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Abstract. We consider ℓ-adic trace functions over finite fields taking
values in cyclotomic integers, such as characters and exponential sums.
Through ideas of Deligne and Katz, we explore probabilistic properties
of the reductions modulo a prime ideal, exploiting especially the deter-
mination of their integral monodromy groups. In particular, this gives
a generalization of a result of Lamzouri-Zaharescu on the distribution
of short sums of the Legendre symbol reduced modulo an integer to all
multiplicative characters and to hyper-Kloosterman sums.
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1. Introduction

The distribution of normalized exponential sums over finite fields in com-
pact subsets of the complex numbers is an interesting question that has been
studied by numerous authors such as Kummer, Hasse, Heath-Brown and Pat-
terson (cubic Gauss sums), Deligne (Gauss sums), Katz (hyper-Kloosterman
sums), or Duke, Friedlander and Iwaniec (Salié sums).

For example, Katz [Kat88] showed that for n ě 2 and q an odd prime
power, the normalized hyper-Kloosterman sums

Kln,qpxq “ p´1qn´1

qpn´1q{2

ÿ

x1,...,xnPFˆ
q

x1¨¨¨xn“x

e

ˆ
trpx1 ` ¨ ¨ ¨ ` xnq

p

˙
P C px P Fˆ

q q, (1)

for epzq “ e2iπz (z P C), are equidistributed as q Ñ `8 in tr SUnpCq if
n is odd (resp. trUSpnpCq if n is even), with respect to the pushforward
of the Haar measure. This result builds on Deligne’s construction of the
Kloosterman sums as ℓ-adic trace functions on P1

Fq
[Del80], through Deligne’s

Date: October 2016. Revised June 2017.
2010 Mathematics Subject Classification. 11L05, 11T24, 11N64, 14F20, 60G50.

1



2 Distribution of values of trace functions in cyclotomic integers

general equidistribution theorem and Katz’s determination of monodromy
groups.

1.1. Exponential sums in cyclotomic fields. Exponential sums are usu-
ally considered as complex numbers, but in general they actually take values
in cyclotomic fields. For example, a multiplicative character of Fp of order
d has image in Qpζdq Ă Qpζp´1q for ζd P Cˆ a primitive dth root of unity,
while an additive character has image in Qpζpq.

More generally, the functions we can form from additive and multiplicative
characters of Fp by taking sums, products or convolutions (e.g. discrete
Fourier transform), will take values in QpζpqQpζp´1q “ Qpζppp´1qq.

Fisher [Fis95] extended Katz’s vertical Sato-Tate law for (unnormalized)
Kloosterman sums mentioned above to this perspective by studying their dis-
tribution as elements ofK “ Qpζpq via the Minkowski embeddingK Ñ Rp´1,
with the hope of getting results on their distinctness. His equidistribution
result with respect to a product of the Sato-Tate measure amounts to show-
ing that it is possible to construct for every σ P GalpK{Qq an ℓ-adic trace
function on P1

Fq
corresponding to the σ-conjugate of the Kloosterman sum.

1.2. Exponential sums in cyclotomic integers. A step further is to con-
sider exponential sums, and functions f : Fq Ñ C formed from them, as
having values in cyclotomic integers, say O “ Zrζds for some d ě 1. This
holds true for characters and this property is again stable by the operations
we mentioned above.

Wan [Wan95] adopted such a point of view and studied the minimal poly-
nomial of Kloosterman sums, improving some of Fisher’s results.

Up to localizing1, we can also consider normalizations: indeed, by the
evaluation of quadratic Gauss sums,

?
p P Zrζ4ps, so for example Kln,qpFˆ

q q Ă
Zrζ4psqpn´1q{2 .

1.3. Reductions of exponential sums in residue fields. For any nonzero
prime ideal l E O (possibly restricted to be above a large enough prime to
handle normalizations), we can then study the reductions modulo l of expo-
nential sums and related functions f : Fq Ñ O in the corresponding residue
field Fl “ O{l – Ol{lOl.

In the case of Kloosterman sums, if l is a prime ideal of O “ Zrζ4ps above
an odd prime ℓ ‰ p, then we have the reduction

Kln,q : F
ˆ
q Ñ Ol Ñ Fl.

Distribution questions concerning the values in Fl as q Ñ `8 can then
be examined. For example, Lamzouri and Zaharescu [LZ12] studied the
distribution of short sums of the Legendre symbol χp : Fp Ñ t˘1u reduced
modulo an integer ℓ ě 2. Specifically, they show that

|t1 ď k ď p :
řk
x“1 χppxq ” a pmod ℓqu|

p
“ 1

ℓ
`O

˜ˆ
ℓ

log p

˙ 1
2

¸

1For α P O (resp. a prime ideal l E O), we denote by Oα (resp. Ol) the localization at
α (resp. at l).
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uniformly with respect to a P Z{ℓ. A probabilistic model with sums of inde-
pendent random variables uniformly distributed in t˘1u is used; its accuracy
is proved through a bound derived from the Riemann hypothesis for curves
over finite fields.

1.4. Trace functions over finite fields. Additive and multiplicative char-
acters of finite fields, hyper-Kloosterman sums and more general exponen-
tial sums are particular examples of trace functions of constructible middle-
extension sheaves of Qℓ-modules on P1

Fq
, as they appear in particular in the

works of Katz (see for example [Kat88] and [Kat90]), and more recently in
the series of papers by Fouvry, Kowalski, Michel and others (see [FKM14],
[Pol14, Section 6] or [PG16] for surveys).

Herein, we will mainly consider:

– Multiplicative characters χ : Fq Ñ Zrζds of order d, eventually com-
posed with a rational polynomial, realized as trace functions of Kum-
mer sheaves, with χp0q “ χp8q “ 0.

– Hyper-Kloosterman sums (1) Kln,q : Fq Ñ Zrζ4psqpn´1q{2 , realized as
trace functions of Kloosterman sheaves, with Kln,qp0q “ p´?

qq1´n.
– Functions f : Fq Ñ N counting points on families of curves on P1

Fq

parametrized by an open of P1. For example, for f P FqrXs a fixed
squarefree polynomial of degree 2g ě 2, we have the family of hyper-
elliptic curves given by the affine models

Xz : y
2 “ fpxqpx´ zq pz P Fqq,

as constructed by Katz-Sarnak [KS91, Chapter 10].

The observations on the images of these functions from Sections 1.1–1.3
happen to translate on the level of sheaves: they are actually sheaves of
Oλ ď Qℓ-modules, where O is the ring of integers of a cyclotomic field and λ
is an ℓ-adic valuation corresponding to a prime ideal l E O above an auxiliary
prime ℓ ‰ p.

For the second example, this follows from the fact that the ℓ-adic Fourier
transform is defined on the level of Oλ-modules (see [Kat88, Chapter 5]).

1.4.1. Reductions. The reduction of the trace function modulo l then cor-
responds to the trace function of the reduced sheaf of Fl-modules, for Fl –
Oλ{lOλ the residue field. This implies that we can use the ℓ-adic formalism
and the ideas of Deligne and Katz to study distribution questions of these
reduced trace functions.

As in [Lam13] (that we generalized in [PG17]) and [LZ12], a key idea is
to use a probabilistic model, based on Deligne’s equidistribution theorem.

1.4.2. Monodromy groups. For Kloosterman sums, an important input is the
determination of the Oλ-integral monodromy groups of Kloosterman sheaves
[PG18], analogous to the determination of the monodromy groups over Qℓ

by Katz [Kat88], when ℓ is large enough depending only on the rank.
This was already known by results of Gabber, Larsen and Nori, but for ℓ

large enough depending on q and with an ineffective constant, which would
have been unusable for our applications.
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1.4.3. Other examples. The above setup also applies to other ℓ-adic trace
functions such as hypergeometric sums (as defined by Katz in [Kat90, Chap-
ter 8]) and general exponential sums of the form

´1?
q

ÿ

yPFq

e

ˆ
trpxfpyq ` hpyqq

p

˙
χpgpyqq px P Fqq,

for f, g, h P QpXq rational functions and χ a multiplicative character on Fˆ
q .

However, the determination of their Oλ-integral monodromy groups is the
object of future work. If we showed that these are as large as possible (hence
classical groups), as is the case for the monodromy groups over Qℓ by Katz’s
work [Kat90], the results below would hold as well.

1.5. Overview of the results. Given an abelian group A, a function f :

Fq Ñ A and a subset E Ă Fq, we denote by

Spf,Eq “
ÿ

xPE

fpxq

the partial sum over E. For x P Fq, we let E ` x “ te ` x : e P Eu be the
translate of E by x. With the uniform measure on Fq, we can consider the
A-valued random variable pSpf,E ` xqqxPFq .

1.5.1. Equidistribution for shifted sums. The first results concern the distri-
bution of short shifted sums, and are analogues of the questions answered in
[Lam13] and [PG17] (where the random variables were shown to be gaussian
under some ranges, generalizing a result of Erdős-Davenport).

Proposition 1.1 (Kloosterman sums). For n ě 2, q an odd prime power,
and l E Zrζ4ps a prime ideal above a prime ℓ "n 1 distinct from p with ℓ ” 1

pmod 4q, let Kln,q : Fq Ñ Fl be the reduction modulo l of the (normalized)
Kloosterman sum on P1

Fq
. For any I Ă Fq of size L, the probability

P
´
SpKln,q, I ` xq ” a

¯

is given by

1

|Fl|
`

$
’’&
’’%

On

ˆ
|Fl|´L

n2´1
2 ` |Fl|L

n2`n´2
2

`npn´1q´1q´ 1
2

˙
if n odd

On

ˆ
|Fl|´L

npn`2q
8 ` |Fl|L

npn`2q
4

`n2´2
2 q´ 1

2

˙
if n even

uniformly for all a P Fl. This also holds for unnormalized Kloosterman sums.

Remark 1.2. When p ” 1 pmod 4q or n is odd, one may replace ζ4p by ζp
and the result holds without restriction on ℓ pmod 4q. The same remark will
apply to the subsequent statements involving Kloosterman sums.

A similar result is valid for point-counting functions on families of hyper-
elliptic curves.

Proposition 1.3 (Multiplicative characters). We let:
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(1) d ě 2 be an integer, l E O “ Zrζds be a nonzero prime ideal,

χ : Fq Ñ Fl

be the reduction modulo l in Fl “ O{l of a multiplicative character of
order d;

(2) f “ f1{f2 P QpXq whose poles and zeros have order not divisible by d;
(3) δ P p0, 1q be such that2 d ą |Fl|δ and d{pd, |Fˆ|q ě |Fl|δ for every proper

subfield F ď Fl;
(4) I Ă Fq of size L; if f ‰ X, we assume moreover that |I| “ 1 or I Ă

r1, p{degpf1qqe with respect to an arbitrary Fp-basis of Fq, identifying the
latter with t1, . . . , pue.

Then there exists α “ αpδq ą 0 such that

P
´
Spχ ˝ f, I ` xq ” a

¯
“ 1

|Fl|
`Of

ˆ
1

|Fl|Lα
` LdL`1

q1{2|Fl|minpLα,1q

˙

uniformly for all a P Fl. Moreover, if δ ą 1{2, we can choose αpδq “ δ´1{2;
if Fl “ Fℓ with δ ą 1{3, we can choose

αpδq “

$
’&
’%

3δ´1
8

if δ P p1{3, 1{2s
5δ´2
8

if δ P p1{2, 2{3s
δ ´ 2

3
if δ P p2{3, 1s.

(2)

The ranges of the various parameters will be studied in due time. Propo-
sitions 1.1 and 1.3 will be particular cases of Theorem 6.1 below.

1.5.2. Generalizations of [LZ12] to trace functions: distribution of families
of short sums. Next, we generalize a result of Lamzouri-Zaharescu [LZ12]
to the distribution of various families of sums of reduced trace functions, in
particular multiplicative characters of any order and Kloosterman sums.

Proposition 1.4 (Shifts of small subsets). Let ε P p0, 1{4q and let t : Fq Ñ
Fl be either t “ Kln,q as in Proposition 1.1 or t “ χ ˝ f as in Proposition
1.3. Let E Ă Fq be a “small” subset. Then

P
´
Spt, E ` xq ” a

¯
“ 1

|Fl|
`

$
’’&
’’%

Oε,n

ˆ
1

q1{4´ε `
´

|E| log |Fl|
log q

¯ 1
2

˙

Oε,f

ˆ
1

q1{4´ε `
´

|E| log d
log q

¯ 1
2

˙

for Kloosterman sums, respectively multiplicative characters, uniformly for
all a P Fl.

(This will be a particular case of Proposition 7.10, where the conditions
on E will be made precise).

The second example generalizes the result of [LZ12] to all multiplicative
characters:

2If Fl “ Fℓ, or if rFl : Fℓs is prime, or if δ ą 1{2, this condition is simply d ě |Fl|
δ.
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Proposition 1.5 (Partial intervals). Let ε P p0, 1{4q and let t “ χ ˝ f :

Fp Ñ Fl be as in Proposition 1.4. Then

|t1 ď k ď p : Spχ ˝ f, t1, . . . , kuq ” au|
p

is equal to

1

|Fl|
`Oε,f

˜
1

p1{4´ε
`

ˆ
log d

log p

˙ 1
2

` δf‰X

ˆ |Fl| log p
p log d

˙ 1
2

¸

uniformly for all a P Fl.

(This will be a particular case of Proposition 7.15).

The method does not allow this to be generalized to Kloosterman sums,
but we can nonetheless do the following:

Proposition 1.6 (Partial intervals with shifts of small subsets). We con-
sider the situation of Proposition 1.4 with a fixed choice of a Fp-basis of Fq
giving an identification Fq – Fep “ t1, . . . , pue. We let E2, . . . , Ee Ă Fp be
“small” subsets. Then the density

|tpx1, . . . , xeq P t1, . . . , pue : Spt, t1, . . . , x1u ˆ śe
i“2pEi ` xiqq ” au|

q

is equal to

1

|Fl|
`

$
’’&
’’%

Oε,n

ˆ
1

q1{4´ε `
´
log |Fl|

śe
i“2 |Ei|

log q

¯ 1
2

˙

Oε,f

ˆ
1

q1{4´ε `
´
log d

śe
i“2 |Ei|

log q

¯ 1
2

˙

for Kloosterman sums, respectively multiplicative characters, uniformly for
all a P Fl.

(This will be a particular case of Proposition 7.18, where the condition on
Ei will be made precise).

Again, these examples also apply to unnormalized Kloosterman sums and
functions counting points on families of hyperelliptic curves (normalized or
not).

