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Abstract

This document is the final report for a master semester project, whose
goal was to study in detail the beautiful connection between integral
binary quadratic forms and quadratic fields, along with its uses in these
two settings.

To do so, we begin by studying integral binary quadratic forms and the
number-theoretic questions associated: which integers are represented
by a given form/set of forms, how many representation does an integer
admit by a given form/set of forms and so on. Doing so, we study in
depth the equivalence of forms and the theories of reduction of definite
and indefinite forms developed by Gauss. Class numbers of quadratic
forms and their links with representation questions are introduced.

Then, we recall some results about orders in the rings of integers of
quadratic fields and we show how (classes) of forms can be associated to
(classes) of ideals in such orders and vice-versa. Combining these results,
we give the precise correspondence between classes of forms and narrow
Picard groups of orders in quadratic fields.

In the third chapter, we work on the correspondence obtained to trans-
pose and answer questions from one setting to the other. The composi-
tion law on binary quadratic forms discovered by Gauss is derived from
the group structure of Picard groups using the correspondence. We in-
troduce how Manjul Bhargava recovered Gauss composition law in an
elementary manner and how he generalized it to higher order spaces of
forms.

We show how to determine Picard groups of orders in quadratic fields
(in particular ideal class groups and class numbers) very easily from the
perspective of forms. These ideas are used to give tables summing up the
correspondence for the first form discriminants. Working in the context
of forms, we also present a proof of the class number one problem for
even negative discriminants.

Then, we study units in orders of rings of integers of quadratic fields,
automorphisms of forms and show how they are closely related. We count
the number of representations of an integer by the set of classes of forms
of a given discriminant in two ways: working in quadratic fields thanks
to the correspondence and without the latter, working in the point of
view of forms. Doing so, we illustrate how insightful the correspondence
is.

After obtaining a closed formula for the number of representations of an
integer by binary quadratic forms of given discriminant, we derive the
Dirichlet class number formula from it, using an estimation by a L-series
and a lattice point counting argument, again using the two settings of
binary quadratic forms and quadratic fields.
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INTRODUCTION

Quadratic forms, this is homogeneous polynomials of degree 2, are fundamen-
tal objects of number theory, whose binary specimens (i.e. with two variables)
appeared since Antiquity with the family of diophantine equations

x2 − ny2 = 1 (n ≥ 1)

called Pell’s equations, studied notably by Pythagoreans and the Indian math-
ematician Brahmagupta (598-668 B.C.)1

The most fundamental questions arising about a quadratic form f in k vari-
ables are:

− (representability) Given an integer n, does there exist a solution to the
diophantine equation f(x1, . . . , xk) = n? Do there exist conditions char-
acterizing such n with a solution to this equation?

− (number of representations) Given an integer n, how many solutions to
the diophantine equation f(x1, . . . , xk) = n do there exist?

Around 1640, Fermat studied these questions for certain forms of the type
x2 + ny2 and discovered notably his famous two-squares theorem, giving an
explicit characterization of integers which can be written as the sum of two
squares (this is, represented by the form x2 + y2)2

A general theory of quadratic form began to be developed by Lagrange (1736-
1813), and Legendre (1752-1833) dealt more precisely with the case of binary
quadratic forms (with integral coefficients), followed by Gauss (1777-1855) in
his famous Disquisitiones Arithmeticae.

One of Gauss’s result is that for a certain equivalence relation on binary
quadratic forms, some sets of classes of forms can be endowed the a natu-
ral structure of abelian group! Gauss generalized therefore the ideas of
composition going back to the Antiquity (see the footnote).

As a matter of fact, it happens that binary quadratic forms have a very strong
link with another fundamental object of number theory: quadratic fields.

1The Pythagoreans studied the case n = 2, generating recursively integral solutions
larger and larger, letting them approximate

√
2 (see [Sti10, Ch. 3, §4]). Brahmagupta

discovered a method to find integral solutions to some Pell’s equations from a composition

identity, generalizing a well-known identity from Diophantus on the product of sums of two
squares (see [Sti10, Ch. 5, §4]).

