* corresponding to ¢ through the isomorphism

F[ = IF[.

(1) By | , Theorem 4.2], the Gaussian sum (10) for GL, (F|) is equal
to (—1)"|F "5

(2) By| , Corollary 5.2], Deligne’s bound for hyper-Kloosterman sums
and Lemma , the Gaussian sum (10) for SL,,(F) is

17 2) K1,,(a")

2_ _ .2
Ln ‘F[|n 2 n+nTl_n2+1 = ‘IF[‘ n2+1.

G|
(3) By | , Theorem A, the Gaussian sum ], g, ) ¥(trv) is equal
to
2 1[m/2J (r+1) (T . 2i—1
L= r(r+ 1—1
Z . (27“>L H & &
r=0 i=1
|m/2|—r+1
« Z Ll Kl (a2)m—2r+2—2l
=1
x> (LM =1).. (L -1
Jisendi—1

for L = |||, where the last sum is over integers 2/ —3 < j; < m—2r—1,

20-5<je<hn-2...,1<j-1<ji—2—2and
r—1 _
m Lm=7—1 r(m—r)
(1), =T gt <nr.
L j=0

Using that [I_(L*"! -1) < L™ and
Klp(a®)™2720 37 (L7 — 1) (L1 — 1) «,, LODE0D)

J1yendi—1
for t = m — 2r (see | , Remark (1) p. 65| for the second one), we
find that the Gaussian sum is
7’7L2 m
\IF[\S N if m even
<<m 2m2+m—1

|Fy| = = if m odd,

and the result follows by Lemma
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(4) By | , Theorem A],
D wtrv)=v(1) D (tro),
v€SO2ym+1(Fy) Uesme(Fl)
the result follows by the previous bound and Lemma
(5) Similarly, by | , Theorem 4.3|,
S we) =Y ).
’UESO;m(lF[) UESPQ'm(F[)
(6) This is analogous to (3), using | , Theorem A].
O
6. EQUIDISTRIBUTION OF SHIFTED SHORT SUMS
As a first application of Theorem , we prove in particular Propositions

and introduced in Section

6.1. Statement of the result.

Theorem 6.1. Let (Fy)xen be a coherent family with monodromy group

structure G. For A € A, let t : Fy — F{ be the trace function associated to

the sheaf F = Fy, I c Fy of size L such that F is I-compatible, and a € Fy.

(1) If G is classical, then the probability P(S(t,I + ) = a) (with respect to
the uniform measure on Fy) is equal to

1 ( 1 L|F[,L6+(G)+2B(G>1)

— 1
|F[’ + ‘FdLa(G) q1/2 ( 7)
uniformly with respect to a, where a(G), f+(G) > 0 are given explicitly
in Table

(2) If G = paq, for every § € (0,1) there exists & = a(d) > 0 such that the
probability the probability P(S(t, I+zx)= a) 18

1 1 Ldb+1
— +0 - 18
“F[’ + (“F[‘La + q1/2|F[|m1n(La,l)> ( )

uniformly with respect to a, when Condition (16) holds’ for all proper
subfields F < Fi. Moreover:
— If 0 > 1/2, we can choose a(0) = 6 — 1/2. If d is prime, the factor
d*1 can be replaced by d”.
— If Fy = Fy, then Condition (10) is d > 00 and explicitly, we can
choose a(6) as in (2).

The implied constants depend only on the monodromy group structure and
on a bound on the conductor of the family.

Proof. By Corollary and Proposition 5.1, we have for all a € | that the
probability P (S(t,I + x) = a) is equal to

1 1 LE(Gv Lu F[)
@ O <|F[La(0) + q1/2|F[|min(La(G),1)> (19)

63ee also Remark
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In the classical case, note that a(G) > 1 by Table 1. O
6.2. Analysis of the ranges.

6.2.1. Case G classical. Since o(G) > 1, the error term of (17) is negligi-
ble with respect to the main term (i.e. with a ratio which is o(1)) when
L|F (| LA+(@)+26-(G) — 5(4'/?). Note that:
— When L =1, thisis [F{| = o (ql/dim(G)).
— Let ¢ = p°. When d = p (e.g. for Kloosterman sums), this implies
that e > 2(LA4+(G) + 28-(G)) (see Section 3.5).

6.2.2. Case G cyclic. The error term of (17) is negligible with respect to
the main term when L > 1/a > 1 and Ld**! = o(¢"/?). In particular,
1<1l/a< L <logq/2.

6.3. Examples.

6.3.1. Kloosterman sums. By Proposition , Theorem gives Proposi-
tion 1.1. Replacing a by ag®Y/2 and using the uniformity statement shows
that the results hold as well for unnormalized Kloosterman sums.

6.3.2. Point-counting on families of curves. The case n even of Proposition
also applies to the point-counting on families of hyperelliptic curves from

Proposition when F; = Fy, normalized or not.
6.3.3. Multiplicative characters. By Proposition and Example , The-
orem yields Proposition

7. DISTRIBUTION OF FAMILIES OF SHORT SUMS

As a second application of the probabilistic model developed above, we
generalize the results of | | on the distribution of residues of sums over
partial intervals of the Legendre symbol to the distribution of sums of reduced
trace functions in coherent families, giving in particular the results from
Section

7.1. Families of short sums.

7.1.1. Definition and examples.

DEFINITION 7.1. Let t : F; — F( be any function. A family of sums with
respect to t is a family
S(t,Z(k ) 20
(stzey) (20)
for a finite parameter space Z with an injective map Z — P(IF,), k — Z(k),
where P(F,) is the set of subsets of F,.