1.6. Structure of the paper. This article is structured as follows:

– In Section 2, we set up the technical framework we will work in to
handle reductions of ℓ-adic trace functions over finite fields, and we
define precisely the examples we will consider.

– In Section 3, we define a probabilistic model for short sums of ℓ-adic
trace functions, inspired by Deligne’s equidistribution theorem.

– In Section 4, we prove that this model is accurate (akin to what is
done in [PG17] for sheaves of Qℓ-modules).

– In Section 5, we make preliminary computations and observations in
the model, in particular regarding “Gaussian sums” in monodromy
groups.
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– In Sections 6 and 7, we finally prove the results introduced in Sections
1.5.1 and 1.5.2, respectively.

Acknowledgements. The author would like to thank his supervisor Em-
manuel Kowalski for guidance and advice during this project, as well as
the anonymous referees for careful readings and valuable comments. It is a
pleasure to acknowledge in particular the influence of the works of Étienne
Fouvry, Nicholas Katz, Emmanuel Kowalski, Youness Lamzouri, Philippe
Michel and Alexandru Zaharescu. This work was partially supported by
DFG-SNF lead agency program grant 200021L_153647. The final correc-
tions were made while the author was in residence at the Mathematical
Sciences Research Institute in Berkeley, California, during the Spring 2017
semester, supported by the National Science Foundation under Grant No.
DMS-1440140. The results also appear in the author’s PhD thesis [PG16].

2. Technical setup and examples

Let Fq be a finite field of odd characteristic p. For an integer d ě 2, let
E “ Qpζdq be the dth cyclotomic field with ring of integers O. We fix an
auxiliary prime ℓ ‰ p and a prime ideal l E O above ℓ, corresponding to a
valuation λ of E extending the ℓ-adic valuation on Q. Let Eλ and Oλ be the
completions, and let

π : Oλ Ñ Fl

be the reduction map in the residue field Fl “ O{l – Oλ{lOλ.

2.1. Review of ℓ-adic sheaves on P1
Fq

. In the following, let A be either

Qℓ, Eλ, Oλ or Fl.

2.1.1. Definitions and basic properties. As in [Kat88], we consider a con-
structible sheaf F of A-modules on P1{Fq which is middle-extension, i.e. for
every nonempty open j : U Ñ P1 on which j˚F is lisse, we have F – j˚j

˚F .
For simplicity, we shall from now on simply call F an “ℓ-adic sheaf of A-
modules on P1

Fq
”.

We write SingpFq “ XpFqqzUF pFqq for the set of singularities of F , where
UF is the maximal open set of lissity of F .

We recall that the category of ℓ-adic sheaves of A-modules of generic rank
n on P1

Fq
is equivalent to the category of continuous ℓ-adic Galois represen-

tations
ρF : π1,q Ñ GLnpAq,

for π1,q “ Gal pFqpT qsep{FqpT qq the étale fundamental group (see [KR15,
Theorem 7.13]) and A “ Fη for η the geometric generic point of P1

Fq
corre-

sponding to the chosen separable closure.
We say that F is irreducible (resp. geometrically irreducible) if ρF (resp.

the restriction of ρF to π
geom
1,q :“ GalpFqpT qsep{FqpT qq E π1,q) is an irre-

ducible representation.
For x P P1pFqq, we denote by

– Ix E Dx ď π1,q inertia (resp. decomposition) groups at (the valua-
tion corresponding to) x.
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– Frobx,q P Dx{Ix – GalpFq{Fqq an element mapping to the geometric
Frobenius Frobq.

– F
Ix
η the space of invariants of Fη with respect to the action of Ix.

Note that ρF pFrobx,qq P GLpFIx
η q is well-defined.

– SwanxpFq P Zě0 the Swan conductor of F at x.

These are defined up to conjugation. As in the works of Fouvry-Kowalski-
Michel (see e.g. [FKM15a]), we consider the conductor

condpFq “ rankpFq ` | SingpFq| `
ÿ

xPSingpFq

SwanxpFq

of F , which combines three invariants of the sheaf to measure its “complex-
ity” (with respect to dimension and ramification).

The trace function of F is the map

tF : P1pFqq Ñ A

x ÞÑ tr
´
ρF pFrobx,qq | FIx

η

¯
.

If A has characteristic zero, we say that F is pointwise pure of weight 0

if for every finite extension Fq1{Fq and every x P UF pFq1q, the eigenvalues
of ρF pFrobx,q1q are Weil numbers α of weight 0, i.e. α P Q and for any
embedding ι : Q Ñ C, we have |ιpαq| “ 1. In this case,

||tF ||ι,8 :“ max
xPP1pFqq

|ιptF pxqq| ď rankpFq ď condpFq,

for any such ι, which is clear at lisse points and a result of Deligne [Del80,
(1.8.9)] at singularities.

For F ,G two sheaves of A-modules on P1
Fq

, we denote by:

– F b G the “middle tensor product”, i.e. the sheaf of A-modules on
P1
Fq

corresponding to the representation ρF b ρG

– DpFq the “dual sheaf”, i.e. the sheaf of A-modules on P1
Fq

corre-
sponding to the dual/contragredient representation of ρF .

2.1.2. Sums of trace functions. Deligne’s analogue of the Riemann hypothe-
sis over finite field for weights of étale cohomology groups [Del80] along with
the Grothendieck-Lefschetz trace formula and the Euler-Poincaré formula
of Grothendieck-Ogg-Safarevich gives the following asymptotic estimate for
sums of trace functions:

Theorem 2.1. If A as above has characteristic zero and if F is a sheaf of
A-modules on P1

Fq
which is pointwise pure of weight 0, we have

ÿ

xPUF pFqq

tF pxq “ q ¨ tr
´
Frobq |Fπgeom

1,q

¯
`O pEpFq?

qq

with respect to an arbitrary embedding ι : Q Ñ C, where Fπgeom
1,q

is the space

of coinvariants of the representation ρF restricted to πgeom1,q , with the action
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of Frobq P GalpFq{Fqq “ π1,q{πgeom1,q , and

EpFq “ rankpFq

»
–| SingpFq| ´ 1 `

ÿ

xPSingpFq

SwanxpFq

fi
fl ! condpFq2.

Moreover, the same relation holds for
ř
xPFq

tF pxq.

Proof. See for example [Del77, Exposé 6], [Kat88, Chapter 2], [FKM15a,
Section 9] or [PG16, Section 2.2]. �

It follows that geometrically irreducible ℓ-adic trace functions on P1
Fq

are
“almost orthogonal”:

Corollary 2.2. If A as above has characteristic zero and if F , G are geo-
metrically irreducible sheaves of A-modules on P1

Fq
which are pointwise pure

of weight 0, then
ÿ

xPFq

tF pxqtGpxq “ CpF ,Gqq `OpcondpFq2 condpGq2?
qq,

with CpF ,Fq “ 1 and CpF ,Gq “ 0 if F and G are not geometrically isomor-
phic, the conjugate being interpreted with respect to any embedding ι : Q Ñ C.

Proof. The sheaf H “ F b DpGq satisfies tF pxqtGpxq “ tHpxq when x R
SingpFq Y SingpGq, and condpHq ! condpFq2 condpGq2 (see the references
above). Hence
ÿ

xPFq

tF pxqtGpxq “
ÿ

xPUHpFqq

tGpxq `O p||tF tG ||ι,8p| SingpFq| ` | SingpGq|qq

“
ÿ

xPFq

tGpxq `O
`
condpFq2 condpGq2

˘

“ q ¨ tr
´
Frobq |Hπ

geom
1,q

¯
`O

`
condpFq2 condpGq2?

q
˘
,

where the last equality is Theorem 2.1. By Schur’s Lemma, dimHπ
geom
1,q

“ 1

if F and G are geometrically isomorphic, and is zero otherwise. If F “ G, the
action of the Frobenius on the 1-dimensional vector space Hπ

geom
1,q

is moreover
trivial. �

2.2. Reductions. Let F be an ℓ-adic sheaf of Oλ-modules on P1
Fq

, corre-
sponding to a representation

ρF : π1,q Ñ GLnpOλq.
By reduction modulo l, we obtain an ℓ-adic sheaf of Fl-modules, correspond-
ing to the representation π ˝ ρF , with trace function π ˝ tF .

GLnpOλq tr //

π

��

Oλ

π

��
π1,q

ρF 33❣❣❣❣❣❣❣❣❣❣❣

++❲❲❲❲
❲❲❲

❲❲❲
❲❲ Fq

tF
jj❯❯❯❯❯❯❯❯❯❯❯

tt✐✐✐✐
✐✐
✐✐
✐✐
✐✐

GLnpFlq tr // Fl
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Remark 2.3. By the theory of ramification in cyclotomic fields, we have
|Fl| “ ℓm withm the multiplicative order of ℓmodulo d (see [Was97, Theorem
2.13]). In particular,

|Fl| ” 1 pmod dq and d ă |Fl|.
Moreover, Fl “ Fℓ (i.e. ℓ splits completely) if and only if ℓ ” 1 pmod dq.

Remark 2.4. In practice, tF : Fq Ñ Oλ will actually have image in O or
Oα for some α P Ozl when we normalize (see the examples given in the
introduction). We recall that our motivation is to study the reduction of a
function Fq Ñ O modulo almost any prime ideal of O. The following diagram
summarizes the different rings considered and natural maps between them:

E // Eλ

O // Oα
// Ol

OO

// Oλ
mod l //

OO

Fl.

2.3. Examples.

2.3.1. Kummer sheaves.

Proposition 2.5. Let O “ Zrζds and let χ : Fˆ
q Ñ Oˆ be a multiplicative

character of order d ě 2, λ be an ℓ-adic valuation on O corresponding to a
prime ideal l above ℓ, and f “ f1{f2 P FqpXq which is not a d-power. We
assume that f has no zero or pole of order divisible by d. There exists a sheaf
Lχpfq “ Lχpfq,λ of Oλ-modules on Fq with:

(1) trace function χ ˝ f (under the convention that χp0q “ χp8q “ 0).
(2) tame singularities at the zeros and poles of f .
(3) condpLχpfqq ď 1 ` degpf1q ` degpf2q.

By reduction modulo l, this gives a sheaf of Fl-modules with the same prop-
erties and trace function χ ˝ f pmod lq, for Fl “ Oλ{lOλ.

Proof. See e.g. [Kat88, Section 4.3]. �

Notation 2.6. For f “ f1{f2 P FqpXq with f1, f2 P FqrXs coprime, we
write degpfq “ maxpdegpf1q, degpf2qq, so that condpLχpfqq ! degpfq.

2.3.2. Kloosterman sheaves.

Proposition 2.7. Let n ě 2 be an integer and λ be an ℓ-adic valuation
on O “ Zrζ4ps corresponding to a prime ideal l above ℓ. There exists a
Kloosterman sheaf Kln “ Kln,λ of Oλ-modules on P1

Fq
, of rank n and with

trace function corresponding to the Kloosterman sum

x ÞÑ Kln,qpxq “ p´1qn´1

q
n´1
2

ÿ

x1,...,xnPFˆ
q

x1...xn“x

e

ˆ
trpx1 ` ¨ ¨ ¨ ` xnq

p

˙
px P Fˆ

q q,

and Kln,qp0q “ p´?
qqn´1. Moreover, Kln is geometrically irreducible, lisse

on Gm, Swan8pKlnq “ 1, Swan0pKlnq “ 0, condpKlnq “ n` 3, and we note
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that

Kln,qpxq P Oqpn´1q{2 ď Ol

for all x P Fˆ
q .

By reduction modulo l, this gives a sheaf of Fl-modules on P1
Fq

with the

same properties and trace function equal to Kln,q pmod lq, for Fl “ Oλ{lOλ.
If p ” 1 pmod 4q or n is odd, we may replace O by Zrζps.

Proof. Recall that

εp
?
p P Zrζps with εp “

#
1 if p ” 1 pmod 4q
i if p ” 3 pmod 4q

by the evaluation of quadratic Gauss sums, so
?
p P Zrζp, ζ4s ď Zrζ4ps and?

p P Zrζ4psˆ
l

since ℓ ‰ p. The proposition is then a consequence of the
construction and investigation of the ℓ-adic Fourier transform by Deligne,
Laumon and Brylinski: see [Kat88, Chapters 4, 5, 8]. �

2.3.3. Point counting on families of curves.

Proposition 2.8. For f P FqrXs a squarefree polynomial of degree 2g ě 2,
such that its set of zeros Zf is contained in Fq, we consider the family of
smooth projective hyperelliptic curves of genus g parametrized by z P FqzZf
with affine models

Xz : y
2 “ fpxqpx´ zq.

Let λ be an ℓ-adic valuation on O “ Zrζ4ps corresponding to a prime ideal
l. There exists a geometrically irreducible sheaf of Oλ-modules F “ Fλ on
P1
Fq

of generic rank 2g, corresponding to a representation ρ : π1,q Ñ GLpV q “
GL2gpOλq such that for all z R Zf ,

detp1 ´ q1{2TρpFrobzqq
p1 ´ T qp1 ´ qT q “ ZpXz, T q :“ exp

˜
ÿ

ně1

|XzpFqnq|T
n

n

¸
,

tF pzq “ q ` 1 ´ |XzpFqq|
q1{2

P Oq1{2 ď Ol.

Moreover:

(1) SingpFq “ t8u Y Zf and F is everywhere tame. In particular,
condpFq “ 2g ` |Zf |.

(2) At any z P Zf , the quotient V {V Iz is the trivial (one-dimensional)
Iz–representation.

By reduction modulo l, this gives a sheaf of Fl-modules on P1
Fq

with the

same properties and trace function tF pmod lq, where Fl “ Oλ{lOλ.

Proof. By [KS91, Section 10.1] or [Hal08, Section 4] (using middle-convolutions),
there exists a sheaf of Zℓ-modules on P1

Fq
of generic rank 2g, pointwise pure

of weight 1, such that for all z R Zf ,

ZpXz, T q “ detp1 ´ TρpFrobzqq
p1 ´ T qp1 ´ qT q and tF pzq “ q ` 1 ´ |XzpFqq| pz R Zf q,
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along with properties (1) and (2) above. Normalizing by a Tate twist gives
the sheaf with the desired properties.

�

Other examples of families of curves are given in [KS91, Chapter 10].

3. Probabilistic model

Let F be a sheaf of Fl-modules on P1
Fq

, lisse on an open U , and corre-
sponding to a representation ρF : π1,q Ñ GLnpFlq “ GLpV q.

In this section, we set up a probabilistic model for short sums of the trace
function tF and show that it is accurate (with respect to density functions).

3.1. Monodromy groups.

Definition 3.1. The arithmetic and geometric monodromy groups of F are
the groups GgeompFq “ ρF

`
π
geom
1,q

˘
ď GarithpFq “ ρF pπ1,qq ď GLnpFlq.