2The two-squares theorem was first proven by Euler in 1747, using a particular case of
the same composition identity as above.
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Introduction 5

Historically, it is actually the work of Gauss on binary quadratic forms that
motivated the general definition of number fields and ideal class groups by
Kummer and Kronecker, who inspired themselves from the idea of composing
classes.

De facto, there exists a bijection between some sets of classes of binary
quadratic forms (to be defined) and Picard groups of orders in the ring of
integers of quadratic fields (generalizing ideal class groups). Consequently,
these classes are forms are endowed with an induced group law, and we recover
Gauss’s composition law3.

Questions on quadratic fields such as

− What is the asymptotic behavior of the class number h(d)? How many
quadratic fields with a given class number does there exist?

− What are the integers represented by the ideals of the ring of integers
of a quadratic fields?

− How can the ideal class group of a given quadratic field be determined?

can also be asked. Using the correspondence between binary quadratic forms
and quadratic fields, we will see that questions in these two settings transpose
from one to the other. We will see that for many problems, considering them
in the two points of view can simplify them or open new perspectives.

Using the point of view of quadratic fields, it will be for example relatively
easy to answer some question about the number of representations of
integers by (sets of) quadratic forms. Reciprocally, the famous Dirichlet
class number formula will be proved passing through the points of view of
forms.

More recently, Manjul Bhargava (Princeton University) was able in the 2000s
to give an elementary interpretation of Gauss’s composition law and managed
to generalize the ideas of the latter to give composition laws to set of forms of
higher degrees (e.g. ternary cubic forms) with correspondence to number
fields of higher degrees (e.g. cubic fields).

In this document, we begin by presenting the foundations of the theory of
binary quadratic forms of Gauss, Lagrange and Legendre. Then, we explicit
the correspondence between these and quadratic fields. Finally, we study how
some problems transpose in the two point of views, obtaining in this way
answers to some of the questions asked above, and a proof of the Dirichlet
class number formula. Notably, we meanwhile will study the relationships
between class numbers of quadratic fields/class numbers of forms, norms of
ideals/representations of integers by forms, and units in orders of quadratic
fields/automorphisms of forms.

3Up to the fact that Gauss considered only forms whose coefficient of xy is even.



chapter 1

BINARY QUADRATIC FORMS

In this first chapter, we introduce binary integral quadratic forms, representa-
tions problems, the notion of form equivalences and Gauss’ theory of reduction.

Definition 1.1. A n-ary integral quadratic form is a homogeneous poly-
nomial of degree 2 in Z[X1, . . . , Xn].

Definition 1.2. An integer m is said to be represented by a n-ary integral
quadratic form f if there exists x1, . . . , xn ∈ Z such that

f(x1, . . . , xn) = m.

The point (x1, . . . , xn) is then called a representation of m by f . Moreover,
we say that m is properly represented if there exists such integers which
are relatively prime.

Remark 1.3. We note that each representation of a prime number is auto-
matically a proper representation.

As we noted in the introduction, the following questions arise naturally:

− Which integers can be represented by a given quadratic form?

− In how many ways can a given integer be represented by a given quadratic
form?

Example 1.4. Famous examples of binary quadratic form are the forms
x2 + ny2 for n ∈ Z. When n ≥ 1, Fermat conjectured congruence rela-
tions characterizing primes represented by some of these forms, later proven
by Euler and Lagrange, which we will treat later on in this chapter. When n
is negative, the representation problem x2+ny2 = 1 defines the famous ’Pell’s
equation’.

Of course, since quadratic forms are homogeneous polynomials, it suffices to
study forms whose coefficients are relatively prime, any quadratic form being
equal to a square times such a form; whence the following definition:

Definition 1.5. A n-ary quadratic form is primitive if its coefficients are
relatively prime integers.