Examples 7.2.

(1) (Intervals) When g = p, we can study sums over the integer intervals
{Z(k) ={1,...,k}: ke TI} for a parameter set Z < {1,...,p} = ).
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(2) (Boxes) More generally, when ¢ = p®, we can fix a Fj,-basis of F,
identify F, with {1,...,p}®, and study sums over the “boxes”

Tk) = {1,. .. k1) x {1, ko) x - x {1, kel

with k& = (k1,..., k) e Z < {1,...,p}°.

(3) (Shifted subsets) For Z,E < F,, we can consider the translates
I(x) =E+z={y+x:y€e E} of E by elements x € Z.

(4) (Combining families) Given families Z; — P(F,) (i = 1,...,¢e), we
can form the family 7 =7; x - -+ x Z, over Fy = F} defined by

e

I(ky,... ke) = [ [Zi(ks) = Fy
=1

7.1.2. Distribution questions. We are interested in the distribution of the
random variable (20) with the uniform measure on Z, asymptotically with
respect to the parameters ¢ and |F(|. Thus, we are led to study the density

({keT:S(tI(k) = all

&(t,Z,a) = 7

(CL € F[)

Example 7.3. Let £ = 2 be an integer and consider the family Z of Example
with ¢t = <5> : F, — T, the Legendre symbol, a multiplicative
character of order 2. As we mentioned in the introduction, one of the main
results of | | is that
1)

1 ¢
®(t,Z.a) = ; +0 <<1ng)

uniformly with respect to a € Fy, as p — 400. Therefore, the random
variable (20) converges in law to the uniform distribution on Fy if ¢ is fixed,
p — 400, and more generally we have ®(¢,Z,a) ~ 3 if £ = o((log p)/3).

|

Our goal is to generalize this result in different directions: for other re-
ductions of trace functions (such as multiplicative characters of any order,
Kloosterman sums and point-counting functions on families of curves), for
other families of short sums, and in the case ¢ > p.

Ezample 7.4. The study of ®(¢,Z, a) for the family of Example is the
finite analogue of the distribution questions considered in | |, generaliz-
ing | | to trace functions.

7.2. Equidistribution on average/for shifted families. Given a rather
generic family 7 — P(F,), we could expect the random variable (20) to
converge to the uniform distribution on F;. Albeit we cannot show that in
this most general setting, we have nonetheless a result on average over shifts.

Of course, one should not replace the sums over {{1,...,k}: 1 < k < p} by the sums
over {{1,...,k}:1<k<q}.
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DEFINITION 7.5. For a family Z — P(F,), we denote by Z' = ZxF, — P(F,)
the shifted family defined by Z'(k,z) = Z(k) + =, and we let the families

IT+z=T(,z): T — PF,) for x € F,
Tp = T'(k, ) : F, — P(F,) for k e Z.
Hence, for a family Z — P(IF ), we have Z =7+ 0=7'(-,0) and

®(t,7,a) = = Z (t,T + z,a) Z@ (t, Ty, a),  (21)
.reIF keI
BT +x.0) = H{kel: S(t,é(’k:) —i—:c) = a}| (zeF,),
O(t Ty a) = |{z €Ty : S(t,z(k) + z) = a}| (keT).

for any function ¢ : F; — Fy and a € I,

DEFINITION 7.6. For a family Z — P(F,), we define the quantities

Mz = ’UI(]C)‘,
keZ
hz(d) = ’{ kr, ko) ez2:|1(k1)AI(k2)|=d} (d=>1),
Hi(a,n) = mZ nad (n>0, a>0),
d>1

where A denotes the symmetric difference operator.

The following will be proven in Sections 7.4—

Theorem 7.7. Let (Fx)aen be a coherent family with monodromy group
structure G. For A € A, let t : Fy — F{ be the trace function associated to
the sheaf F = F, and let  be a family of sums with respect to t so that F
is ez Z(k)-compatible. The averaged variance

2
V(t,T) - %;% <<I>(t T+a,a)— \I;d) (22)

1s equal to

1 -

i (1 +0 <V(t,I)>)
with V (t,T) given by

My |F[|ﬁ+(G)MI+257(G) if G classical
H G),|F 1+ —
z(a(G), [Fi]) ( q'/2 {dMIH if G cyclic

for a(G), B+(G) > 0 given in Table 1. The implied constants depend only
on the monodromy group structure and on a bound on the conductor of the
family.

Thus, V(t,Z) should be small as |Z| — +00, and we have:
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Corollary 7.8. In the setting of Theorem 7.7,

/ _ i 1/2
2(t,7') = o + 0 (V(t,I) )

uniformly with respect to a € Fy.

Proof. By the Cauchy-Schwarz inequality applied to the sum over z,

12 1 Y
v ((I)(t,z’,a)—]F> -y (iy <q><t,z+x,a)_F>
aclF | [| aclF q zely | [|
< V(t,I).
O
7.3. Consequences. Using Corollary , we can obtain results for un-
shifted “complete” (i.e. parametrized by F,) families by averaging over an
auxiliary family of appropriate size. This is the idea exploited in | | for

the family of Example
The results presented in this section will be proven in Sections 7.7—

DEFINITION 7.9. For a subset ' < [F, and a fixed choice of a F,-basis of
[F, which identifies the latter with {1,...,p}¢, the bounding box Bg of E is
defined as E ¢ Bg = [ [{_,[mingep z;, max,ep ;| < Fy.