Definition 3.2. For G “ GarithpFq or G “ GgeompFq, the inclusion G ãÑ
GLnpFlq is called the standard representation of G.

The determination of integral or finite monodromy groups is usually more
difficult than that of monodromy groups over Qℓ (as Zariski closures of the
images of the representations), because we consider simply subgroups of
GLnpFlq instead of (reductive3) algebraic subgroups of GLnpCq.
3.1.1. Examples. Nonetheless, for the examples we consider:

Proposition 3.3 (Kummer sheaves). The arithmetic and geometric mon-
odromy groups of a Kummer sheaf of Fl-modules as in Proposition 2.5 are
equal to µdpFlq, the group of dth roots of unity in Fl.

Proof. This is clear by the explicit construction of the Kummer sheaf (see
e.g. [Del77, Section 4.7]). �

The following two propositions extend the results over Qℓ from [Kat88],
respectively [KS91], and show that the finite monodromy groups are still as
large as possible.

Proposition 3.4 (Kloosterman sheaves). Let n ě 2 be an integer coprime
with p and let Kln be the sheaf of Fl-modules from Proposition 2.7. If ℓ "n 1

with ℓ ” 1 pmod 4q and prFl : Fℓs, nq “ 1, then

GgeompKlnq “ GarithpKlnq “
#
SLnpFlq if n odd

SpnpFlq if n even.

If p ” 1 pmod 4q and O is replaced by Zrζps, then this holds without restric-
tion on ℓ pmod 4q.

Proof. See [PG18, Theorem 1.6]. �

3By a result of Deligne, the connected component at the identity of the geometric
monodromy group of a pointwise pure of weight 0 sheaf of Qℓ-modules on P1

Fq
is semisimple,

see e.g. [KS91, 9.0.12].
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Proposition 3.5 (Families of hyperelliptic curves). In the setting of Propo-
sition 2.8, assume that l is completely split, i.e. Fl “ Fℓ. For F the normal-
ized sheaf of Fℓ-modules on P1

Fq
from Proposition 2.8, we have GgeompFq “

GarithpFq “ Sp2gpFℓq.

Proof. It follows from a theorem of Hall [Hal08, Section 5] and Proposition
2.8 (2) (i.e. the geometric monodromy group contains a transvection) that
GgeompFq “ Sp2gpFℓq.

Since we normalized, [KS91, Lemma 10.1.9] shows that the arithmetic
monodromy group preserves the same pairing (without normalization, it is
a group of symplectic similitudes with multiplicator q), so that Sp2gpFℓq “
GgeompFq ď GarithpFq ď Sp2gpFℓq. �

3.2. Model. We are interested in the Fl-valued random variable
´
tF pxq

¯
xPFq

(3)

with respect to the uniform measure on Fq.
Motivated by Chebotarev’s density theorem/Deligne’s equidistribution

theorem (see e.g. [KS91, Chapter 9]), the idea is to model the GarithpFq7-
valued random variable ´

ρ
7
F

pFrobxq
¯
xPUpFqq

by the random variable Y “ πpXq, where X is uniformly distributed in
GarithpFq, π : GarithpFq Ñ GarithpFq7 is the projection to the conjugacy
classes, and ρ7

F
: π

7
1,q Ñ GarithpFq7 is the natural map induced by ρF .

We shall then naturally model (3) by the random variable Z “ trpY q.

3.2.1. Shifts.

Definition 3.6. For I Ă Fq, we define

UF ,IpFqq “
č

aPI

pUF pFqq ´ aq “ Fqz
ď

aPI

ppSingpFq X Fqq ´ aq,

where E ´ a “ tx´ a : x P Eu for any E Ă Fq and a P Fq.

For I Ă Fq of size L ě 1, we will then model the random vector
´´
ρ

7
F

pFrobx`aq
¯
aPI

¯
xPUF,IpFqq

(4)

(with respect to the uniform measure on UF ,IpFqq) by the random vector
pY1, . . . , YLq, for Yi independent distributed like Y .

Correspondingly, we will model the random vector pptF px` aqqaPIq
xPFq

by
pZ1, . . . , ZLq, for Zi independent distributed like Z.

Therefore, the sum of shifts

´
SptF , I ` xq

¯
xPFq

“
˜

ÿ

yPI

tF py ` xq
¸

xPFq
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will be modeled by the random walk SpLq “ Z1 ` ¨ ¨ ¨ ` ZL, as in [Lam13]
and [LZ12] for multiplicative characters.

This is also to be compared with the model used in [PG16] and [PG17]
for sheaves of Qℓ-modules.

Remark 3.7. When x P SingpFq, ρ7
F

pFrobx,qq is not a well-defined conjugacy
class in GarithpFq (rather one in GLpV Ixq). On the other hand, tF pxq is a
well-defined element of Fl for all x P P1pFqq.

3.3. Coherent families. We define a family of sheaves for which this model
is accurate.

3.3.1. Definition.

Definition 3.8. Let F be a sheaf of Fl-modules on P1
Fq

corresponding to a
representation ρF : π1,q Ñ GLnpFlq. If σ P AutpFlq, we let σpFq be the sheaf
corresponding to the representation σ ˝ ρF : π1,q Ñ GLnpFlq Ñ GLnpFlq.

Definition 3.9 (Coherent family). Let E be a number field and Λ be a set
of valuations on E. A family pFλqλPΛ, where Fλ is an irreducible sheaf of
Fl-modules over a finite field Fq “ Fqpλq, for l the prime ideal corresponding
to λ, is coherent if:

(1) (Conductor) condpFλq is uniformly bounded for λ P Λ.

and either:

(2) Kummer case: There exists an integer d ě 2 such that every Fλ is a
Kummer sheaf with monodromy group µdpFlq.

(21) Cyclic simple case: There exists a prime d ě 2 such that for every
λ P Λ:
(a) (Monodromy groups) The arithmetic and geometric monodromy

groups of Fλ coincide and are equal to µdpFlq.
(b) (Independence of shifts) There is no geometric isomorphism of

the form r`as˚Fλ – F
bi
λ for 1 ď i ă d, a P Fˆ

qpλq.

(22) Classical case: There exists G P tSLn : n ě 2u ŤtSpn : n ě 2 evenu
such that for every λ P Λ:
(a) (Monodromy groups) The geometric and arithmetic monodromy

groups of Fλ coincide and are conjugate to GpFlq in GLnpFlq
(with respect to the standard representation).

(b) (Independence of shifts) There is no geometric isomorphism of
the form

r`as˚
Fλ – L b σpFλq or r`as˚

Fλ – L bDpσpFλqq (5)

for a P Fˆ
qpλq, σ P AutpFlq and L a sheaf of Fl-modules of generic

rank 1 on P1
Fqpλq

.

We call µd, resp. SLn or Spn the monodromy group structure of the fam-
ily, and a bound on the conductor of the family is any uniform bound for
condpFλq (λ P Λ).

Remark 3.10. We fix the structure of the monodromy group, while we let Fq
and Fl vary to study for example the reductions of a trace function whose
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values do not depend on λ, modulo various ideals (see Remark 2.4) as q Ñ
`8. We could also let d, resp. n vary (in the Kummer, resp. classical case),
but this is not a natural aspect in applications. Nonetheless, we note that
the implied constants will not depend on d in our results.

Remark 3.11. This is to be compared with the coherent families of sheaves
of Qℓ-modules on P1

Fq
defined in [PG17].

3.3.2. Examples.

Proposition 3.12 (Kummer sheaves). Let d ě 2 be an integer and let Λ be
a set of valuations of Qpζdq. A family pLχpfλq,λqλPΛ of Kummer sheaves, with
monodromy group structure µd and degpfλq bounded uniformly, is coherent.

Proof. By Propositions 2.5 and 3.3, Conditions (1) and (2) of Definition 3.9
are satisfied. �

Proposition 3.13 (Kloosterman sheaves). Let n ě 2 be an integer and let
Λ be a set of valuations of Qpζ4pq. We assume that every λ P Λ lies above a
prime ℓ "n 1 with ℓ ” 1 pmod 4q and pn, rFl : Fℓsq “ 1 as in Proposition 3.4.
A family pKln,λqλPΛ of Kloosterman sheaves of rank n, as in Proposition 2.7,
is coherent.

Proof. By Propositions 2.7 and 3.4, Conditions (1) and (22a) of Definition
3.9 are satisfied. It remains to show the independence of shifts (Condition
(22b)), which can be done exactly as in the Qℓ case in [PG17, Section 7] by
analyzing the local ramification on both sides of an isomorphism of the form
(5). �

Proposition 3.14 (Families of hyperelliptic curves). Let f P ZrXs be a
squarefree polynomial of degree 2g ě 2 and let Λ be a set of valuations of
Qpζ4pq of degree 1 (i.e. corresponding to completely split ideals). A family
pFλqλPΛ of sheaves of Fℓ-modules with respect to the reductions of f as in
Proposition 2.8 is coherent.

Proof. By Propositions 2.8 and 3.5, Conditions (1) and (22a) of Definition
3.9 are satisfied, and it suffices to verify the independence of shifts (Condition
(22b)). Again, the argument is the same as the one over Qℓ in [PG17, Section
7]. �

G dimG rankG αpGq β`pGq β´pGq
SLn n2 ´ 1 n´ 1 n2´1

2
n2`n´2

2
npn´1q

2

Spn (n even) npn`1q
2

n
2

npn`2q
8

npn`2q
4

n2

4

Table 1. Constants for the groups considered.

3.4. Accuracy of the model.
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Definition 3.15. Let pFλqλPΛ be a coherent family with monodromy group
structure G and let I Ă Fq. We say that a sheaf of Fl-modules Fλ on P1

Fq
in

the family is I-compatible if either:

– The family is in the cyclic simple case or the classical case (cases (21)
and (22) of Definition 3.9).

– The family is in the Kummer case (case (2) of Definition 3.9), so that
Fλ “ Lχpfq for χ : Fˆ

q Ñ Cˆ a character of order d, f “ f1{f2 P
FqpXq with pf1, f2q “ 1, and we have that

mÿ

i“1

xi ‰ 0 for all x1, . . . , xm P I, 1 ď m ď degpf1q. (6)

Example 3.16. Condition (6) holds if degpfq “ 1 or if for an arbitrary Fp-
basis of Fq with coordinates πi : Fq Ñ t1, . . . , pu we have maxaPI πipaq ă
p{degpf1q for some 1 ď i ď e.

Definition 3.17. Let L ě 1 be an integer and G be the monodromy group
structure of a coherent family. We define

EpG,L,Flq “

$
’&
’%

|Fl|Lβ`pGq`2β´pGq G classical

dL G “ µd, d prime

dL`1 otherwise

with β˘pGq “ pdimG˘ rankGq{2, given in Table 1.

Theorem 3.18. Let pFλqλPΛ be a coherent family with monodromy group
structure G. For λ P Λ, let I Ă Fq “ Fqpλq be of cardinality L and h :

pGpFlq7qI Ñ R be any function. If F “ Fλ is an I-compatible sheaf on P1
Fq

,

then

E

”
h

´
pρ7

F
pFrobx`aqqaPI

¯ı
“ E phpY1, . . . , YLqq`O

´
L||h||8q´1{2EpG,L,Flq

¯
,

where the random variables Yi and probability spaces are as in Section 3.2,
||h||8 “ maxxPpGpFlq7qI |hpxq|. Moreover, if h takes values in Rě0, then the
above is

E phpY1, . . . , YLqq
´
1 `OpLq´1{2EpG,L,Flqq

¯
.

The implied constants depend only on the monodromy group structure and a
bound on the conductor of the family.

Remark 3.19. When I “ t0u, this is Chebotarev’s theorem as it appears for
example in [Kow06].

Corollary 3.20. Under the hypotheses of Theorem 3.18, for any function
h : FI

l
Ñ R, we have

E

”
h

´
ptF px` aqqaPI

¯ı
“ E phpZ1, . . . , ZLqq `O

´
L||h||8q´1{2EpG,L,Flqq

¯
,

where the random variables Zi and probability spaces are as in Section 3.2.
If h takes values in Rě0, then the above is

E phpZ1, . . . , ZLqq
´
1 `OpLq´1{2EpG,L,Flqq

¯
.
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The implied constants depend only on the monodromy group structure and a
bound on the conductor of the family.

Remark 3.21. Note that we must take L ă q1{2 to have EpG,L,FlqL “
opq1{2q as q Ñ `8.

3.5. Comments on the ranges. Let us consider the above in the context
of Section 2.2 and Remark 2.4, i.e. when the sheaf of Fl-modules on P1

Fq

from Theorem 3.18 arises from the reduction of a sheaf of Zrζdsλ-modules,
allowing to study the reduction of a trace function t : Fq Ñ Zrζds modulo
various ideals.

By Remark 2.3, recall that if Fl is the residue field of Zrζdsλ at some prime
ideal above ℓ, then d ă |Fl| “ ℓm, for m the order of ℓ in pZ{dqˆ.

3.5.1. Choice of the parameters. Thus, we may want to choose our param-
eters pq, ℓ, l, dq so that d ă |Fl| ă |Fq| “ pe. Given p, ℓ and d, this is holds

true for any l above ℓ if e ě ϕpdq log ℓ
log p

.

3.5.2. Limitation. Together with the condition

L !
#

log q
log |Fl|

if G classical
log q
log d

if G “ µd

from Theorem 3.18, the relation d ă |Fl| implies that L ! e if G is classical
and d “ p (e.g. for Kloosterman sums). Hence, we must in this case take e
large enough with respect to L, which is a limitation of the method to keep
in mind. Note however that it is not unusual to encounter results stated
in fixed characteristic with the degree e going to infinity (see e.g. [KS91,
Chapter 9] and [Kat88, Chapter 3]).

4. Proof of Theorem 3.18 and Corollary 3.20

In the following, we use the notations of Theorem 3.18 and we let I “
ta1, . . . , aLu Ă Fq, V pFqq “ UF ,IpFqq.

Definition 4.1. For v “ pv1, . . . , vLq P pG7qI and pG the set of characters
of irreducible complex representations of G, we define

Epvq “
ÿ

χ1,...,χLP pG
not all trivial

˜
Lź

i“1

χipviq
¸

1

|V pFqq|
ÿ

xPV pFqq

Lź

i“1

χipρ7
F

pFrobx`aiqq.