In this document, we will mainly direct our attention to binary integral

6
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(a) Representations of 9 by
x2 + xy + y2.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

(b) Representations of 1 by
x2 − 3y2.

Figure 1.1: Representations of given integers by given forms.

quadratic forms, i.e. to polynomials of the form

ax2 + bxy + cy2 ∈ Z[x, y].

For the sake of simplicity, we will write only form or quadratic form instead
of integral binary quadratic form in the rest of this document. Moreover, we
will write [a, b, c] with a, b, c ∈ Z for the form ax2 + bxy + cy2.

It will be useful to note that any binary form can be written matricially (being
inspired by the general theory) in a unique way:

Definition 1.6. For a form f , the matrix of f is the unique 2×2 symmetric
matrix Mf such that f(x, y) = (x y)Mf (

x
y ).

Explicitly, if f = [a, b, c], we find at once that

Mf =

(

a b/2
b/2 c

)

.

1. Discriminants, definite and indefinite forms

Definition 1.7. The discriminant of a form f = [a, b, c] is ∆(f) = b2− 4ac.

Remark 1.8. The discriminant of f is related to the determinant of its matrix
by ∆(f) = −4 detMf . This will be useful in calculations.

Proposition 1.9. The set of discriminants of forms is the set of integers d
such that d ≡ 0, 1 (mod 4).

Proof. If d is the discriminant of a form [a, b, c], then d = b2 − 4ac ≡ b2 ≡ 0, 1
(mod 4), since the quadratic residues modulo 4 are 0 and 1. Conversely, if
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d ≡ 0, 1 (mod 4), consider the form

{

[1, 0,−d/4] if d ≡ 0 (mod 4)

[1, 1, (1− d)/4] if d ≡ 1 (mod 4).
(1.1)

This form is called the principal form of discriminant d.

Proposition 1.10. Let f be a form of discriminant ∆. Then

1. if ∆ > 0, f represents both positive and negative integers;

2. if ∆ < 0, f represents either only positive, either only negative integers.

Proof. Let f = [a, b, c]. If a = c = 0, then ∆(f) = b2 and the result is obvious.
So we can suppose, by symmetry, that a 6= 0. Let us note that, by completing
the square,

4a(ax2 + bxy + cy2) = (2ax+ by)2 −∆y2.

This expression is always positive if ∆ < 0, so f takes only positive or negative
values according to the sign of a. On the other hand, if ∆ > 0, the right hand
side expression represents positive (e.g. take (x, y) = (1, 0)) and negative
integers (e.g. take (x, y) = (−b,−2a)), thus the same holds for f .

This proposition leads to the following definition:

Definition 1.11. A form of positive discriminant is called indefinite and a
form of negative discriminant is called positive/negative definite, according
to whether it represents positive or negative integers.

Examples 1.12. The form x2+y2 has discriminant −4 and represents 1 > 0.
It is therefore positive-definite. The form x2 − y2 has discriminant 4 and is
indefinite.

(a) x2 + y2. (b) x2 − y2.

Figure 1.2: Level sets of a positive-definite form and an indefinite form.



Chapter 1. Binary quadratic forms 9

Definition 1.13. Let d ≡ 0, 1 (mod 4) be an integer. We will denote by
Formp(d) the set of all primitive binary quadratic forms of discriminant d.

2. Equivalence of forms

Given a quadratic form, we can naturally apply a linear change of variables
to obtain a second one. More specifically, this yields to an action of the group
GL2(Z) of unimodular matrices on the set of forms:

Definition 1.14. Given a form f = [a, b, c] and σ ∈ GL2(Z), let σf be the
form defined by

σf(x, y) = f((x, y)σ).

In other words, we do the linear change of variable induced by σ.

This clearly defines an action of GL2(Z) on the set of integral binary quadratic
forms, since if f is a form and σ, τ ∈ GL2(Z), we have that

σ(τf)(x, y) = τf((x, y)σ) = f((x, y)στ) = (στ)f(x, y).