7.3.1. Shifts of small subsets. First, we consider shifts of subsets of moderate
size following Example . The Gaussian distribution for complex-valued
trace functions from | | becomes a uniform distribution when the latter
are reduced in F:

Proposition 7.10 (Shifts of small subsets). Let (Fy)aea be a coherent fam-
ily with monodromy group structure G. For A € A, let t : F; — Fy be the
trace function associated to the sheaf F = Fy on ]P’Iqu. Let e,&’ € (0,1/2),
§€(0,1), and let E c F,. We assume that:
— For a fired Fp-basis of Fy, identifying the latter with {1,...,p}¢, we
have |Bg| < ¢"/>=¢" and Bg [0, 6p)e.
~ If F = Ly5) is a Kummer sheaf with f = f1/f2 € Fy(X), (f1, f2) =
1, then 0 < 1/deg(f1).
~ If G = pq with By # Fy and d is nonprime, then Condition (16) holds
(e.9. d = [F(|*** for some o > 0).
Then the density
{reF,:S(t E+z)=all
q

P(S(t,E+z)=a) = |

s given by

1
0 1 (\Ellog |IF[|> 2) if G classical

1 <q1/4—5/2 + log ¢
< 1

Fl :
[ E|logd 2 . ‘
O q1/41,5/2 + (‘ ngog ) ) if G cyclic
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uniformly for all a € Fy, where the implied constants depend on €, €', §, on
the monodromy structure and on a bound on the conductor of the family.

Remark 7.11. This is nontrivial if
|E|log |F{| = o(logq) (resp. |E|logd = o(logq)).

Note that when the sheaf F of Fi-modules from which ¢ arises comes from
the reduction of a sheaf of Z[(4p,]x-modules (e.g. for Kloosterman sums), we
must thus take |E| = o(e) (see Section 3.5).

Remark 7.12. The first condition about Bg in the statement can be included
in the second one by taking § < p /2

By taking E = {0}, we get the following corollary, which should be com-
pared with the case I = {0} of Theorem

Corollary 7.13. Let (Fy)aea be a coherent family with monodromy group
structure G. For A\ € A, lett : Fy, — F be the trace function associated to
the sheaf F = Fy on qu, and let € € (0,1/2). We assume that if G = pq

with By # Fy and d nonprime, then Condition (16) holds (e.g. d = [F(|"/?+2
for some a > 0). Then

1
) (q1/41—5/2 + (log UFI') 2) : G classical
3

1 log g

P(t(z)=a) = — +
F )
[l 0] <q1/41_5/2 + ({233) > : G cyclic

uniformly for all a € F(, where the implied constants depend on €, on a bound
on the conductor of the family, and on the type of G in the classical case.

Example 7.14. By Section , Proposition and Corollary apply
to:

— Kloosterman sums of fixed rank (normalized or not) and multiplica-
tive characters composed with rational functions, giving Proposition

— Point-counting functions for families of hyperelliptic curves (normal-
ized or not).

7.3.2. Partial intervals. The second example notably generalizes the result
of | | (see Example 7.3) to all multiplicative characters:

Proposition 7.15 (Partial intervals). Let (Fx)xea be a coherent family with
monodromy group structure G. For A € A, let t : Fy — Fy be the trace
function associated to the sheaf F = Fy, and let e, € (0,1/2). We assume
that if G = pg with By # Fy and d nonprime, then Condition (16) holds (e.g.
d = |F(|Y?* for some a > 0). Then the density

o = [0 <k<p:SE{L....K) = a)

P(S(t,{l,...,x})z »
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s given by
1 1
1 O (1,1/41_5/2 + (l(igﬁdf S(t,Fp)#0 (El'(lgloﬁﬁy) if G classical
m i O 1 logd % |F(|logp % . .
<p1/4—5/2 + (logp> + 05(t,F,) -0 ( plog d > > if G cyclic

uniformly for all a € Fy, where the implied constants depend on €,¢’, on a
bound on the conductor of the family, and on the monodromy group structure
of the family.

Ezxamples 7.16. By Section

(1) This applies to multiplicative characters of F’ of order d composed
with f € Q(X) whose zeros and poles have orders not divisible by d,
giving Proposition 1.3. When y is the Legendre symbol, this is the
result of | |. By the orthogonality relations, the third summand
of the error term vanishes if f = X.

(2) With d = 2 and F; = Fy, this also applies to the point-counting
functions on families of hyperelliptic curves from Proposition
See also | | for an analogue of | | to the counting of points
of a plane curve in rectangles.

Remark 7.17. We will see that it is unclear whether this can be generalized

to the case e > 2 (see Example ) because of “diagonal” terms in the
errors. Since the case d = p, G classical forces to take e — +00 (see Section
and Remark ), Proposition does not make sense for Kloosterman
sums.
Even though Proposition does not extend to “boxes” in F, = Fy
with e > 2, we nonetheless have the following for a family of type from
Example

Proposition 7.18 (Partial intervals with shifts of small subsets). Let (F))xea
be a coherent family with monodromy group structure G. For A € A, let
t:Fy — IF[ be the trace function associated to the sheaf F = Fy on IP’ o and

let e,e’ € (0,1/2), 6 € (0,1). We fix a Fp-basis of Fy and identify the latter
with {1,...,p}¢. Welet Eo,...,E. c {1,...,p} be such that

|Bp| < ¢ and E; < [1,6p) (2<i<e),

where Bg is the bounding box of E = Fo X -+ X E, in IF;_I. Moreover, we
assume that:

— If F is a Kummer sheaf Ly, /1,), then 6 < 1/deg(f1).
- If G = pq and Fy # Fy and d is nonprime, then Condition (10) holds
(e.g. if d = [F(|Y*** for some o > 0).