We start with the following relation between the expected values we are
interested in:

Proposition 4.2. For I “ ta1, . . . , aLu Ă Fq, the expected value

E

”
h

´
pρ7

F
pFrobx`aqqaPI

¯ı
(7)

is given by

EphpY1, . . . , YLqq `O

ˆ
||h||8 max

vPpG7qI
|Epvq|

˙
.
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When h is nonnegative, (7) is also

EphpY1, . . . , YLqq
„
1 `O

ˆ
max

vPpG7qI
|Epvq|

˙
.

Proof. By definition, the left-hand side of (7) is

1

|V pFqq|
ÿ

xPV pFqq

hpρ7
F

pFrobx`a1q, . . . , ρ7
F

pFrobx`aLqq “
ÿ

vPpG7qI

hpvq |Dpvq|
|V pFqq| ,

where
Dpvq “ tx P V pFqq : ρ7

F
pFrobx`aiq “ vi p1 ď i ď Lqu

for v “ pv1, . . . , vLq. By Schur’s orthogonality relations for the finite group
G,

|Dpvq|
|V pFqq| “ 1

|V pFqq|
ÿ

xPV pFqq

Lź

i“1

δ
ρ

7
F

pFrobx`ai
q“vi

“ 1

|V pFqq|
ÿ

xPV pFqq

Lź

i“1

¨
˝ |vi|

|G|
ÿ

χP pG

χpρ7
F

pFrobx`aiqqχpviq

˛
‚

“
śL
i“1 |vi|
|G|L

ÿ

χ1,...,χLP pG

1

|V pFqq|
ÿ

xPV pFqq

Lź

i“1

χipρ7
F

pFrobx`aiqqχipviq

“
śL
i“1 |vi|
|G|L p1 ` Epvqq ,

where |v| denotes the size of a conjugacy class v P G7. On the other hand,

EphpY1, . . . , YLqq “ 1

|G|L
ÿ

vPpG7qI

hpvq
Lź

i“1

|vi|.

�

To prove Theorem 3.18, we thus want to show that the expression

ÿ

xPV pFqq

Lź

i“1

χipρ7
F

pFrobx`aiqq (8)

in Epvq is small for χ1, . . . , χL P Ĝ not all trivial and v P pG7qI .

4.1. Reinterpretation of (8).

Definition 4.3. We fix an isomorphism of fields ι : Qℓ Ñ C. For η : G Ñ
GLpV q a complex representation, we let Fη be the sheaf of Qℓ-modules on
P1
Fq

corresponding to the representation

ι´1 ˝ η ˝ ρF : π1,q Ñ G Ñ GLpV q Ñ GLpι´1pV qq.

Remark 4.4. Since G is discrete, there are no issues with the continuity of
the composition ι´1 ˝ η ˝ ρF , even if ι is not continuous.
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Note that the trace function of Fη at unramified points is

χ ˝ ρ7
F

˝ Frob : UFηpFqq Ñ π
7
1,q Ñ GpFlq7 Ñ C,

where χ is the character of η. Thus, we can rewrite (8) as

ÿ

xPV pFqq

Lź

i“1

tFi
pxq, where Fi “ r`ais˚

Fηi (9)

is a sheaf of Qℓ-modules on P1
Fq

, for ηi the representation corresponding to
χi.

4.2. Sums of products of trace functions. The estimation of sums of
products of the form

ř
xPFq

śH
i“1 tipxq, for ti the trace function of a sheaf of

Qℓ-modules on P1
Fq

, is precisely the question surveyed in [FKM15b].
We need the following estimate, where the dependency with respect to the

conductors is precisely tracked:

Proposition 4.5. Let pFiq1ďiďL be a tuple of pointwise pure of weight 0

sheaves of Qℓ-modules on P1
Fq

, with corresponding trace functions pti : Fq Ñ
Cq1ďiďL. We assume that the arithmetic and geometric monodromy groups

of G “ ÀL
i“1Fi coincide and are as large as possible, i.e. isomorphic tośL

i“1GgeompFiq. Then, for S “ ŤL
i“1 SingpFiq,

ÿ

xPFqzS

t1pxq . . . tLpxq “ q

Lź

i“1

dimpFiqπgeom
1,q

`OpE?
qq

with an absolute implied constant, where

E ! ?
q

˜
Lź

i“1

rankpFiq
¸ ˜

|S| `
ÿ

xPS

Lÿ

i“1

SwanxpFiq
¸
.

Proof. Let F “ ÂL
i“1Fi, which satisfies SingpFq Ă S. For any embedding

ι : Q Ñ C,
ÿ

xPFqzS

t1pxq . . . tLpxq “
ÿ

xPUF pFqq

tF pxq `O p||t1||ι,8 . . . ||tL||ι,8|S|q

“
ÿ

xPUF pFqq

tF pxq `O prankpFq|S|q .

By [Kat88, Lemma 1.3], we also have SwanxpFq ď rankpFq řL
i“1 SwanxpFiq

for any x P SingpFq. Thus, Theorem 2.1 yields
ÿ

xPFqzS

t1pxq . . . tLpxq “ q ¨ tr
´
Frobq | Fπgeom

1,q

¯

`O
˜

?
q rankpFq

˜
|S| `

ÿ

xPS

Lÿ

i“1

SwanxpFiq
¸¸

.

If Fi corresponds to the representation ρi : π1,q Ñ GLni
pQℓq with arithmetic

monodromy group Gi, we let Stdi : Gi Ñ GLni
pQℓq be the standard repre-

sentation of Gi. If ρG is the representation of π1,q corresponding to G, then
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the sheaf F corresponds to the representation Λ ˝ ρG for Λ “ ÒL
i“1 Stdi and

Fπ1,q – ΛGarithpGq, Fπgeom
1,q

– ΛGgeompGq,

where ΛH is the space of coinvariants of Λ with respect to the action of a
subgroup H ď GarithpGq. If the geometric monodromy group of G is as large
as possible, then

Fπgeom
1,q

– ΛGgeompGq –
Lâ

i“1

pStdiqGgeompFiq.

If moreover GarithpGq “ GgeompGq, the Frobenius acts trivially on Fπgeom
1,q

–
ΛGgeompGq “ ΛGarithpGq and

tr
´
Frobq | Fπgeom

1,q

¯
“ dimpFπgeom

1,q
q “

Lź

i“1

dimpStdiqGgeompFiq.

�

This leads to the following estimates for (8):

Proposition 4.6. For L ě 1, let a1, . . . , aL P Fq be distinct, and let ηi be
complex irreducible representations of G, not all trivial, with characters χi
p1 ď i ď Lq. We assume that one of the following holds:

(1) The arithmetic and geometric monodromy groups of
À

1ďiďLr`ais˚Fηi
coincide and are as big as possible, i.e. isomorphic to

ś
1ďiďLG{ ker ηi,

or
(2) F is a ta1, . . . , aLu-compatible Kummer sheaf Lχpfq.

Then, if L ! q,

max
vPpG7qI

|Epvq| ! condpFq2|G|δ?
q

ÿ

χ1,...,χLPG7

˜
Lź

i“1

dim ηi

¸2 Lÿ

i“1

dim ηi,

with δ “ 0 in case (1) and δ “ 1 otherwise.

Proof. It suffices to show that the sum of products (8) is

! ?
q condpFq2|G|δ

˜
Lź

i“1

dim ηi

¸
Lÿ

i“1

dim ηi

whenever χ1, . . . , χL are not all trivial, since we then have

|Epvq| ď condpFq2|G|δ
?
q

|V pFqq|
ÿ

χ1,...,χLP pG
not all trivial

˜
Lź

i“1

dim ηi

¸2 Lÿ

i“1

dim ηi

and
?
q{|V pFqq| ď q´1{2|1 ´ q´1L condpFq|.

(1) We note that Fη is geometrically irreducible, rankpFηq “ dim η, SingpFηq
is contained in SingpFq and SwanxpFηq ď dim η SwanxpFq for all x P
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P1pFqq (by [Kat88, 3.6.2]). By Proposition 4.5 applied with Fi “ r`ais˚Fηi ,
the sum (8) is thus

ź

1ďiďL

dimpFG
ηi

q `O

˜
q´1{2 condpFq2

˜
Lź

i“1

dim ηi

¸
Lÿ

i“1

dim ηi

¸
.

By Schur’s Lemma, dimpFG
ηi

q is equal to 1 if ηi is trivial, zero otherwise.
(2) For every i “ 1, . . . , L, there exists an integer 0 ď bi ă d such that ηi is

the one-dimensional representation x ÞÑ xbi . By multiplicativity,

1

q

ÿ

xPFq

Lź

i“1

χipρ7
F

pFrobx`aiqq “ 1

q

ÿ

xPFq

tGpxq

where G “ Fχpgq with gpXq “ śL
i“1 fpX ` aiqbi . Since condpGq ď

1 ` degpgq ď 1 ` Ld degpfq, Corollary 2.2 gives

1

q

ÿ

xPFq

tGpxq “ δg is a d´power `OpLd degpfqq´1{2q.

As in [PG17, Section 4], we see that, under the compatibility assumption,
g cannot be a d-power unless all bi are zero.

�

4.3. Finite Goursat-Kolchin-Ribet criteria. It remains to determine
when Hypothesis (1) of Proposition 4.6 holds. For sheaves of A “ Qℓ-
modules, this is handled by the Goursat-Kolchin-Ribet criterion of Katz (see
[FKM15b]). We give here an analogue for sheaves of Fl-modules.

4.3.1. Preliminaries. First, recall the classical Goursat Lemma:

Lemma 4.7 (Goursat). Let G1, G2 be groups (resp. Lie algebras) and H ď
G1 ˆ G2 be a subgroup (resp. Lie subalgebra) such that the two projections
pi : H Ñ Gi pi “ 1, 2q are surjective.

G1
// G1{ ker p2

H //
p1

77♣♣♣♣♣♣♣♣♣

p2

''◆◆
◆◆

◆◆
◆◆

◆ G1 ˆG2
//

OO

��

pG1{ ker p2q ˆ pG2{ ker p1q

OO

��
G2

// G2{ ker p1
Then the image of H in G1{ ker p2ˆG2{ ker p1 is the graph of an isomorphism
G1{ ker p2 – G2{ ker p1. In particular, if G1, G2 are simple, then either H “
G1 ˆG2, or H is the graph of an isomorphism G1 – G2.

Proof. See for example [Rib76, Lemma 5.2.1]. �

Lemma 4.8 ([Rib76, Lemma 5.2.2 and p. 791]). Let G1, . . . , Gn be non-
trivial finite groups with no proper nontrivial abelian quotients and let G ď
G1ˆ¨ ¨ ¨ˆGn be such that every projection G Ñ GiˆGj pi ‰ jq is surjective.
Then G “ G1 ˆ ¨ ¨ ¨ ˆGn.
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Proof. In [Rib76], this is stated when Gi has no nontrivial abelian quotient,
and the condition is used at the end of the proof of the sublemma, [Rib76,
p. 764]. In the notations of the latter, B1{K 1 is abelian, and if B1 “ Sn
has no proper nontrivial abelian quotient, then either K 1 “ B1 and one can
conclude, or K 1 is trivial, which implies that Sn is trivial. �

Definition 4.9. Let k be a field. A pair pGi Ñ GLpViqqi“1,2 (or pGi Ñ
PGLpViqqi“1,2) of faithful group representations over k is Goursat-adapted if
every isomorphism G1 – G2 is of the form

#
X ÞÑ AσpXqA´1 for an isomorphism A : V1 Ñ V2 or

X ÞÑ AσpXq´tA´1 for an isomorphism A : V ˚
1 Ñ V2

with σ P Autpkq, σ “ id unless k is finite.

Example 4.10. Let G P tPSLnpkq : n ě 2u ŤtPSpn{2pkq : n ě 2 evenu for k
a finite field. If G1, G2 are conjugate to G, then pGi, Stdqi“1,2 is Goursat-
adapted, where Std is the natural embedding in PGLnpkq. Indeed, by [Gor82,
4.237] and [Car72, Theorem 12.5.1], if G is a finite simple group of Lie type
defined over k, every automorphism can be written as the product of an
inner, graph, diagonal, and field automorphism; more precisely,

OutpGq – pDiagpGqAutpkqq .GraphpGq,

where DiagpGq (resp. GraphpGq) is the group of diagonal automorphisms
(resp. the group of graph automorphisms of the corresponding Dynkin dia-
gram). But for n ě 2, GraphpAn´1q – Z{2 (corresponding to the transpose-
inverse map) while GraphpCnq is trivial, with the standard nomenclature for
Dynkin diagrams.

4.3.2. Finite groups of Lie type.

Proposition 4.11 (Goursat-Kolchin-Ribet for quasisimple groups). Let π
be a topological group, k be a finite field, F be a field, and for i “ 1, . . . , N ,
let ρi : π Ñ GLpViq be a finite-dimensional representation over k with fi-
nite monodromy group Gi “ ρipπq ď GLpViq, and ηi : Gi Ñ GLpWiq be a
nontrivial representation over F .

We consider the representation ρ “ ‘N
i“1pηi ˝ ρiq : π Ñ GLp‘N

i“1Wiq –śN
i“1GLpWiq with monodromy group G “ ρpπq.

π
ρi //

ρ��

Gi
ηi // ηipGiq // GLpWiq

G

��śN
i“1 ηipGiq – śN

i“1pGi{ ker ηiq
��śN

i“1GLpWiq

==

We assume that:
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(1) The groups Gi are quasisimple, i.e. they are perfect pGi “ Gder
i q and

G1
i “ Gi{ZpGiq is simple.

(2) For every i ‰ j,
`
G1
l Ñ PGLpVlq

˘
l“i,j

is Goursat-adapted.

(3) For every i ‰ j, there is no isomorphism

ρi – χb σpρjq or ρi – χbDpσpρjqq

for χ a 1-dimensional representation of π over k and σ P Autpkq.
Then G is as large as possible, i.e. G “ ś

ipGi{ ker ηiq.

Proof. Since Gi is quasisimple, note that we have either:

– Gi “ ZpGiq ker ηi. By taking derived subgroups, this gives Gder
i “

Gi ď pker ηiqder ď ker ηi, so ker ηi “ Gi and ηi is trivial, which is
excluded;

– ker ηi ď ZpGiq.
ForH any group, let us continue to denoteH 1 “ H{ZpHq. By perfectness,

it is enough to show that G1 “ ś
ipGi{ ker ηiq1 – ś

iG
1
i.

Since a quasisimple group has no nontrivial abelian quotient (the derived
subgroup is the smallest normal subgroup with an abelian quotient), it is
enough to treat the case n “ 2 by Lemma 4.8.