Therefore, we get an equivalence relation on the set of forms (namely two
forms are equivalent if and only if they belong to the same orbit).

Remark 1.15. In the matrix form (see Definition 1.6), this means that
Mσf = σ(Mf )σ

T . Indeed, σf(x, y) = f((x, y)σ) = (x, y)σ(Mf )σ
T ( xy ) and

since σMfσ
T is also symmetric, it is equal to Mσf .

We note that this action preserves discriminants thanks to the fact that uni-
modular matrices have determinant ±1:

Proposition 1.16. Two equivalent forms have the same discriminant.

Proof. Let f and σ ∈ GL2(Z). By Remarks 1.8 and 1.15, we find that

∆(σf) = det(Mσf ) = det(σ(Mf )σ
T ) = det(σ)2 det(Mf ) = ∆(f).

Note that using matrices and determinants, we avoid all the calculations done
in some books.

2.1. First algebraic properties

The following property, relating the problem of integer representations with
equivalence of forms, is fundamental and is one of the main reasons to consider
this equivalence relation.
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Proposition 1.17. Two equivalent forms under the action of GL2(Z) repre-
sent the same sets of integers.

Proof. Let f be a form and σ ∈ GL2(Z). If an integer n is represented by f ,
there exists x, y ∈ Z such that f(x, y) = n and we see that (x, y)σ−1 ∈ Z2

represents n in σf . Conversely, if an integer n is represented by σf with
(x, y) ∈ Z2, then (x, y)σ ∈ Z2 represents n in f .

Example 1.18. The seemingly-complicated form 50x2 + 214xy + 229y2 is
actually equivalent to x2 + y2, under the action of

(

2 −1
15 −7

)

∈ SL2(Z), since

σ

(

50 107
107 229

)

σT =

(

1 0
0 1

)

.

Therefore, studying the integers represented by the first one amounts to study-
ing the integers that are sums of two squares, a problem solved by Fermat,
which we will also shortly present and solve.

We already saw that the action of GL2(Z) on forms behaved well with respect
to discriminants. By Proposition 1.17, we have two other examples preserved
sets of forms:

Corollary 1.19. The action of GL2(Z) on forms restricts to an action on
positive-definite (resp. negative-definite) forms.

Corollary 1.20. The action of GL2(Z) on forms restricts to an action on
primitive forms.

Proof. Let f = [a, b, c] be a primitive form. If σf is not primitive, there exists
d > 1 such that all integers represented by σf are in dZ. By Proposition 1.17,
the same holds for f . Thus a = f(1, 0), c = f(0, 1) both lie in dZ and then
also b = f(1, 1)− a− b ∈ dZ. This contradicts the primitivity of f .

2.2. Proper and improper equivalence

Since the modular group SL2(Z) is a subgroup of GL2(Z), the action above
restricts to an action of SL2(Z) on binary quadratic forms, which also yields
to an equivalence relation.

Definition 1.21. Two binary quadratic forms equivalent under the action
of GL2(Z) are said properly equivalent (or simply equivalent) if they
are equivalent under the action of SL2(Z). Otherwise, they are said to be
improperly equivalent.
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Remark 1.22. Note that proper equivalence is an equivalence relation, but
improper equivalence is not : if f is improperly equivalent to g and g is im-
properly to h, then f = σh with σ ∈ GL2(Z) such that detσ = (−1)2 = 1, i.e.
f is properly equivalent to h.

Remark 1.23. Given a binary form f = [a, b, c] with ac 6= 0, let us consider
the roots of f( · , 1), namely z± = (−b±

√
d)/(2a).

If σ ∈ SL2(Z), then a root zσ of σf( · , 1) verifies f(azσ + c, bzσ + d) = 0. If
ac 6= 0, we have that that bzσ + d, so

f

(

azσ + c

bzσ + d
, 1

)

= 0.

It implies that SL2(Z) acts on the set of the roots of f( · , 1) by the restriction
of its action on the projective line P1(C) = C ∪ {∞} through

z 7→ σ−T z.