Then the density

{(z1,. . we) €Ty o S(t, {1, ..z} x [Ti_o(EBi + 1)) = al
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with respect to any F,-basis of F,) is equal to
4 y Iy q q

1
1 0 <q1/415/2 + (\E|1Loggq|]1<‘[|) 2) if G classical

IFy Ellogd\ 2 . ,
|| 0] <q1/415/2 + (‘ ng"g ) ) if G cyclic

uniformly for all a € Fy, where the implied constants depend on €, €' and 6.

Example 7.19. As for Proposition , this applies by Section to:

— Kloosterman sums of fixed rank (normalized or not), multiplicative
characters composed with rational functions, giving Proposition

— Point-counting functions on families of hyperelliptic curves (normal-
ized or not).

7.4. Probabilistic model. Let F be a sheaf of Fi-modules on qu, part
of a coherent family, with monodromy group G < GL,(F(). We apply the
probabilistic model from Section 3 to study of the distribution of families of
short sums.

Again, we let X be a random variable uniformly distributed in G, and Z
be its image through the map G — G* o, F(. Moreover, let (Z;)ien be a
sequence of independent random variables distributed like Z.

For a finite subset I < N, we define the random variable

SI) =Y 2
1€l
on the probability space GN. For a finite parameter space 7 with a map
Z — P¢(N), we consider for all a € F| the random variable

_ |{keZ:S(T(k) =a}|
|Z] '

In this setting, Corollary gives information about the distribution of
®(t,Z,a) averaged over shifts of the family Z by elements of Fy:

D(Z,a)

Proposition 7.20. In the above setting, if F is |Jyer Z(k)-compatible, for
any function h : Fy — Rso and any a € Fi, we have

E(h(cp(t,z + x,a))) - E(h((IJ(I, a))) (1 +0 (MIE(g’/yZ’]F‘))) .

In other words, for all a € Fy the random variable (®(¢,Z + x,a))zer,
converges in law (with respect to the parameters, g, |F(|, Z) to the random
variable ®(Z, a) if the error term is o(1) as the parameters vary.

7.5. Expected value. We first consider the expected value of ®(Z, a), which
gives a preliminary version of Theorem and a motivation for the next
section, where the former will be improved by analyzing the variance. The
improvement will concern the quality of the error term, the uniformity with
respect to a, and the ability to obtain Proposition by removing the shifts
for some specific families.
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7.5.1. Computation in the model.

DEFINITION 7.21. For a family Z — P(F,), we define

gz(d) = !{kGI' 1Z(k)| = d}| (d = 0),
(d
Gz(ayn) = 7 EgIad) (n>0, a>0).
1zl &
Proposition 7.22. In the notations of Section 7./, we have for a € Fy:
1
Proof. By Corollary 5.2,
kel kel
_ + 0 ([ 12®)e©) >
méQw ( )
1 1
= — 10 ||~ ERIe(G) |
i Qﬂé
O
7.5.2. Conclusion. By Propositions and , we get the following pre-

liminary version of Theorem

Proposition 7.23. Let (F))xea be a coherent family with monodromy group
structure G. For A € A, lett : F;, — F{ be the trace function associated to
the sheaf F = Fx on ]P’Ilgq, and let T be a family of sums such that F is

Ukez Z(k)-compatible. For all a € Fy,

1
E(®(t,T+x,a) =~ >, ®(t,T+x,0) = ? +0(e(q, G, 1)),
z€elF, ‘ [’
where
M7E(G, Mz, F
£(0.6.7) = Grla(G). [F) +

As a corollary, we obtain as well a preliminary version of Proposition
about unshifted “complete” families, by exchanging summations (see (21)):

Corollary 7.24. In the setting of Proposition , assume that for all a €
F(, ®(t,Zx,a) does not depend on k. Then

F,:S(t,Z, = 1
(b(t,Ik,a> _ |{$€ q ( ) k(x)) CL}| - +O( (q,G,Z))
q Ry
Example 7.25. In particular, for the family Z of Example , we have

for all k£ € Z that
{Z(k)+z:2eF} ={E+y+a:xeF;} ={FE+z:xelF,},
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so for all a € F( the density ®(¢,Z,a) does not depend on k. By choosing
7 as an “averaging set” of appropriate size, we would obtain a preliminary
version of Proposition

7.6. Approximate variance. As in | |, we now consider the “approxi-

mate variance”
2
<<I>(I a) — ! )
||

in the sense that we replace the true expected value of the random variable
®(Z,a) by the approximation given by Proposition . This corresponds

to the quantity
1\2
O(t,Z,a) — T

and it is clear that bounding the latter gives a result about the distribution
of ®(t,Z,a), uniformly with respect to a € F\.

7.6.1. Computation in the model.

Proposition 7.26. In the notations of Section 7./, we have
1)’ 1
SE((v@ma- ) ) = g (1+0(Hete@. ) ).
Z “E) ) Tm

Proof. As in Proposition 5.1, we have by orthogonality that

<<I>(Ia) 1)2 - YT )2
|F[| |I| kel |F[| 0#£ye IF[
2
- | X0 N0 (SE)
0 11161@‘[ kel
1 .
- TP Z A¢1(—G)¢2(—a)
0711 ,3p2€lF
T (SE)) T2 ST,
k1,ko€l

Again by orthogonality, 3, ,cp, (®(Z,a) — |F[]*1)2 is equal to

Ll Y(S(Z(k1)))
Izl I \IHF[\ 2 Z &(S(Z(k2)))