By Goursat’s Lemma 4.7 and the simplicity of G1
i, either G1 “ G1

1 ˆ G1
2,

or G1 is the graph of an isomorphism G1
1 – G1

2. In the second case, since
the center of GL is the group of scalar matrices, the isomorphism given by
hypothesis (2) lifts to an isomorphism contradicting (3). �

Remarks 4.12. Proposition 4.11 should be compared with Katz’s version
over an algebraically closed field [Kat90, 1.8.2]. Here, we more generally
compute the monodromy group of ‘N

i“1pηi ˝ ρiq instead of ‘N
i“1ρi, while still

assuming Condition (3) only on ρi (and not on ηi ˝ρi). Over an algebraically
closed field, the 1-dimensional representations appear when passing from G

to G0,der, while in Proposition 4.11 they appear when passing from G to
G1. Moreover, the assumption of quasisimplicity here plays the role of the
semisimplicity hypothesis in [Kat90].

Example 4.13. Let k be a finite field and n ě 1 be an integer. By [MT11,
Theorem 24.17], SLnpkq and Sp2npkq with their standard representations
are quasisimple as soon as |k| ą 3. Hence, by Example 4.10, conditions
(1) and (2) of Proposition 4.11 hold if there exists G P tPSLnpkq : n ě
2u Y tPSp2npkq : n ě 1u such that every Gi is conjugate to G.

4.3.3. Roots of unity. Lastly, we give a version of the Goursat-Kolchin-Ribet
criterion for cyclic groups of prime order.

Proposition 4.14. For i “ 1, . . . , L, let ρi : π Ñ kˆ be a one-dimensional
representations over a field k of a topological group π, with monodromy group
Gi “ ρipπq – Z{d (d prime), and let ηi : Gi Ñ Fˆ be a nontrivial representa-
tion over a field F . Consider the representation ρ “ ‘ipηi ˝ρiq : π Ñ ś

i F
ˆ

with monodromy group G “ ρpπq. If there is no isomorphism of the form
ρi – ρba

j for i ‰ j, 1 ď a ă d, then G is as large as possible, i.e. G – ś
i Z{d.
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Proof. Since Z{d is simple, we can apply Lemma 4.8 to reduce to the case
of two representations as before. By Goursat’s Lemma 4.7, either G is as
large as possible, or it is the graph of an isomorphism G1 Ñ G2. Since
AutpZ{dq – pZ{dqˆ, this proves the statement. �

4.4. Sums of dimensions of irreducible representations.

Definition 4.15. For a finite group G and m ě 1 an integer, we define
dmpGq “ ř

χP pGpdimχqm.

Lemma 4.16. For any finite group G, d1pGq ď |G|1{2|G7|1{2, d2pGq “ |G|
and for every m ě 3, dmpGq ď |G|m{2|G7|. Moreover:

(1) If G is abelian, dmpGq “ |G| for every m ě 1.
(2) If G ď GLnpkq is a finite classical group of Lie type over the fi-

nite field k, we have4 d1pGq !n |k|dimG`rankG
2 , d2pGq “ Θnp|k|dimGq,

|G7| “ Θnp|k|rankGq, and dmpGq !n |k|
m dimpGq`2 rankpGq

2 for every
m ě 3.

(3) If G “ SLnpkq or Spnpkq (n even), the upper bounds can be improved

to dmpGq !n |k|
m dimpGq`p2´mq rankpGq

2 for every m ě 1.

Proof. The relations for finite and finite abelian groups are well-known (see
e.g. [Kow08, Proposition 5.2]), the ones for classical groups follow from the
former and [MT11, Corollary 24.6, Corollary 26.10], while the ones for SLn
and Spn are [Kow08, Proposition 5.4]. �

Remark 4.17. According to Remark 3.10, we do not keep track of implied
constants depending on the rank of the monodromy group.

4.5. Conclusion.

Proof of Theorem 3.18. By Proposition 4.2,

E

”
h

´
pρ7

F
pFrobx`aqqaPI

¯ı
“ EphpY1, . . . , YLqq

`O
ˆ

||h||8 max
vPpG7qL

|Epvq|
˙

By Proposition 4.6 (which applies by Propositions 4.11 and 4.14) and Lemma
4.16,

max
vPpG7qL |Epvq|?q
condpFq2|G|δ !

ÿ

χ1,...,χLP pG

˜
Lź

i“1

dim ηi

¸2 Lÿ

i“1

dim ηi

“ Ld1pGqL´1d3pGq.
The case h nonnegative is treated similarly by the second part of Proposition
4.2. �

4Here, the notation f1pGq “ Θnpf2pGqq means that there exists constants
C1pnq, C2pnq ą 0 depending only on n such that C1pnqf2pGq ď f1pGq ď C2pnqf2pGq
for all G.
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Proof of Corollary 3.20. By writing

E

”
h

´
ptF px` aqqaPI

¯ı
“ q

|UF ,IpFqq|E
”
ph ˝ trq

´
pρ7

F
pFrobx`aqqaPI

¯ı

“ E

”
ph ˝ trq

´
pρ7

F
pFrobx`aqqaPI

¯ı

`O
`
q´1||h||8L condpFq

˘
,

the first relation follows by Theorem 3.18, and one argues similarly for the
second one. �

5. Computations in the model

In this section, we carry out preliminary computations and observations
in the probabilistic model.

Throughout, we let G ď GLnpFlq, X1, . . . , XL independent random vari-
ables uniformly distributed in G, Yi “ πpXiq for π : G Ñ G7 the projection,
and Zi “ trYi.

5.1. Random walks in monodromy groups.

Proposition 5.1. For all A Ă Fl and L ě 1, the probability P pZ1`¨ ¨ ¨`ZL P
Aq is given by

|A|
|Fl|

`O

¨
˝ max

0‰ψPpFl

ˇ̌
ˇ̌
ˇ
ÿ

aPA

ψp´aq
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
1

|G|
ÿ

xPG

ψptrxq
ˇ̌
ˇ̌
ˇ

L
˛
‚.

In particular, for a P Fl,

P pZ1 ` ¨ ¨ ¨ ` ZL “ aq “ 1

|Fl|
`O

¨
˝ max

0‰ψPpFl

ˇ̌
ˇ̌
ˇ
1

|G|
ÿ

xPG

ψptrxq
ˇ̌
ˇ̌
ˇ

L
˛
‚.

Proof. By Schur’s orthogonality relations for the finite group Fl,

P pZ1 ` ¨ ¨ ¨ ` ZL “ aq “ |v “ pv1, . . . , vLq P GL : tr
ř
vi “ a|

|G|L

“ 1

|G|L
ÿ

vPGL

δtr
ř
vi“a

“ 1

|Fl|
ÿ

ψPpFl

ψp´aq
˜

1

|G|
ÿ

vPG

ψptr vq
¸L

“ 1

|Fl|

»
–1 `

ÿ

0‰ψPpFl

ψp´aq
˜

1

|G|
ÿ

vPG

ψptr vq
¸L

fi
fl .

The first statement follows from summing the previous equation over a P
A. �
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5.1.1. Gaussian sums. For ψ a nontrivial character of Fl, we will call the sumř
vPG ψptr vq a “Gaussian sum over G”, by analogy with the case G “ µdpFlq

(see Section 5.2 below). We can expect it to be small uniformly with respect
to ψ, say

1

|G|
ÿ

vPG

ψptr vq ! |Fl|´αpGq (10)

with αpGq ą 0, and square-root cancellation corresponds to αpGq ě log |G|
2 log |Fl|

.
Alternatively, we can also write

ÿ

vPG

ψptr vq ! |G|α1pGq with α1pGq ă 1. (11)

Similarly, if A is “well-distributed” in Fl, we expect

1

|A|
ÿ

xPA

ψp´xq ! |Fl|´αpAq (12)

for some αpAq ą 0, uniformly with respect to ψ P pFl. The trivial bound
corresponds to αpAq “ 0.

Thus, we can rewrite Proposition 5.1 as:

Corollary 5.2. Let A Ă Fl. If the bounds (10) and (12) hold, then

P pZ1 ` ¨ ¨ ¨ ` ZL P Aq “ |A|
|Fl|

ˆ
1 `O

ˆ
1

|Fl|LαpGq`αpAq´1

˙˙

for all L ě 1. In particular,

P pZ1 ` ¨ ¨ ¨ ` ZL “ aq “ 1

|Fl|

ˆ
1 `O

ˆ
1

|Fl|LαpGq´1

˙˙

uniformly for all a P Fl.

It is insightful to distinguish the following cases to analyze the ranges of
the parameters in Corollary 5.2:

(1) If either
– αpGq ą 1, or
– αpGq ď 1 and L ą 1{αpGq,

we have equidistribution of Z1 ` ¨ ¨ ¨ ` ZL in Fl as |Fl| Ñ `8.
(2) If αpGq ď 1 and L ď 1{αpGq, then we have P pZ1 ` ¨ ¨ ¨ ` ZL “ aq !

|Fl|´LαpGq, which shows that Z1 ` ¨ ¨ ¨ `ZL is “not too concentrated”
at any point a P Fl.

Example 5.3. We will see that for G “ SLnpFlq or SpnpFlq, we always have
αpGq ą 1. On the other hand, αpµdpFlqq ă 1.

In the next two sections, we investigate bounds of the form (10) (or (11))
for the monodromy groups G we are interested in: roots of unity and classical
groups over finite fields.
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5.2. Gaussian sums in µdpFlq: exponential sums over subgroups of
Fˆ
l
. We assume that Fl contains a primitive dth root of unity. For G “

µdpFlq ď Fˆ
l
, the sum (10) is a “character sum with exponentials”

ÿ

vPµdpFlq

ψpvq “
dÿ

i“1

ψpζidq,

or equivalently a sum over a subgroup of Fˆ
l
.

For Fl “ Fℓ, the latter appear in works of Korobov, Shparlinski, Heath-
Brown-Konyagin, Konyagin, Bourgain-Glibichuk-Konyagin and others, which
give nontrivial bounds for d not too small compared to ℓ. Square-root can-
cellation corresponds to αpGq ě log d

2 log ℓ
, and log d

log ℓ
ă 1 since ℓ ” 1 pmod dq.

We first review the results of Heath-Brown-Konyagin which give explicit
bounds for d at least of the order of ℓ1{3.

Theorem 5.4 ([HBK00, Theorem 1]). For ψ a nontrivial additive character
of Fℓ, (10) holds with G “ µdpFℓq and αpGq “ α in any of the following three
cases:

0 ă α ď 1{16 and d " ℓ1{3`8α{3 (13)

0 ă α ď 1{6 and d " ℓ2{5`8α{5 (14)

0 ă α ď 1{2 and d " ℓ1{2`α. (15)

On the other hand, the results of Bourgain and others give (non-explicit)
bounds for d as small as desired:

Theorem 5.5 ([BK03, Theorem 2.1]). Let x, y P Fˆ
ℓ and let d be the order

of y. For every δ ą 0, there exists α “ αpδq ą 0 such that if d ě ℓδ, then

dÿ

i“1

ψpyixq ! dℓ´α

uniformly for all nontrivial ψ P pFℓ, with an absolute implied constant. Thus,
(10) for G “ µdpFℓq holds with αpGq “ αpδq if d ě ℓδ.

Remark 5.6. The αpδq arising in Theorem 5.5 are not estimated explicitly
in [BK03]5, but one typically expects them to be very small.

The situation is more complicated when Fl has nonprime order:
By using the formalism of trace functions (or the properties of general

Artin-Schreier sheaves in the case of additive characters), we can get a result
valid in the range of Korobov’s:

Proposition 5.7. Let H be a subgroup of Fˆ
q of index k and t : Fq Ñ C be

a trace function corresponding to a geometrically irreducible ℓ-adic sheaf F
on P1

Fq
. If either rankpFq ą 1 or if the function x ÞÑ tpxkq is nonconstant

5This could be done with some effort using e.g. [Gar07] (see also [Kow11]).
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for xk P UF pFqq, then

ÿ

xPH

tpxq ! condpFq2?
q.

Proof. Since Fˆ
q is cyclic, we have H “ txk : x P Fˆ

q u and
ř
xPH tpxq “

1
k

ř
xPFˆ

q
tpxkq. The sheaf F 1 “ rx ÞÑ xks˚F is geometrically irreducible and

tF 1pxq “ tpxq when xk P UF pFqq. By Theorem 2.1, the sum is

! rankpF 1q condpF 1q
k

?
q ! rankpFqk condpFq

k

?
q ď condpFq2?

q,

unless F 1 is geometrically trivial. In the latter case F 1 – α b Qℓ for some
α P Qℓ by Clifford theory (since π1,q{πgeom1,q – GalpFq{Fqq), so that tF pxkq “
α whenever xk P UF pFqq. �

Corollary 5.8. The bound (10) for G “ µdpFlq holds uniformly with respect

to all nontrivial ψ P pFl with αpGq “ α P p0, 1{2q whenever d ě |Fl|1{2`α.

Remark 5.9. Alternatively, one could also proceed by completion as in [Kor89].

By [BC06], the results of Bourgain and others (Theorem 5.5) generalize
to all finite fields, up to adding an assumption involving subfields:

Theorem 5.10 ([BC06, Theorem 2]). For every δ ą 0, there exists α “
αpδq ą 0 such that with αpGq “ α, (10) for G “ µdpFlq holds if

d ą |Fl|δ and
d

pd, |Fˆ|q ě |Fl|δ (16)

for all proper subfields F ď Fl.

Remark 5.11. Note that Condition (16) amounts to d ą |Fl|δ in the following
situations:

– d is prime and Fl “ Fℓpµdq, or
– Fl “ Fℓ (recovering Theorem 5.5) or rFl : Fℓs is prime, or
– δ ą 1{2 (recovering Corollary 5.8).

5.3. Gaussian sums in classical groups over finite fields. Let us now
assume that G is a finite classical group of Lie type in GLnpFlq.

Proposition 5.12. Let Fl be a finite field and n ě 2 be an integer. The
bound (10) holds for

G αpGq
GLnpFlq npn´1q

2

SLnpFlq n2´1
2

SpnpFlq, SO´
n pFlq (n even) npn`2q

8

SOnpFlq (n odd) n2´1
8

SO`
n pFlq (n even) npn´2q

8
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Remark 5.13. By Lemma 4.16,

log |G|
log |Fl|

“ dimG`On

ˆ
1

log |Fl|

˙
,

so square-root cancellation corresponds to αpGq ą dimpGq{2. Hence, by the
dimensions given in Table 1, there is square-root cancellation in the special
linear case, but not for the others. Note that the quality of the bounds
improves as n grows.

Proof. We use the explicit evaluation of Gaussian sums over finite classical
groups carried out in [Kim97a], [Kim98a] and [Kim98b] using the Bruhat
decomposition. Let a P Fˆ

l
corresponding to ψ through the isomorphism

pFl – Fl.