In particular, if ∆(f) < 0, we can consider the root z of f( · , 1) with positive
imaginary part, i.e. z ∈ H. Therefore, the classical action SL2(Z) on the
Poincare half-plane H gives a left-action of SL2(Z) on H given by

σ ⋆ z = σ−T z,

which compatible with the action on forms, in the sense that z ⋆ σ is the root
of σf belonging to H.

By Proposition 1.16 and Corollaries 1.20, 1.19, we can do the following defi-
nition:

Definition 1.24. Let d ≡ 0, 1 (mod 4) be an integer. We denote by

− C(d) the set of classes of integral binary quadratic forms of discriminant
d;

− Cp(d) the intersection of C(d) with the set of classes of primitive binary
quadratic forms;

− C+
p (d) the intersection of Cp(d) with the set of classes of binary quadratic

forms which are positive-definite if d < 0.

Lemma 1.25. A form properly represents an integer n if and only if it is
properly equivalent to a form [n, b′, c′], with b′, c′ ∈ Z.

Proof. If f = [a, b, c] properly represents n, say ax2 + bxy + cy2 = n with
x, y ∈ Z coprime, we consider a Bezout identity αx + βy = 1 with α, β ∈ Z.
Let

σ =

(

x y
−β α

)

∈ SL2(Z).
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Using Remark 1.15, we compute that the coefficient of X2 in σf is ax2+bxy+
cy2 = n. The converse is obvious.

The interest of proper equivalence (and the origin of the terminology) is that
proper representation of an integer is conserved under proper equivalence:

Corollary 1.26. Properly equivalent forms represent properly exactly the same
sets of integers.

Proof. This is a consequence of Lemma 1.25 and Proposition 1.17. Let f1 and
f2 be two properly equivalent forms. If f1 properly represents an integer n,
then f1 is properly equivalent to a form [n, b′, c′] (b′, c′ ∈ Z), which is then
properly equivalent to f2. Using the converse of the Lemma gives that n is
properly represented by f2.

Remark 1.27. The converse is not true. For example, we will see later that
the positive-definite forms [2, 1, 3] and [2,−1, 3] are not equivalent. However,
they clearly represent the same integers.

2.3. Integers represented by some form of given discriminant

The problem of determining which integers are represented by a given form
is in general not easy, but the following Proposition gives an easy criterion to
determine when an integer is represented by some form of given discriminant.

Proposition 1.28. Let d be an integer such that d ≡ 0, 1 (mod 4). Then an
integer n coprime to d is properly represented by a primitive form of discrim-
inant d if and only if d is a square modulo 4n.

Proof. Suppose that an integer n coprime to d is properly represented by a
primitive form f of discriminant d, say ax2 + bxy + cy2 = n for x, y ∈ Z

coprime. By Lemma 1.25, f is equivalent to a form f̂ = [n, b, c] with b, c ∈ Z.
By Proposition 1.16,

D = ∆(f̂) = b2 − 4nc ≡ b2 (mod 4n).

Conversely, let n an integer coprime to d such that there exists b ∈ Z with
d ≡ b2 (mod 4n). In other words, there exists c ∈ Z such that d = b2 − 4nc.
The form [n, b, c] has discriminant d and properly represents n. Moreover, it is
primitive, since if e divides n, b, c, it also divides d, which implies that e = ±1
because n and d are coprime.

Remark 1.29. We will strongly refine this proof later to explicitly obtain the
number of representations modulo some equivalence relation of an integer by
classes of forms.
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Remark 1.30. Note that if n is odd, then such a d is a square modulo 4n if
and only if it is a square of modulo n. Indeed, if d = b2 + nc with b, c ∈ Z,
we can suppose that d and b have the same parity, because n is odd. Since
d ≡ 0, 1 (mod 4), we get that nc ∈ 4Z, so d ≡ b2 (mod 4n).