0 ]F k1,ko€l
#Ve k1#k2

Since

S(Z(k1)) — S(Z(k2)) = S(Z(k1)\L(k2)) — S(Z(k2)\Z (k1))
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with Z(k1)\Z(k2) and Z(k2)\Z(k;) disjoint, we have by independence

E()(Z))FHE\I (k)]
B[ v (S20)) - S(@) | - .
M%d ( ) h%ﬂ E(1)(Z))Ek2)\L (k1)

k1#ko k1#ka
By the bound on Gaussian sums (10), E (/(2)),E ((—Z)) « |Fy|~*) uni-
formly with respect to v, whence the result. O

7.6.2. Conclusion. Theorem then follows immediately from Proposition
and Proposition

7.7. Estimate and analysis of the error term. We now estimate and
analyze the error term

1 Hz(a, ’F[’) HI(Oz, |F[DMI E(G, MI, ’]F[’)
V(t,T) « —= + +
IZ| IZ| |Z] q'/?

in Corollary 7.8, where o = a(G).

(23)

7.7.1. Estimates for V(t,T).

DEFINITION 7.27. For a family Z — P(F,), we define mz = maxger [Z(k)|
and AI = mink#;@ez |I(]{71)AI(/€2)|

Lemma 7.28. In the notations of Definitions 7.0, and , we have
the bounds Mt < |Z|mz, 1 < Az < 2M7z, and
max(hz(d) 1<d< sz) < ‘I|

Hz(a,n) < Tnodz S oAz

The bound for Hz(a,n) can be improved for the following families:

(1) If T is totally ordered by some order < with Z(k1) < Z(k2) for
k1 < ko, and if T is determined by its cardinality, then Hz(a,n) <
n~AT . In particular, this holds for the family T < {1,...,p}, T(k) =
{1,...,k}¢ = Fy = F, of Example

(2) For the family T of Example , we have

maxXg<i<|g| |{y € Bz : |E n (E +y)| = d}|

naAI

Hz(a,n) <

where Br = {y1 — y2 : y1,y2 € Z distinct}. In particular, if

e
7 _ - 24
c g[&p max ], (24)

then Hr(a,n) < -
bound if |Z| > |E|.

ady- This is an improvement over the previous

Proof. The trivial bound 1 < hz(d) < |Z|? gives the first bound for Hz(a).
(1) Under the first hypothesis,

hz(d) = 2[{ky < kg : |Z(k2)| = [Z(k1)| + d}|.

for all d > 1. If Z(k) is moreover is determined by its cardinality, then
hz(d) < 2|Z|.
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(2) We have

hz(d) = ‘{yl,yg € Z distinct : |[En (E+ (y2 — 1)) = |E| — d/2}|
« |Z|] - {ye Bz : |[En (E+y)| = |E| -

whence the first statement. If y € [ [;_; [0, p—maxsep 2;]° = F;, = F, (to
avoid reductions modulo p), then Bg n (Bg + y) = @ if y ¢ Bg, which
gives the second assertion.

O

7.7.2. Analysis of the parameters. The next lemma provides a general anal-
ysis of the error term (23) that we will use to handle the various examples
of Theorem

Lemma 7.29. We have V(t,T) = o(1) if the following three conditions hold:

(1) |Z| - 4.
(2) Hz := Hz(a(G),[Fi]) = of|Z]).
(3) The sum
2 (log(Mz/|Z]) + log Hx)
Mz + (25)
log(|G|GH))
is strictly smaller than
lo 28-(G) . .
/5+1( )10gg\ﬂgl\ -G if G classical
}ggg -1 if G cyclic.
If we have
Mz = |Z| and log Hr « log(|G||GY)), (26)

this implies that

log |F(| = o(logq) if G classical
logd = o(log q) if G cyclic.
Remarks 7.30.
(1) By Lemma , Hr/|Z| < |Fy|~*47, so Condition (2) holds if |F{| —
+o0 or if Hr = O(l) (e.g. for a family satisfying Lemma ).

(2) If log |F| = o(logq) and p < |F|, note that we must take e — +o0
(see Section 3.5).

2¢ log q—log(|G|/|G*])

Remark 7.31. The optimal size for M7 is therefore My ~ Toa(1G/|GE])

for some ¢ € (0,1/2), giving

log(|GIIG*l) 1
log g ql/2=e

V(t,T) «. (mz + Hz(a(G), |1Ft|)>

7.8. Removing the shifts. The general setting to obtain asymptotic equidis-
tribution for unshifted “complete” families from Theorem 7.7. is the follow-
ing:

Proposition 7.32. Under the hypotheses of Theorem 7.7, assume further-
more that:
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(1) For some family Iy and functions fi : Fg xZ — Iy, fo : Fy — F( we have
S, I'(k,z)) = S(t. Zo(fi(z, k))) + fo(z) (keI zeFy).
(2) There exists a function f3: 71 — Ry and a family I3 : Fy — P(F,) such
that for alla € Fy and ke T
{z e Fq: St La(fr(z, k) =a}| = [{zeFq:S5(tIs(x)) = all
+O(f3(k)).

In particular, if the set {Iy(fi(z,k)) : x € Fy} does not depend on k € Z,
this holds true with f3 =0 and Z3(x) = Za(fi(x, ko)) for any ko € I.