(1) By [Kim97a, Theorem 4.2], the Gaussian sum (10) for GLnpFlq is equal

to p´1qn|Fl|
npn´1q

2 .
(2) By [Kim97a, Corollary 5.2], Deligne’s bound for hyper-Kloosterman sums

and Lemma 4.16, the Gaussian sum (10) for SLnpFlq is

|Fl|p
n
2q Klnpanq

|G| !n |Fl|
n2´n

2
`n´1

2
´n2`1 “ |Fl|

´n2`1
2 .

(3) By [Kim98b, Theorem A], the Gaussian sum
ř
vPSp2mpFlq

ψptr vq is equal
to

Lm
2´1

tm{2uÿ

r“0

Lrpr`1q

ˆ
m

2r

˙

L

rź

i“1

pL2i´1 ´ 1q

ˆ
tm{2u´r`1ÿ

l“1

LlKl2pa2qm´2r`2´2l

ˆ
ÿ

j1,...,jl´1

pLj1 ´ 1q . . . pLjl´1 ´ 1q

for L “ |Fl|, where the last sum is over integers 2l´3 ď j1 ď m´2r´1,
2l ´ 5 ď j2 ď j1 ´ 2, . . . , 1 ď jl´1 ď jl´2 ´ 2 and

ˆ
m

r

˙

L

“
r´1ź

j“0

Lm´j ´ 1

Lr´j ´ 1
!m Lrpm´rq.

Using that
śr
i“1pL2i´1 ´ 1q ă Lr

2

and

Kl2pa2qt`2´2l
ÿ

j1,...,jl´1

pLj1 ´ 1q . . . pLjl´1 ´ 1q !n L
pl´1qpt´pl´1qq

for t “ m´ 2r (see [Kim98b, Remark (1) p. 65] for the second one), we
find that the Gaussian sum is

!m

$
&
%

|Fl|
3m2`m

2 if m even

|Fl|
2m2`m´1

2 if m odd,

and the result follows by Lemma 4.16.



30 Distribution of values of trace functions in cyclotomic integers

(4) By [Kim98a, Theorem A],
ÿ

vPSO2m`1pFlq

ψptr vq “ ψp1q
ÿ

vPSp2mpFlq

ψptr vq,

the result follows by the previous bound and Lemma 4.16.
(5) Similarly, by [KL96, Theorem 4.3],

ÿ

vPSO`
2mpFlq

ψptr vq “ |Fl|´m
ÿ

vPSp2mpFlq

ψptr vq.

(6) This is analogous to (3), using [Kim97b, Theorem A].

�

6. Equidistribution of shifted short sums

As a first application of Theorem 3.18, we prove in particular Propositions
1.1 and 1.3 introduced in Section 1.5.1.

6.1. Statement of the result.

Theorem 6.1. Let pFλqλPΛ be a coherent family with monodromy group
structure G. For λ P Λ, let t : Fq Ñ Fl be the trace function associated to
the sheaf F “ Fλ, I Ă Fq of size L such that F is I-compatible, and a P Fl.

(1) If G is classical, then the probability P
`
Spt, I ` xq ” a

˘
(with respect to

the uniform measure on Fq) is equal to

1

|Fl|
`O

˜
1

|Fl|LαpGq
` L|Fl|Lβ`pGq`2β´pGq´1

q1{2

¸
, (17)

uniformly with respect to a, where αpGq, β˘pGq ą 0 are given explicitly
in Table 1.

(2) If G “ µd, for every δ P p0, 1q there exists α “ αpδq ą 0 such that the
probability the probability P

`
Spt, I ` xq ” a

˘
is

1

|Fl|
`O

ˆ
1

|Fl|Lα
` LdL`1

q1{2|Fl|minpLα,1q

˙
(18)

uniformly with respect to a, when Condition (16) holds6 for all proper
subfields F ď Fl. Moreover:

– If δ ą 1{2, we can choose αpδq “ δ ´ 1{2. If d is prime, the factor
dL`1 can be replaced by dL.

– If Fl “ Fℓ, then Condition (16) is d ě ℓδ and explicitly, we can
choose αpδq as in (2).

The implied constants depend only on the monodromy group structure and
on a bound on the conductor of the family.

Proof. By Corollary 3.20 and Proposition 5.1, we have for all a P Fl that the
probability P pSpt, I ` xq ” aq is equal to

1

|Fl|
`O

ˆ
1

|Fl|LαpGq
` LEpG,L,Flq
q1{2|Fl|minpLαpGq,1q

˙
(19)

6See also Remark 5.11.
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In the classical case, note that αpGq ą 1 by Table 1. �

6.2. Analysis of the ranges.

6.2.1. Case G classical. Since αpGq ą 1, the error term of (17) is negligi-
ble with respect to the main term (i.e. with a ratio which is op1q) when
L|Fl|Lβ`pGq`2β´pGq “ opq1{2q. Note that:

– When L “ 1, this is |Fl| “ o
`
q1{ dimpGq

˘
.

– Let q “ pe. When d “ p (e.g. for Kloosterman sums), this implies
that e ą 2pLβ`pGq ` 2β´pGqq (see Section 3.5).

6.2.2. Case G cyclic. The error term of (17) is negligible with respect to
the main term when L ą 1{α ą 1 and LdL`1 “ opq1{2q. In particular,
1 ă 1{α ă L ă log q{2.

6.3. Examples.

6.3.1. Kloosterman sums. By Proposition 3.13, Theorem 6.1 gives Proposi-
tion 1.1. Replacing a by aqpn´1q{2 and using the uniformity statement shows
that the results hold as well for unnormalized Kloosterman sums.

6.3.2. Point-counting on families of curves. The case n even of Proposition
1.1 also applies to the point-counting on families of hyperelliptic curves from
Proposition 3.14 when Fl “ Fℓ, normalized or not.

6.3.3. Multiplicative characters. By Proposition 3.12 and Example 3.16, The-
orem 6.1 yields Proposition 1.3.

7. Distribution of families of short sums

As a second application of the probabilistic model developed above, we
generalize the results of [LZ12] on the distribution of residues of sums over
partial intervals of the Legendre symbol to the distribution of sums of reduced
trace functions in coherent families, giving in particular the results from
Section 1.5.2.

7.1. Families of short sums.

7.1.1. Definition and examples.

Definition 7.1. Let t : Fq Ñ Fl be any function. A family of sums with
respect to t is a family ´

Spt, Ipkqq
¯
kPI

(20)

for a finite parameter space I with an injective map I Ñ PpFqq, k ÞÑ Ipkq,
where PpFqq is the set of subsets of Fq.

Examples 7.2.

(1) (Intervals) When q “ p, we can study sums over the integer intervals
tIpkq “ t1, . . . , ku : k P Iu for a parameter set I Ă t1, . . . , pu – Fp.
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(2) (Boxes) More generally, when q “ pe, we can fix a Fp-basis of Fq,
identify Fq with t1, . . . , pue, and study sums over the “boxes”7

Ipkq “ t1, . . . , k1u ˆ t1, . . . , k2u ˆ ¨ ¨ ¨ ˆ t1, . . . , keu,

with k “ pk1, . . . , keq P I Ă t1, . . . , pue.
(3) (Shifted subsets) For I, E Ă Fq, we can consider the translates

Ipxq “ E ` x “ ty ` x : y P Eu of E by elements x P I.
(4) (Combining families) Given families Ii Ñ PpFpq (i “ 1, . . . , e), we

can form the family I “ I1 ˆ ¨ ¨ ¨ ˆ Ie over Fq – Fep defined by

Ipk1, . . . , keq “
eź

i“1

Iipkiq Ă Fq.

7.1.2. Distribution questions. We are interested in the distribution of the
random variable (20) with the uniform measure on I, asymptotically with
respect to the parameters q and |Fl|. Thus, we are led to study the density

Φpt, I, aq :“ |tk P I : Spt, Ipkqq ” au|
|I| pa P Flq.

Example 7.3. Let ℓ ě 2 be an integer and consider the family I of Example

7.2 (1) with t “
´

¨
p

¯
: Fp Ñ Fℓ the Legendre symbol, a multiplicative

character of order 2. As we mentioned in the introduction, one of the main
results of [LZ12] is that

Φpt, I, aq “ 1

ℓ
`O

˜ˆ
ℓ

log p

˙ 1
2

¸

uniformly with respect to a P Fℓ, as p Ñ `8. Therefore, the random
variable (20) converges in law to the uniform distribution on Fℓ if ℓ is fixed,
p Ñ `8, and more generally we have Φpt, I, aq „ 1

ℓ
if ℓ “ opplog pq1{3q.

Our goal is to generalize this result in different directions: for other re-
ductions of trace functions (such as multiplicative characters of any order,
Kloosterman sums and point-counting functions on families of curves), for
other families of short sums, and in the case q ą p.

Example 7.4. The study of Φpt, I, aq for the family of Example 7.2 (3) is the
finite analogue of the distribution questions considered in [PG17], generaliz-
ing [Lam13] to trace functions.

7.2. Equidistribution on average/for shifted families. Given a rather
generic family I Ñ PpFqq, we could expect the random variable (20) to
converge to the uniform distribution on Fl. Albeit we cannot show that in
this most general setting, we have nonetheless a result on average over shifts.

7Of course, one should not replace the sums over tt1, . . . , ku : 1 ď k ď pu by the sums
over tt1, . . . , ku : 1 ď k ď qu.
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Definition 7.5. For a family I Ñ PpFqq, we denote by I 1 “ IˆFq Ñ PpFqq
the shifted family defined by I 1pk, xq “ Ipkq ` x, and we let the families

I ` x “ I
1p ¨ , xq : I Ñ PpFqq for x P Fq,

Ik “ I
1pk, ¨ q : Fq Ñ PpFqq for k P I.

Hence, for a family I Ñ PpFqq, we have I “ I ` 0 “ I 1p ¨ , 0q and

Φpt, I 1, aq “ 1

q

ÿ

xPFq

Φpt, I ` x, aq “ 1

|I|
ÿ

kPI

Φpt, Ik, aq, (21)

Φpt, I ` x, aq “ |tk P I : Spt, Ipkq ` xq ” au|
|I| px P Fqq,

Φpt, Ik, aq “ |tx P Fq : Spt, Ipkq ` xq ” au|
q

pk P Iq,

for any function t : Fq Ñ Fl and a P Fl.

Definition 7.6. For a family I Ñ PpFqq, we define the quantities

MI “
ˇ̌
ˇ

ď

kPI

Ipkq
ˇ̌
ˇ,

hIpdq “
ˇ̌
ˇtpk1, k2q P I

2 : |Ipk1q∆Ipk2q| “ du
ˇ̌
ˇ pd ě 1q,

HIpα, nq “ 1

|I|
ÿ

dě1

hIpdq
nαd

pn ą 0, α ą 0q,

where ∆ denotes the symmetric difference operator.

The following will be proven in Sections 7.4–7.6:

Theorem 7.7. Let pFλqλPΛ be a coherent family with monodromy group
structure G. For λ P Λ, let t : Fq Ñ Fl be the trace function associated to
the sheaf F “ Fλ, and let I be a family of sums with respect to t so that F
is

Ť
kPI Ipkq-compatible. The averaged variance

V pt, Iq “
ÿ

aPFl

1

q

ÿ

xPFq

ˆ
Φpt, I ` x, aq ´ 1

|Fl|

˙2

(22)

is equal to
1

|I|
´
1 `O

´
Ṽ pt, Iq

¯¯

with Ṽ pt, Iq given by

HIpαpGq, |Fl|q
˜
1 ` MI

q1{2
ˆ

#
|Fl|β`pGqMI`2β´pGq if G classical

dMI`1 if G cyclic

¸
,

for αpGq, β˘pGq ą 0 given in Table 1. The implied constants depend only
on the monodromy group structure and on a bound on the conductor of the
family.

Thus, V pt, Iq should be small as |I| Ñ `8, and we have:
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Corollary 7.8. In the setting of Theorem 7.7,

Φpt, I 1, aq “ 1

|Fl|
`O

´
V pt, Iq1{2

¯

uniformly with respect to a P Fl.

Proof. By the Cauchy-Schwarz inequality applied to the sum over x,

ÿ

aPFl

ˆ
Φpt, I 1, aq ´ 1

|Fl|

˙2

“
ÿ

aPFl

¨
˝1

q

ÿ

xPFq

ˆ
Φpt, I ` x, aq ´ 1

|Fl|

˙˛
‚
2

ď V pt, Iq.
�

7.3. Consequences. Using Corollary 7.8, we can obtain results for un-
shifted “complete” (i.e. parametrized by Fq) families by averaging over an
auxiliary family of appropriate size. This is the idea exploited in [LZ12] for
the family of Example 7.3.

The results presented in this section will be proven in Sections 7.7–7.9.

Definition 7.9. For a subset E Ă Fq and a fixed choice of a Fp-basis of
Fq which identifies the latter with t1, . . . , pue, the bounding box BE of E is
defined as E Ă BE “ śe

i“1rminxPE xi,maxxPE xis Ă Fq.

7.3.1. Shifts of small subsets. First, we consider shifts of subsets of moderate
size following Example 7.2 (3). The Gaussian distribution for complex-valued
trace functions from [PG17] becomes a uniform distribution when the latter
are reduced in Fl:

Proposition 7.10 (Shifts of small subsets). Let pFλqλPΛ be a coherent fam-
ily with monodromy group structure G. For λ P Λ, let t : Fq Ñ Fl be the
trace function associated to the sheaf F “ Fλ on P1

Fq
. Let ε, ε1 P p0, 1{2q,

δ P p0, 1q, and let E Ă Fq. We assume that:

– For a fixed Fp-basis of Fq, identifying the latter with t1, . . . , pue, we

have |BE | ă q1{2´ε1
and BE Ă r0, δpqe.

– If F “ Lχpfq is a Kummer sheaf with f “ f1{f2 P FqpXq, pf1, f2q “
1, then δ ă 1{degpf1q.

– If G “ µd with Fl ‰ Fℓ and d is nonprime, then Condition (16) holds

(e.g. d ě |Fl|1{2`α for some α ą 0).

Then the density

P
`
Spt, E ` xq ” a

˘
“ |tx P Fq : Spt, E ` xq ” au|

q

is given by

1

|Fl|
`

$
’’&
’’%

O

ˆ
1

q1{4´ε{2 `
´

|E| log |Fl|
log q

¯ 1
2

˙
if G classical

O

ˆ
1

q1{4´ε{2 `
´

|E| log d
log q

¯ 1
2

˙
if G cyclic
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uniformly for all a P Fl, where the implied constants depend on ε, ε1, δ, on
the monodromy structure and on a bound on the conductor of the family.