Corollary 1.31. Let n be an integer and p be a prime not dividing 4n. Then
p is represented by a primitive form of discriminant −4n if and only if

(−n
p

)

= 1.

Proof. By Proposition 1.28, the prime p is represented by a primitive form of
discriminant −4n if and only if −4n is a square mod 4p, namely if and only if
(

−n
p

)

= 1.

Example 1.32. Let p be an odd prime. Because
(

−1
p

)

= 1 if and only if

p ≡ 1 (mod 4), p is represented by a form of discriminant −4 if and only if
p ≡ 1 (mod 4). We will soon see that we can actually give explicitly the forms
representing p under this condition.

2.4. Automorphisms

Definition 1.33. An automorphism of a form f is an element of the isotropy
group Aut(f) of f under the action of SL2(Z). In other words, σ ∈ Aut(f) if
and only if σf = f .

We will shortly see that automorphisms play an important role in the ques-
tions concerning representation of integers by forms. In the following chap-
ter, we will furthermore answer the following questions: does a given form
have infinitely many automorphisms? Otherwise how many? Can they be
parametrized?

Example 1.34. Any form has the two trivial automorphisms

id and

(

−1 0
0 −1

)

∈ SL2(Z).

Proposition 1.35. If f and g are two equivalent forms, i.e. f = σg with
σ ∈ SL2(Z), then Aut(f) = σAut(g)σ−1.

Proof. An element τ ∈ SL2(Z) belongs to Aut(f) if and only if τf = f , i.e.
if and only if τσg = σg, which is finally equivalent to σ−1τσ ∈ Aut(g). The
result follows by symmetry.
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3. Reduction of definite forms

Since equivalent forms represent the same integers, it would be very useful to
be able to determine a complete reduced system of representatives of equiv-
alence classes. In the following two sections, we will show that it is possible
and easy, as Gauss discovered. More precisely, we will show that there is only
a finite number of equivalence classes of forms of given discriminants and we
will give a method to list them.

In this section, we begin with definite forms. Without loss of generality for
our considerations, we can focus only on positive-definite forms, since any
negative-definite form is equal to −1 times a positive-definite one. Note that
a positive-definite form [a, b, c] verifies a, c > 0, because a and c are trivially
represented. We can also restrict ourselves to primitive forms as we remarked
before.

Definition 1.36. A primitive positive-definite form [a, b, c] is reduced if

|b| ≤ a ≤ c

and if b ≥ 0 as soon as one of the inequalities is an equality.

Example 1.37. The principal forms (1.1) are always reduced forms. The
form [2, 1, 6] is reduced, but [16, 23, 9] is not.

Remark 1.38. Following Remark 1.23, let us consider a primitive positive-
definite form f = [a, b, c] of discriminant d with z = (−b+

√
d)/(2a) ∈ H the

root of f( · , 1) in the Poincare half-plane. We note that f if reduced if and
only if z belongs to the fundamental region

ESL2(Z) = {z = x+ iy ∈ H : |x| < 1/2 and (|z| > 1 or (|z| = 1, x ≤ 0))},

of SL2(Z). Indeed, we have |z| =
√

c/a and |Re(z)| = |b/(2a)|. If f is reduced,
then |z| ≥ 1, |Re(z)| ≤ 1/2 and if one of these inequalities is not strict, then
Re(z) ≤ 0. The converse holds by the same argument.

Figure 1.3: The fundamental domain for SL2(Z) in H.
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We shortly remark the following property of reduced forms and the integers
they represent.

Proposition 1.39. The smallest non-zero integer represented by a reduced
form [a, b, c] is a.

Proof. Denote the form by f = [a, b, c]. The value a is clearly represented,
since a = f(1, 0). Moreover, if x, y 6= 0, then

f(x, y) = ax2 + bxy + cy2

≥ ax2 − |b||xy|+ ay2

= a(x2 − |xy|+ y2)

= a((|x| − |y|)2 + |xy|) ≥ a|xy| ≥ a.