Then, if || fsllee/q < 1
1 F 1/2
@(t’z':g’ ) +O V(t,I)1/2 + <| [|||f3||00>
i q
uniformly with respect to a € Fy.
In other words, we use Z as an “averaging family” to get asymptotic
equidistribution for the complete family Z3, and the error term depends

on Z. Note that the averaging over a € | gives some additional freedom in
comparison with the preliminary version from Corollary

Proof. Under Condition (1), Theorem gives
{keT: St L(fi(z,k)=a}] 1)
Z Z < 7] “TR < V(t,7)
aclF IEIF [

by exchanging the summations over a and x and exploiting the averaging
over a. By the Cauchy-Schwarz inequality,
2

3 1 3 {keZ:51D(fiz.k))=a}| 1} V(LT)

| ||

aclFy €l

By exchanging the summations over k£ and x, this is equal to

3 (L g ey S¢ B, k:)))—a}|_1; g
4 7

CLE]F[ q

Finally, by Condition (2),

Z('{“F : S(t,Ty(x)) = o} ®+O<Walloo>>2«v(t,z)_

aE]F[ q q
(|
Ezxample 7.33. For the family 7 of Example , we have by Example
that:
— Condition of Proposition holds with Zo = Z, fi(z, k) = k+=z
and fo = 0.

— Condition (2) holds with f3 = 0 and Z3 = Zy = Z'(0, ), since {z + k :
zelF,} =F, for all ke F,.
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7.9. Applications of Proposition . In the following paragraphs, we
use Proposition to prove Proposmons , and

The general idea is to find an averaging family Z of size large enough to
get asymptotic equidistribution in Corollary , and the assumptions we
make are precisely to allow that, according to Lemma

7.9.1. Choice of the averaging family. When e > 1, we will have 7 = 7; x

- x I, with Z; of determined structure and whose size can be chosen freely
in some range. Since the final bound depends only on the size of Z, we need
to choose the sizes of the Z; to attain the optimal/desired size for Z. Note

however that in the case |Z] < l;‘;igwqd and p < |Fy| (see Section 3.5), we have
1/e 1/e
7] < < g4 ) =el/e< ogp ) <1,
log [F| log [F|
which shows that the choice ]Il| = — |Z.| ~ |Z|"/¢ is impossible. More
carefully, we take |Z;| = = |Z,| ~ |I '/ with 1 < a < e of optimal size

given by:

Lemma 7.34. Let I = 1, p = 2, e = 2 be integers, and let 0 < 6 < 1. If
logI < (e — 1)log(dp), there exist integers Iy € {1,...,0p} and 1 < a < e
such that I = I (14 o(1)) for I large enough.

Proof. Tt suffices to take I = [Il/“J with a = [log I/log(dp)] = 1 so that
Le{l,...,0p}, a=o(IY),

9=I1+0 (aﬂ—l/a) — T (1 + O(al_l/“)) —I(1+0(1),
and the condition a < e holds if log I < (e — 1) log(dp) O

Ezample 7.35. The condition log I < (e—1)log(dp) is satisfied if I < logq =
elogp as in Lemma , up to taking p large enough if § < 1.

7.9.2. Shifts of subsets. We first consider the family of Example : for
I,EcF, welet Z(k) = E+k (ke I).

Proof of Proposition . By Example , Proposition can be ap-
plied.
By Lemma , since mz = | E|, the sum (25) is
2(log |E| + log | Bg| — a(G) Az|Fi])
log(|G||G#)
if Z < [];_4[1,p — maxyep z;]. By Lemma , we want that for some
e€ (0,1/2),

<|T||E| +

7| < 1 <2elogq—210g|E|—2log|BE| B-(Q)

|E| B1(G)log [F B (G)
if G is classical, and

1 2510gq—210g|E|—210g\BE\

|E|

+ 2a(G)AI>

7] < +2a(G) Az — 1)

logd
it G = pgq.
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When the sheaf is of the form L,y with f # X, we impose that 7 <
[1;21[1,p/ deg(f1) — maxgep x;), so that it is | iz Z(k)-compatible by Ex-
ample

Under the assumptions of Proposition , we can choose Z as large as
possible satisfying the above conditions by Lemma . O

7.9.3. Intervals. Let us now analyze the family Z < {1,...,p}, k — {1,... k}
of Example . For the Legendre symbol, this is the case of | ].

Lemma 7.36. Forany f :N — C and ke N,

p
Y fa+k) = Zf ) + O (k|| f[]0),
rx=1

and the error term can be removed sz s p-periodic.

Proof. 1t suffices to write

D p+k p k p+k
IWETIRED WERY 038 bl 1T
r=1 1

r=1+k z=1 x=1 z=p+
Z F(@) + O f]]o0)-
O
Ezample 7.37. For f(x) = dg(,41,....2})=a> We have
f($ +p) = 5.5'(15,15‘1,)+5’(t,{p+1,...,x+p})5a = 6S(t,{1,...,p})+5’(t,{1 ..... z})=a>
and f is p-periodic if
S(t7{17---7p}) =0 (27>

(i.e. orthogonality with constant functions).

Proof of Proposition . We apply again Proposition
Condition holds with Zo = Z, fi(z,k) = k + x and fa(z) = S(¢,Z(x))
since
St {1+z,....k+x}) =St {1,....k+z})— St {1,...,z})
forkel, x e F).