Remark 7.11. This is nontrivial if

|E| log |Fl| “ oplog qq (resp. |E| log d “ oplog qqq.

Note that when the sheaf F of Fl-modules from which t arises comes from
the reduction of a sheaf of Zrζ4psλ-modules (e.g. for Kloosterman sums), we
must thus take |E| “ opeq (see Section 3.5).

Remark 7.12. The first condition about BE in the statement can be included
in the second one by taking δ ă p´1{2´ε1

.

By taking E “ t0u, we get the following corollary, which should be com-
pared with the case I “ t0u of Theorem 6.1:

Corollary 7.13. Let pFλqλPΛ be a coherent family with monodromy group
structure G. For λ P Λ, let t : Fq Ñ Fl be the trace function associated to
the sheaf F “ Fλ on P1

Fq
, and let ε P p0, 1{2q. We assume that if G “ µd

with Fl ‰ Fℓ and d nonprime, then Condition (16) holds (e.g. d ě |Fl|1{2`α

for some α ą 0). Then

P
`
tpxq ” a

˘
“ 1

|Fl|
`

$
’’&
’’%

O

ˆ
1

q1{4´ε{2 `
´
log |Fl|
log q

¯ 1
2

˙
: G classical

O

ˆ
1

q1{4´ε{2 `
´
log d
log q

¯ 1
2

˙
: G cyclic

uniformly for all a P Fl, where the implied constants depend on ε, on a bound
on the conductor of the family, and on the type of G in the classical case.

Example 7.14. By Section 3.3.2, Proposition 7.10 and Corollary 7.13 apply
to:

– Kloosterman sums of fixed rank (normalized or not) and multiplica-
tive characters composed with rational functions, giving Proposition
1.4.

– Point-counting functions for families of hyperelliptic curves (normal-
ized or not).

7.3.2. Partial intervals. The second example notably generalizes the result
of [LZ12] (see Example 7.3) to all multiplicative characters:

Proposition 7.15 (Partial intervals). Let pFλqλPΛ be a coherent family with
monodromy group structure G. For λ P Λ, let t : Fq Ñ Fl be the trace
function associated to the sheaf F “ Fλ, and let ε, ε1 P p0, 1{2q. We assume
that if G “ µd with Fl ‰ Fℓ and d nonprime, then Condition (16) holds (e.g.
d ě |Fl|1{2`α for some α ą 0). Then the density

P
`
Spt, t1, . . . , xuq ” a

˘
“ |t1 ď k ď p : Spt, t1, . . . , kuq ” au|

p
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is given by

1

|Fl|
`

$
’’&
’’%

O

ˆ
1

p1{4´ε{2 `
´
log |Fl|
log p

¯ 1
2 ` δSpt,Fpq‰0

´
|Fl| log p
p log |Fl|

¯ 1
2

˙
if G classical

O

ˆ
1

p1{4´ε{2 `
´
log d
log p

¯ 1
2 ` δSpt,Fpq‰0

´
|Fl| log p
p log d

¯ 1
2

˙
if G cyclic

uniformly for all a P Fl, where the implied constants depend on ε, ε1, on a
bound on the conductor of the family, and on the monodromy group structure
of the family.

Examples 7.16. By Section 3.3.2:

(1) This applies to multiplicative characters of Fˆ
p of order d composed

with f P QpXq whose zeros and poles have orders not divisible by d,
giving Proposition 1.3. When χ is the Legendre symbol, this is the
result of [LZ12]. By the orthogonality relations, the third summand
of the error term vanishes if f “ X.

(2) With d “ 2 and Fl “ Fℓ, this also applies to the point-counting
functions on families of hyperelliptic curves from Proposition 2.8.
See also [MZ14] for an analogue of [LZ12] to the counting of points
of a plane curve in rectangles.

Remark 7.17. We will see that it is unclear whether this can be generalized
to the case e ě 2 (see Example 7.2 (2)) because of “diagonal” terms in the
errors. Since the case d “ p, G classical forces to take e Ñ `8 (see Section
3.5 and Remark 7.11), Proposition 7.15 does not make sense for Kloosterman
sums.

Even though Proposition 7.15 does not extend to “boxes” in Fq – Fep
with e ě 2, we nonetheless have the following for a family of type (4) from
Example 7.2.

Proposition 7.18 (Partial intervals with shifts of small subsets). Let pFλqλPΛ

be a coherent family with monodromy group structure G. For λ P Λ, let
t : Fq Ñ Fl be the trace function associated to the sheaf F “ Fλ on P1

Fq
, and

let ε, ε1 P p0, 1{2q, δ P p0, 1q. We fix a Fp-basis of Fq and identify the latter
with t1, . . . , pue. We let E2, . . . , Ee Ă t1, . . . , pu be such that

|BE | ď q1{2´ε1
and Ei Ă r1, δpq p2 ď i ď eq,

where BE is the bounding box of E “ E2 ˆ ¨ ¨ ¨ ˆ Ee in Fe´1
p . Moreover, we

assume that:

– If F is a Kummer sheaf Lχpf1{f2q, then δ ă 1{degpf1q.
– If G “ µd and Fl ‰ Fℓ and d is nonprime, then Condition (16) holds

(e.g. if d ě |Fl|1{2`α for some α ą 0).

Then the density

|tpx1, . . . , xeq P Fep : Spt, t1, . . . , x1u ˆ śe
i“2pEi ` xiqq ” au|

q



Distribution of values of trace functions in cyclotomic integers 37

(with respect to any Fp-basis of Fq) is equal to

1

|Fl|
`

$
’’&
’’%

O

ˆ
1

q1{4´ε{2 `
´

|E| log |Fl|
log q

¯ 1
2

˙
if G classical

O

ˆ
1

q1{4´ε{2 `
´

|E| log d
log q

¯ 1
2

˙
if G cyclic

uniformly for all a P Fl, where the implied constants depend on ε, ε1 and δ.

Example 7.19. As for Proposition 7.10, this applies by Section 3.3.2 to:

– Kloosterman sums of fixed rank (normalized or not), multiplicative
characters composed with rational functions, giving Proposition 1.6.

– Point-counting functions on families of hyperelliptic curves (normal-
ized or not).

7.4. Probabilistic model. Let F be a sheaf of Fl-modules on P1
Fq

, part
of a coherent family, with monodromy group G ď GLnpFlq. We apply the
probabilistic model from Section 3 to study of the distribution of families of
short sums.

Again, we let X be a random variable uniformly distributed in G, and Z
be its image through the map G Ñ G7 trÝÑ Fl. Moreover, let pZiqiPN be a
sequence of independent random variables distributed like Z.

For a finite subset I Ă N, we define the random variable

SpIq “
ÿ

iPI

Zi

on the probability space GN. For a finite parameter space I with a map
I Ñ Pf pNq, we consider for all a P Fl the random variable

ΦpI, aq “ |tk P I : SpIpkqq ” au|
|I| .

In this setting, Corollary 3.20 gives information about the distribution of
Φpt, I, aq averaged over shifts of the family I by elements of Fq:

Proposition 7.20. In the above setting, if F is
Ť
kPI Ipkq-compatible, for

any function h : Fl Ñ Rě0 and any a P Fl, we have

E

´
hpΦpt, I ` x, aqq

¯
“ E

´
hpΦpI, aqq

¯ ˆ
1 `O

ˆ
MIEpG,MI ,Flq

q1{2

˙˙
.

In other words, for all a P Fl the random variable pΦpt, I ` x, aqqxPFq

converges in law (with respect to the parameters, q, |Fl|, I) to the random
variable ΦpI, aq if the error term is op1q as the parameters vary.

7.5. Expected value. We first consider the expected value of ΦpI, aq, which
gives a preliminary version of Theorem 7.7 and a motivation for the next
section, where the former will be improved by analyzing the variance. The
improvement will concern the quality of the error term, the uniformity with
respect to a, and the ability to obtain Proposition 7.15 by removing the shifts
for some specific families.
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7.5.1. Computation in the model.

Definition 7.21. For a family I Ñ PpFqq, we define

gIpdq “ |tk P I : |Ipkq| “ du| pd ě 0q,

GIpα, nq “ 1

|I|
ÿ

dě1

gIpdq
nαd

pn ą 0, α ą 0q.

Proposition 7.22. In the notations of Section 7.4, we have for a P Fl:

E pΦpI, aqq “ 1

|Fl|
`O pGIpαpGq, |Fl|qq .

Proof. By Corollary 5.2,

E pΦpI, aqq “ 1

|I|
ÿ

kPI

EpδSpIpkqq”aq “ 1

|I|
ÿ

kPI

P pSpIpkqq ” aq

“ 1

|I|
ÿ

kPI

ˆ
1

|Fl|
`O

´
|Fl|´|Ipkq|αpGq

¯˙

“ 1

|Fl|
`O

˜
1

|I|
ÿ

kPI

|Fl|´|Ipkq|αpGq

¸
.

�

7.5.2. Conclusion. By Propositions 7.20 and 7.22, we get the following pre-
liminary version of Theorem 7.7:

Proposition 7.23. Let pFλqλPΛ be a coherent family with monodromy group
structure G. For λ P Λ, let t : Fq Ñ Fl be the trace function associated to
the sheaf F “ Fλ on P1

Fq
, and let I be a family of sums such that F isŤ

kPI Ipkq-compatible. For all a P Fl,

EpΦpt, I ` x, aqq “ 1

q

ÿ

xPFq

Φpt, I ` x, aq “ 1

|Fl|
`Opεpq,G, Iqq,

where

εpq,G, Iq “ GIpαpGq, |Fl|q ` MIEpG,MI ,Flq
q1{2

.

As a corollary, we obtain as well a preliminary version of Proposition 7.32
about unshifted “complete” families, by exchanging summations (see (21)):

Corollary 7.24. In the setting of Proposition 7.23, assume that for all a P
Fl, Φpt, Ik, aq does not depend on k. Then

Φpt, Ik, aq “ |tx P Fq : Spt, I 1
kpxqq ” au|

q
“ 1

|Fl|
`Opεpq,G, Iqq.

Example 7.25. In particular, for the family I of Example 7.2 (3), we have
for all k P I that

tIpkq ` x : x P Fqu “ tE ` y ` x : x P Fqu “ tE ` x : x P Fqu,
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so for all a P Fl the density Φpt, Ik, aq does not depend on k. By choosing
I as an “averaging set” of appropriate size, we would obtain a preliminary
version of Proposition 7.10.

7.6. Approximate variance. As in [LZ12], we now consider the “approxi-
mate variance” ˆ

ΦpI, aq ´ 1

|Fl|

˙2

,

in the sense that we replace the true expected value of the random variable
ΦpI, aq by the approximation given by Proposition 7.22. This corresponds
to the quantity

ˆ
Φpt, I, aq ´ 1

|Fl|

˙2

,

and it is clear that bounding the latter gives a result about the distribution
of Φpt, I, aq, uniformly with respect to a P Fl.

7.6.1. Computation in the model.

Proposition 7.26. In the notations of Section 7.4, we have

ÿ

aPFl

E

˜ˆ
ΦpI, aq ´ 1

|Fl|

˙2
¸

“ 1

|I|

ˆ
1 `O

´
HIpαpGq, |Fl|q

¯˙
.

Proof. As in Proposition 5.1, we have by orthogonality that

ˆ
ΦpI, aq ´ 1

|Fl|

˙2

“

ˇ̌
ˇ̌
ˇ̌
1

|I|
ÿ

kPI

1

|Fl|
ÿ

0‰ψPpFl

ψ pSpIpkqq ´ aq

ˇ̌
ˇ̌
ˇ̌

2

“ 1

|I|2|Fl|2

ˇ̌
ˇ̌
ˇ̌

ÿ

0‰ψPpFl

ψp´aq
ÿ

kPI

ψ pSpIpkqqq

ˇ̌
ˇ̌
ˇ̌

2

“ 1

|I|2|Fl|2
ÿ

0‰ψ1,ψ2PpFl

ψ1p´aqψ2p´aq

ˆ
ÿ

k1,k2PI

ψ1 pSpIpk1qqqψ2 pSpIpk2qqq.

Again by orthogonality,
ř
aPFl

`
ΦpI, aq ´ |Fl|´1

˘2
is equal to

1

|I|

¨
˚̊
˝

|Fl| ´ 1

|Fl|
` 1

|I||Fl|
ÿ

0‰ψPpFl

ÿ

k1,k2PI
k1‰k2

ψpSpIpk1qqq
ψpSpIpk2qqq

˛
‹‹‚.

Since

SpIpk1qq ´ SpIpk2qq “ SpIpk1qzIpk2qq ´ SpIpk2qzIpk1qq
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with Ipk1qzIpk2q and Ipk2qzIpk1q disjoint, we have by independence

ÿ

k1,k2PI
k1‰k2

E

„
ψ

´
SpIpk1qq ´ SpIpk2qq

¯
“

ÿ

k1,k2PI
k1‰k2

EpψpZqq|Ipk1qzIpk2q|

EpψpZqq|Ipk2qzIpk1q|
.

By the bound on Gaussian sums (10), E pψpZqq ,E pψp´Zqq ! |Fl|´αpGq uni-
formly with respect to ψ, whence the result. �

7.6.2. Conclusion. Theorem 7.7 then follows immediately from Proposition
7.20 and Proposition 7.26.

7.7. Estimate and analysis of the error term. We now estimate and
analyze the error term

V pt, Iq ! 1

|I| ` HIpα, |Fl|q
|I| ` HIpα, |Fl|qMI

|I|
EpG,MI , |Fl|q

q1{2
(23)

in Corollary 7.8, where α “ αpGq.

7.7.1. Estimates for V pt, Iq.

Definition 7.27. For a family I Ñ PpFqq, we define mI “ maxkPI |Ipkq|
and AI “ mink1‰k2PI |Ipk1q∆Ipk2q|.

Lemma 7.28. In the notations of Definitions 7.6, 7.21 and 7.27, we have
the bounds MI ď |I|mI , 1 ď AI ď 2MI , and

HIpα, nq ! maxphIpdq : 1 ď d ď 2mIq
|I|nαAI

ď |I|
nαAI

.

The bound for HIpα, nq can be improved for the following families:

(1) If I is totally ordered by some order ă with Ipk1q Ă Ipk2q for
k1 ă k2, and if I is determined by its cardinality, then HIpα, nq !
n´αAI . In particular, this holds for the family I Ă t1, . . . , pu, Ipkq “
t1, . . . , kue Ă Fep – Fq of Example 7.2 (1).