Since f(x, 0) = ax2 ≥ a and f(0, y) = cy2 ≥ ay2 ≥ a for all x, y ∈ Z, the proof
is done.

The following Theorem shows that reduced forms constitute a complete re-
duced system of representatives of classes of Formp(d) for a given discriminant
d, which is hence very nice.

Theorem 1.40. Every primitive positive-definite form is properly equivalent
to a unique reduced form.

Proof. First, we show that any positive-definite primitive form f is equivalent
to a reduced form. In the equivalence class of f , let g = [a, b, c] with |b|
minimal. If |b| > a, let m ∈ Z and

σ =

(

1 0
m 1

)

∈ SL2(Z).

Using Remark 1.15, we see that the coefficient of xy in σg is 2am + b. Since
a ≥ 0 and |b|/a > 1, we can find m ∈ Z such that |2a/bm + 1| < 1. In other
words, we can find a form equivalent to f whose coefficient of xy is 2am + b
with |2am+ b| < |b|, which would contradict the minimality of |b|. Therefore,
|b| ≤ a. By symmetry, we also find that |b| ≤ c. If a > c, we apply

(

0 −1
1 0

)

∈ SL2(Z)

to g to get the form [a′, b′, c′] = [c,−b, a] equivalent to g (and therefore to f),
which satisfies |b′| ≤ a′ ≤ c′. For the sake of clarity, let us denote a′, b′, c′ by
a, b, c again. This new form is reduced if the two inequalities are strict or if
b ≥ 0.
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Otherwise, when b < 0 and a = −b, c, we prove that the reduced form [a,−b, c]
is properly equivalent to [a, b, c]. Indeed, consider σ ∈ SL2(Z) defined by

σ =

{

(

1 0
−1 1

)

if a = −b
(

0 1
−1 0

)

if a = c

Then σ[a,−b, c] = [a, b, c]. This concludes the proof that any positive-definite
form is equivalent to a reduced form.

Now, we prove that in each equivalence class lies only one reduced form. Let
f = [a, b, c] be a reduced form. We first prove that if [a′, b′, c′] is equivalent to
f , then a ≤ a′. Indeed, let σ =

( α γ
β δ

)

∈ SL2(R) such that σ[a, b, c] = [a′, b′, c′].

Suppose that α, γ 6= 0. As before, we determine using the matrix of f that

a′ = α2a+ αγb+ γ2c = α2a

(

1 +
bγ

aα

)

+ γ2c = α2a+ γ2c

(

1 +
bα

cγ

)

. (1.2)

If γ/α ≤ 1, then, using the first equality,

a′ ≥ a

(

α2

(

1 +
bγ

aα

)

+ γ2
)

≥ a
(

α2
(

1− γ

α

)

+ γ2
)

≥ a,

If γ/α > 1, we use the second equality to conclude the same thing.

Finally, if γ = 0, then σ =
(

±1 0
β ±1

)

and a′ = a. If α = 0, then σ =
(

0 ∓1
±1 δ

)

and a′ = −c ≤ −a < a.

Thus if [a′, b′, c′] is a reduced form equivalent to [a, b, c], then a′ = a by sym-
metry. Since a and c are coprime, Equation (1.2) gives that α = ±1 and γ = 0,

whence σ =
(

±1 0
β ±1

)

. In other words, b′ = b± 2βa. Since |b|, |b′| ≤ a = a′, we

have β = 0 and σ = id, which finally gives [a′, b′, c′] = σ[a, b, c] = [a, b, c].

Proposition 1.41. The number of classes of positive-definite forms of given
discriminant is finite.

Proof. Let [a, b, c] be a reduced form of discriminant d < 0, namely d =
b2 − 4ac. Since the form is reduced, we have that b2 ≤ a2 ≤ ac, thus

d = b2 − 4ac ≤ −3ac,

or equivalently ac ≤ −d/3. This implies that there is only a finite number
of choices for a and c. Since b is bounded in absolute value by a and c, we
deduce that there is only a finite number of reduced forms. By Theorem 1.40,
this implies the result.