By Lemma , Condition holds with ||f3||cc < maxger k, and with
no error term if the trace function considered satisfies (27). Otherwise, we

add the error term
FIZIN  ([Filogp)
D plogd '

If the sheaf is a Kummer sheaf £, ;) we impose maxgezr k < p/deg(f1),
so that it is | .7 Z(k)-compatible by Example

We may then choose 7 as large as permitted by Lemma , e |Z] &
logp ; logp
Togd» DOting that for Kummer sheaves as above, we have deg( 77 > Togd for p

large enough (deg(f1) being bounded independently from ¢).
O
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Remark 7.38. For Kloosterman sums, we have seen in Section that it is
necessary to take e — +00 so that V(¢,Z) = o(1). Hence, Proposition
does not apply to them. Unfortunately, issues arise when we try to generalize
the proposition to e > 1. Indeed, for the family

Tof{l,...,p} Z(k) = [ [{L, .. ki), k= (k... ko) €T,
=1

of Example , we have Z'(k,z) = [[;_1{1 + 2i,..., 2 + k;} for all
z = (x1,...,2.) € Fy. As above, we can decompose {1 + z;...,x; + k;} =
{1,..., 2 + B P\{1,...,z;} and write
StT'(kx) = > (—D)E=FUS(E T((@ + aiki)i)).
ai,...,ae€{0,1}

However, there are now “diagonal terms” including z; and x; + k; (i # j),
preventing us from applying Proposition with fi(xz,k) = = + k and
fs = 0 as before. On the other hand, using Lemma would give a large
error ||f3||e &~ ep®! because small intervals of size k; combine with large
intervals of size p — k; into large “diagonal” terms. This would give an error
term |Filep®~1/q = |Fle/p > e in the final expression for the density, which
is not acceptable when e — +00. These diagonal terms compensate each
other if complete sums in one parameter of the form S(t, Eq x - - - x E; x ), x
Eit9 x -+ x E,) vanish, for E; c F,. Being defined as Fourier transforms of
functions vanishing at 0, Kloosterman sums verify S(Kl, 4, {1,...,p}¢) =0,
but the former sums do not vanish in general.

7.9.4. Small intervals with shifts of subsets. We finally consider Proposition

, which is about a family of type of Example and gives a variant
of Proposition for e > 1 (in particular for Kloosterman sums).
Proof of Proposition . Let us write Z = 71 x Iy < Fp x Fg_l and let
EF=Fy x---x FE,. Then
My = ‘ U (ki) x (Bt k)
(k1,k2)€Z
< | Ut k)| < ITlIEl < I B
kleL

and for any € > 0 and d > 1, we have

hr(d) <)) ke kb e Toikn — KIIBA(E + (ks — ky)| = d}
kl,k/lell
= 1T Y (ke Ky e To: [BA(E + (ke — k)| = d/d')
1<d'|d
< |TiIBElIZ2|7(d) <- (|Z]|Be)'**
if 7o < [ [;_[1, p—maxgep 5], by Lemma . As for Propositions and

, if the sheaf is a Kummer sheaf £, (), we impose maxyer, k < p/deg(f1)
and Zp < [1,p/ deg(f1)), to ensure | J,o7 Z(k)-compatibility.
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The conclusion then follows by using Lemmas and as in Propo-
sition
O
REFERENCES
[BCO6] Jean Bourgain and Mei-Chu Chang. A Gauss sum estimate in arbitrary
finite fields. Comptes Rendus Mathematique, 342(9):643-646, 2006.
[BK03] Jean Bourgain and Sergei Konyagin. Estimates for the number of sums
and products and for exponential sums over subgroups in fields of prime
order. Comptes Rendus Mathématiques, 337(2):75-80, 2003.
[Car72] Roger W. Carter. Simple groups of Lie type. John Wiley & Sons, 1972.
[Del77] Pierre Deligne. Cohomologie étale, séminaire de géométrie algébrique
du Bois-Marie SGA 4%, volume 569 of Lecture notes in Mathematics.
Springer, 1977.
[Del80] Pierre Deligne. La conjecture de Weil. II. Publications Mathématiques
de Unstitut des Hautes Etudes Scientifiques, 52(1):137-252, 1980.
[Fis95] Benji Fisher. Kloosterman sums as algebraic integers. Mathematische
Annalen, 301(1):485-505, 1995.
[FKM14] Etienne Fouvry, Emmanuel Kowalski, and Philippe Michel. Trace func-
tions over finite fields and their applications. In Colloguium De Giorgi
2013 and 2014, volume 5 of Colloquia, pages 7-35. Ed. Norm., Pisa,
2014.
[FKM15a] Etienne Fouvry, Emmanuel Kowalski, and Philippe Michel. Algebraic
twists of modular forms and Hecke orbits. Geometric and Functional
Analysis, 25(2):580-657, 2015.
[FKM15b] Etienne Fouvry, Emmanuel Kowalski, and Philippe Michel. A study in
sums of products. Philosophical Transactions of the Royal Society of
London A, 373(2040), 2015.
[Gar07] Moubariz Z. Garaev. An explicit sum-product estimate in F,,. Interna-
tional Mathematics Research Notices, 2007.
[Gor82] Daniel Gorenstein. Finite simple groups: an introduction to their clas-
sification. University Series in Mathematics. Springer, 1982.
[Hal08] Chris Hall. Big symplectic or orthogonal monodromy modulo ¢. Duke
Mathematical Journal, 141(1):179-203, 2008.
[HBK00] David R. Heath-Brown and Sergei Konyagin. New bounds for Gauss
sums derived from kth powers, and for Heilbronn’s exponential sum.
The Quarterly Journal of Mathematics, 51(2):221-235, 2000.
[Kat88] Nicholas M. Katz. Gauss sums, Kloosterman sums, and monodromy

Groups, volume 116 of Annals of Math. Studies. Princeton University
Press, 1988.



[Kat90]

[Kim97a]

[Kim97b|

[Kim98a)

[Kim98b]

[KL96)|

[Kor89]

[Kow06]

[KowO08]

[Kowll]

[KR15]

[KS91]|

[Lam13]

[LZ12]

[MT11]

[MZ14]

Distribution of values of trace functions in cyclotomic integers 47

Nicholas M. Katz. Exponential sums and differential equations, volume
124 of Annals of Mathematical Studies. Princeton University Press,
1990.