(2) For the family I of Example 7.2 (3), we have

HIpα, nq !
max0ďdă|E|

ˇ̌
ty P BI : |E X pE ` yq| “ du

ˇ̌

nαAI

where BI “ ty1 ´ y2 : y1, y2 P I distinctu. In particular, if

I Ă
eź

i“1

r0, p´ max
xPE

xis, (24)

then HIpα, nq ! |BE |

nαAI
. This is an improvement over the previous

bound if |I| ą |E|.

Proof. The trivial bound 1 ď hIpdq ď |I|2 gives the first bound for HIpαq.
(1) Under the first hypothesis,

hIpdq “ 2|tk1 ă k2 : |Ipk2q| “ |Ipk1q| ` du|.
for all d ě 1. If Ipkq is moreover is determined by its cardinality, then
hIpdq ď 2|I|.
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(2) We have

hIpdq “
ˇ̌
ty1, y2 P I distinct : |E X pE ` py2 ´ y1qq| “ |E| ´ d{2u

ˇ̌

! |I| ¨
ˇ̌
ty P BI : |E X pE ` yq| “ |E| ´ d{2u

ˇ̌
,

whence the first statement. If y P śe
i“1r0, p´maxxPE xise Ă Fep – Fq (to

avoid reductions modulo p), then BE X pBE ` yq “ ∅ if y R BE , which
gives the second assertion.

�

7.7.2. Analysis of the parameters. The next lemma provides a general anal-
ysis of the error term (23) that we will use to handle the various examples
of Theorem 7.7.

Lemma 7.29. We have V pt, Iq “ op1q if the following three conditions hold:

(1) |I| Ñ `8.
(2) HI :“ HIpαpGq, |Fl|q “ op|I|q.
(3) The sum

MI ` 2 plogpMI{|I|q ` logHIq
logp|G||G7|q (25)

is strictly smaller than
#

1
β`pGq

log q
log |Fl|

´ 2β´pGq
β`pGq if G classical

log q
log d

´ 1 if G cyclic.

If we have

MI “ |I| and logHI ! logp|G||G7|q, (26)

this implies that
#
log |Fl| “ oplog qq if G classical

log d “ oplog qq if G cyclic.

Remarks 7.30.

(1) By Lemma 7.28, HI{|I| ď |Fl|´αAI , so Condition (2) holds if |Fl| Ñ
`8 or if HI “ Op1q (e.g. for a family satisfying Lemma 7.28 (1)).

(2) If log |Fl| “ oplog qq and p ă |Fl|, note that we must take e Ñ `8
(see Section 3.5).

Remark 7.31. The optimal size for MI is therefore MI « 2ε log q´logp|G|{|G7|q
logp|G||G7|q

for some ε P p0, 1{2q, giving

V pt, Iq !ε

´
mI `HIpαpGq, |Fl|q

¯ logp|G||G7|q
log q

` 1

q1{2´ε
.

7.8. Removing the shifts. The general setting to obtain asymptotic equidis-
tribution for unshifted “complete” families from Theorem 7.7. is the follow-
ing:

Proposition 7.32. Under the hypotheses of Theorem 7.7, assume further-
more that:
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(1) For some family I2 and functions f1 : FqˆI Ñ I2, f2 : Fq Ñ Fl we have

Spt, I 1pk, xqq “ S
`
t, I2pf1px, kqq

˘
` f2pxq pk P I, x P Fqq.

(2) There exists a function f3 : I Ñ R` and a family I3 : Fq Ñ PpFqq such
that for all a P Fl and k P I

|tx P Fq : Spt, I2pf1px, kqqq ” au| “ |tx P Fq : Spt, I3pxqq ” au|
`Opf3pkqq.

In particular, if the set tI2pf1px, kqq : x P Fqu does not depend on k P I,
this holds true with f3 “ 0 and I3pxq “ I2pf1px, k0qq for any k0 P I.

Then, if ||f3||8{q ď 1,

Φpt, I3, aq “ 1

|Fl|
`O

˜
V pt, Iq1{2 `

ˆ |Fl|||f3||8
q

˙1{2
¸

uniformly with respect to a P Fl.

In other words, we use I as an “averaging family” to get asymptotic
equidistribution for the complete family I3, and the error term depends
on I. Note that the averaging over a P Fl gives some additional freedom in
comparison with the preliminary version from Corollary 7.24.

Proof. Under Condition (1), Theorem 7.7 gives

ÿ

aPFl

1

q

ÿ

xPFq

ˆ |tk P I : Spt, I2pf1px, kqqq ” au|
|I| ´ 1

|Fl|

˙2

! V pt, Iq

by exchanging the summations over a and x and exploiting the averaging
over a. By the Cauchy-Schwarz inequality,

ÿ

aPFl

¨
˝1

q

ÿ

xPFq

|tk P I : Spt, I2pf1px, kqqq ” au|
|I| ´ 1

|Fl|

˛
‚
2

! V pt, Iq

By exchanging the summations over k and x, this is equal to

ÿ

aPFl

˜
1

|I|
ÿ

kPI

|tx P Fq : Spt, I2pf1px, kqqq ” au|
q

´ 1

|Fl|

¸2

.

Finally, by Condition (2),

ÿ

aPFl

ˆ |tx P Fq : Spt, I3pxqq ” au|
q

´ 1

|Fl|
`O

ˆ ||f3||8
q

˙˙2

! V pt, Iq.

�

Example 7.33. For the family I of Example 7.2 (3), we have by Example
7.25 that:

– Condition (1) of Proposition 7.32 holds with I2 “ I, f1px, kq “ k`x

and f2 “ 0.
– Condition (2) holds with f3 “ 0 and I3 “ I0 “ I 1p0, ¨q, since tx`k :

x P Fqu “ Fq for all k P Fq.
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7.9. Applications of Proposition 7.32. In the following paragraphs, we
use Proposition 7.32 to prove Propositions 7.10, 7.15 and 7.18.

The general idea is to find an averaging family I of size large enough to
get asymptotic equidistribution in Corollary 7.8, and the assumptions we
make are precisely to allow that, according to Lemma 7.29.

7.9.1. Choice of the averaging family. When e ą 1, we will have I “ I1 ˆ
¨ ¨ ¨ ˆ Ie with Ii of determined structure and whose size can be chosen freely
in some range. Since the final bound depends only on the size of I, we need
to choose the sizes of the Ii to attain the optimal/desired size for I. Note
however that in the case |I| ď log q

log |Fl|
and p ă |Fl| (see Section 3.5), we have

|I|1{e ď
ˆ

log q

log |Fl|

˙1{e

“ e1{e

ˆ
log p

log |Fl|

˙1{e

ď 1,

which shows that the choice |I1| “ ¨ ¨ ¨ “ |Ie| « |I|1{e is impossible. More
carefully, we take |I1| “ ¨ ¨ ¨ “ |Ia| « |I|1{a with 1 ď a ă e of optimal size
given by:

Lemma 7.34. Let I ě 1, p ě 2, e ě 2 be integers, and let 0 ă δ ď 1. If
log I ď pe ´ 1q logpδpq, there exist integers I1 P t1, . . . , δpu and 1 ď a ď e

such that Ia1 “ I p1 ` op1qq for I large enough.

Proof. It suffices to take I1 “
X
I1{a

\
with a “ rlog I{ logpδpqs ě 1 so that

I1 P t1, . . . , δpu, a “ opI1{aq,

Ia1 “ I `O
´
aI1´1{a

¯
“ I

´
1 `OpaI´1{aq

¯
“ I p1 ` op1qq ,

and the condition a ď e holds if log I ď pe´ 1q logpδpq �

Example 7.35. The condition log I ď pe´1q logpδpq is satisfied if I ď log q “
e log p as in Lemma 7.29, up to taking p large enough if δ ă 1.

7.9.2. Shifts of subsets. We first consider the family of Example 7.2 (3): for
I, E Ă Fq, we let Ipkq “ E ` k (k P I).

Proof of Proposition 7.10. By Example 7.33, Proposition 7.32 can be ap-
plied.

By Lemma 7.28, since mI “ |E|, the sum (25) is

ď |I||E| ` 2plog |E| ` log |BE | ´ αpGqAI |Fl|q
logp|G||G7|q

if I Ă śe
i“1r1, p ´ maxxPE xis. By Lemma 7.29, we want that for some

ε P p0, 1{2q,

|I| ă 1

|E|

ˆ
2ε log q ´ 2 log |E| ´ 2 log |BE |

β`pGq log |Fl|
´ β´pGq
β`pGq ` 2αpGqAI

˙

if G is classical, and

|I| ă 1

|E|

ˆ
2ε log q ´ 2 log |E| ´ 2 log |BE |

log d
` 2αpGqAI ´ 1

˙

if G “ µd.
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When the sheaf is of the form Lχpfq with f ‰ X, we impose that I Ăś
i“1r1, p{degpf1q ´ maxxPE xiq, so that it is

Ť
kPI Ipkq-compatible by Ex-

ample 3.16.
Under the assumptions of Proposition 7.10, we can choose I as large as

possible satisfying the above conditions by Lemma 7.34. �

7.9.3. Intervals. Let us now analyze the family I Ă t1, . . . , pu, k ÞÑ t1, . . . , ku
of Example 7.2 (1). For the Legendre symbol, this is the case of [LZ12].

Lemma 7.36. For any f : N Ñ C and k P N,
pÿ

x“1

fpx` kq “
pÿ

x“1

fpxq `Opk||f ||8q,

and the error term can be removed if f is p-periodic.

Proof. It suffices to write
pÿ

x“1

fpx` kq “
p`kÿ

x“1`k

fpxq “
˜

pÿ

x“1

´
kÿ

x“1

`
p`kÿ

x“p`1

¸
fpxq

“
pÿ

x“1

fpxq `Opk||f ||8q.

�

Example 7.37. For fpxq “ δSpt,t1,...,xuq”a, we have

fpx` pq “ δSpt,Fpq`Spt,tp`1,...,x`puq”a “ δSpt,t1,...,puq`Spt,t1,...,xuq”a,

and f is p-periodic if
Spt, t1, . . . , puq “ 0 (27)

(i.e. orthogonality with constant functions).

Proof of Proposition 7.15. We apply again Proposition 7.32:
Condition (1) holds with I2 “ I, f1px, kq “ k ` x and f2pxq “ Spt, Ipxqq

since

Spt, t1 ` x, . . . , k ` xuq “ Spt, t1, . . . , k ` xuq ´ Spt, t1, . . . , xuq
for k P I, x P Fp.

By Lemma 7.36, Condition (2) holds with ||f3||8 ď maxkPI k, and with
no error term if the trace function considered satisfies (27). Otherwise, we
add the error term

ˆ |Fl||I|
p

˙1{2

!
ˆ |Fl| log p
p log d

˙1{2

.

If the sheaf is a Kummer sheaf Lχpfq we impose maxkPI k ă p{degpf1q,
so that it is

Ť
kPI Ipkq-compatible by Example 3.16.

We may then choose I as large as permitted by Lemma 7.29, i.e. |I| «
log p
log d

, noting that for Kummer sheaves as above, we have p
degpf1q ą log p

log d
for p

large enough (degpf1q being bounded independently from q).
�
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Remark 7.38. For Kloosterman sums, we have seen in Section 3.5 that it is
necessary to take e Ñ `8 so that V pt, Iq “ op1q. Hence, Proposition 7.15
does not apply to them. Unfortunately, issues arise when we try to generalize
the proposition to e ą 1. Indeed, for the family

I Ă t1, . . . , pue, Ipkq “
eź

i“1

t1, . . . , kiu, k “ pk1, . . . , keq P I,

of Example 7.2 (2), we have I 1pk, xq “ śe
i“1t1 ` xi, . . . , xi ` kiu for all

x “ px1, . . . , xeq P Fq. As above, we can decompose t1 ` xi . . . , xi ` kiu “
t1, . . . , xi ` kiuzt1, . . . , xiu and write

Spt, I 1pk, xqq “
ÿ

a1,...,aePt0,1u

p´1q
ře

i“1pai`1qS
`
t, Ippxi ` aikiqiq

˘
.

However, there are now “diagonal terms” including xi and xj ` kj (i ‰ j),
preventing us from applying Proposition 7.32 with f1px, kq “ x ` k and
f3 “ 0 as before. On the other hand, using Lemma 7.36 would give a large
error ||f3||8 « epe´1 because small intervals of size ki combine with large
intervals of size p´ kj into large “diagonal” terms. This would give an error
term |Fl|epe´1{q “ |Fl|e{p ą e in the final expression for the density, which
is not acceptable when e Ñ `8. These diagonal terms compensate each
other if complete sums in one parameter of the form Spt, E1 ˆ¨ ¨ ¨ˆEiˆFpˆ
Ei`2 ˆ ¨ ¨ ¨ ˆEeq vanish, for Ei Ă Fp. Being defined as Fourier transforms of
functions vanishing at 0, Kloosterman sums verify SpKln,q, t1, . . . , pueq “ 0,
but the former sums do not vanish in general.

7.9.4. Small intervals with shifts of subsets. We finally consider Proposition
7.18, which is about a family of type of Example 7.2 (4) and gives a variant
of Proposition 7.15 for e ą 1 (in particular for Kloosterman sums).

Proof of Proposition 7.18. Let us write I “ I1 ˆ I2 Ă Fp ˆ Fe´1
p and let

E “ E2 ˆ ¨ ¨ ¨ ˆ Ee. Then

MI “
ˇ̌
ˇ

ď

pk1,k2qPI

t1, . . . , k1u ˆ pE ` k2q
ˇ̌
ˇ

ď
ˇ̌
ˇ

ď

k1PI1

t1, . . . , k1u
ˇ̌
ˇ ˆ |I2||E| ď |I||E|

and for any ε ą 0 and d ě 1, we have

hIpdq ď
ÿ

k1,k
1
1PI1

ˇ̌
ˇtk2, k1

2 P I2 : |k1 ´ k1
1||E∆pE ` pk2 ´ k1

2qq| “ du
ˇ̌
ˇ

“ |I1|
ÿ

1ďd1|d

ˇ̌
ˇtk2, k1

2 P I2 : |E∆pE ` pk2 ´ k1
2qq| “ d{d1u

ˇ̌
ˇ

ď |I1||BE ||I2|τpdq !ε p|I||BE |q1`ε

if I2 Ă śe
i“2r1, p´maxxPE xis, by Lemma 7.28. As for Propositions 7.10 and

7.15, if the sheaf is a Kummer sheaf Lχpfq, we impose maxkPI1 k ă p{degpf1q
and I2 Ă r1, p{degpf1qq, to ensure

Ť
kPI Ipkq-compatibility.
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The conclusion then follows by using Lemmas 7.29 and 7.34 as in Propo-
sition 7.10.

�
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