Dae San Kim. Gauss sums for general and special linear groups over a
finite field. Archiv der Mathematik, 69(4):297-304, 1997.

Dae San Kim. Gauss sums for O~ (2n, q). Acta Arithmetica, 78(1):75-89,
1997.

Dae San Kim. Gauss sums for O(2n + 1,q). Finite Fields and Their
Applications, 4(1):62-86, 1998.

Dae San Kim. Gauss sums for symplectic groups over a finite field.
Monatshefte fiir Mathematik, 126(1):55-71, 1998.

Dae San Kim and In-Sok Lee. Gauss sums for O (2n,q). Acta Arith-
metica, 78(1):75-89, 1996.

Nikolai M. Korobov. Ezponential sums and their applications, volume 80
of Mathematics and its Applications. Springer, 1989.

Emmanuel Kowalski. On the rank of quadratic twists of elliptic curves
over function fields. International Journal of Number Theory, 62(2),
2006.

Emmanuel Kowalski. The large sieve and its applications: Arithmetic
geometry, random walks and discrete groups, volume 175 of Cambridge
Tracts in Mathematics. Cambridge University Press, 2008.

Emmanuel Kowalski. Explicit multiplicative combinatorics. Unpub-
lished note, https://people.math.ethz.ch/~kowalski/combinatorics.pdf,
October 2011.

Lars Kindler and Kay Riilling. Introductory course on {-adic
sheaves and their ramification theory on curves. September 2015.
http://arxiv.org/abs,/1409.6899.

Nicholas M. Katz and Peter Sarnak. Random matrices, Frobenius eigen-
values and monodromy, volume 45 of Colloguium Publications. Ameri-
can Mathematical Society, 1991.

Youness Lamzouri. The distribution of short character sums. Math.
Proc. Cambridge Philos. Soc., 155(2):207-218, 2013.

Youness Lamzouri and Alexandru Zaharescu. Randomness of character
sums modulo m. Journal of Number Theory, 132(12):2779-2792, 2012.

Gunther Malle and Donna Testerman. Linear algebraic groups and fi-
nite groups of Lie type, volume 133 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2011.

Kit-Ho Mak and Alexandru Zaharescu. On the distribution of the num-
ber of points on a family of curves over finite fields. Journal of Number
Theory, 140:277-298, July 2014.


https://people.math.ethz.ch/~kowalski/combinatorics.pdf
http://arxiv.org/abs/1409.6899

48

[PG16]

[PG17]

[PG18

[Pol14]

[Rib76]

[Wan95]

[Was97]

ETH Z

Distribution of values of trace functions in cyclotomic integers

Corentin Perret-Gentil. Probabilistic aspects of short sums of trace func-
tions over finite fields. PhD thesis, ETH ZURICH, 2016.

Corentin Perret-Gentil. Gaussian distribution of short sums of trace
functions over finite fields. Mathematical Proceedings of the Cambridge
Philosophical Society, 163(3):385-422, 2017.

Corentin  Perret-Gentil. Integral monodromy  groups of
Kloosterman sheaves. Mathematika, 2018. To appear.
http://arxiv.org/abs/1609.09628.

D.H.J. Polymath. New equidistribution estimates of Zhang type. Alge-
bra and Number Theory, 8(9), 2014.

Kenneth A. Ribet. Galois action on division points of abelian varieties
with real multiplications. American Journal of Mathematics, 98(3):751—
804, 1976.

Daqging Wan. Minimal polynomials and distinctness of Kloosterman
sums. Finite Fields and Their Applications, 1(2):189-203, 1995.

Lawrence C. Washington. Introduction to cyclotomic fields, volume 83
of Graduate Texts in Mathematics. Springer, 1997.

URICH, DEPARTMENT OF MATHEMATICS

Email address: corentin.perretgentil@{math.ethz.ch,gmail.com}


http://arxiv.org/abs/1609.09628

	1. Introduction
	1.1. Exponential sums in cyclotomic fields
	1.2. Exponential sums in cyclotomic integers
	1.3. Reductions of exponential sums in residue fields
	1.4. Trace functions over finite fields
	1.5. Overview of the results
	1.6. Structure of the paper

	2. Technical setup and examples
	2.1. Review of -adic sheaves on ¶1Fq
	2.2. Reductions
	2.3. Examples

	3. Probabilistic model
	3.1. Monodromy groups
	3.2. Model
	3.3. Coherent families
	3.4. Accuracy of the model
	3.5. Comments on the ranges

	4. Proof of Theorem 3.18 and Corollary 3.20
	4.1. Reinterpretation of (8)
	4.2. Sums of products of trace functions
	4.3. Finite Goursat-Kolchin-Ribet criteria
	4.4. Sums of dimensions of irreducible representations
	4.5. Conclusion

	5. Computations in the model
	5.1. Random walks in monodromy groups
	5.2. Gaussian sums in d(Fl): exponential sums over subgroups of Fl
	5.3. Gaussian sums in classical groups over finite fields

	6. Equidistribution of shifted short sums
	6.1. Statement of the result
	6.2. Analysis of the ranges
	6.3. Examples

	7. Distribution of families of short sums
	7.1. Families of short sums
	7.2. Equidistribution on average/for shifted families
	7.3. Consequences
	7.4. Probabilistic model
	7.5. Expected value
	7.6. Approximate variance
	7.7. Estimate and analysis of the error term
	7.8. Removing the shifts
	7.9. Applications of Proposition 7.32

	References