Definition 1.42. For d < 0 an integer such that d ≡ 0, 1 (mod 4), we let
hf (d) be the number of equivalence classes of primitive positive-definite forms,
called the form class number of discriminant d.
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3.1. Determination of the class number and reduced classes

The proofs above of the existence of a unique reduced form in each class and
of the finiteness of class number give simple algorithms to compute reduced
forms and class numbers. We formalize them below and apply them to several
examples.

Algorithm 1.43 (determination of a reduced representative). Let f = [a, b, c]
be a primitive positive-definite form. While f is not reduced, do the following:

− If a > c or (c = a and b < 0), then replace f by the equivalent form
[c,−b, a].

− If |b| > a or b = −a, then replace f by the equivalent form [a, b′, c′]
where b′ ≡ b (mod 2a), −a < b′ ≤ a and c′ = ((b′)2 −D)/(4a).

Then this procedure ends in a finite number of steps and gives the reduced
form equivalent to f .

Proof. The transformations correspond respectively to the actions of

(

0 −1
1 0

)

∈ SL2(Z) and

(

1 0
k 1

)

∈ SL2(Z)

on [a, b, c], with k such that b′ = b + 2ak, −a < b′ ≤ a as we saw during the
proof of Theorem 1.40. At each step, we have that a′ + |b′| < a + |b|, except
when

− c = a in the first condition. Here, [a, b, a] will be transformed to [a,−b, a]
and the algorithm ends.

− b = −a in the second condition. There, [a,−a, c] will be transformed to
[a, a, c] and the algorithm ends.

Therefore, the algorithm always ends in a finite number of steps.

Remark 1.44. Following Remarks 1.38 and 1.23, we see that given f =
[a, b, c] a primitive positive-definite form, the algorithm acts on the root z of
f belonging to the Poincare half-plane H by

z 7→
(

0 −1
1 0

)−T

z =
−1

z
and z 7→

(

1 0
k 1

)−T

z = z − k

until it belongs the the fundamental region ESL2(Z).

Example 1.45. We apply the above algorithm to find the reduced form equiv-
alent to f = [16, 23, 9]:

[16, 23, 9] → [9,−23, 16] → [9,−5, 2] → [2, 5, 9] → [2, 1, 6].
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The successive transformations of the roots in the half-plane are illustrated in
Figure 1.4. Similarly, we find that g = [64, 73, 21] is also equivalent to [2, 1, 6].
Therefore, f and g are equivalent, since [2, 1, 6] is reduced.

bb

b b

Figure 1.4: Reduction of the form [16, 23, 9]: action on the roots in H.

Algorithm 1.46 (determination of all reduced forms of given discriminant).
Let d < 0 be a negative integer such that d ≡ 0, 1 (mod 4). All reduced forms
lie in the set

{[c, b, n/c] : −d/4 ≤ n ≤ −d/3, c|n, c2 ≤ n, c2 + 4n = b2},

so it suffices to test a finite number of triples (in O(d2)).

Proof. We saw in the proof of Proposition 1.41 that if [a, b, c] is a reduced
form of discriminant d, then ac ≤ −d/3. Moreover, since d+4ac = b2 ≥ 0, we
have that ac ≥ −d/4 and d+ 4ac is a perfect square.

Example 1.47. If d = −28, a reduced form [a, b, c] of discriminant d verifies
especially 7 ≤ ac ≤ 9. Since −28 + 4 · 9 = 8 is not a perfect square, the case
ac = 9 is excluded. For ac = 8, the possibilities are [1,±4, 8] and [2,±4, 8],
which are not reduced. For ac = 7, the only possibility is the form [1, 0, 7],
which is therefore the only reduced form of discriminant −28. In other words,
hf (−28) = 1.

Example 1.48. Similarly, we easily compute that there are 5 reduced classes
of discriminant −47, given by

[1, 1, 12], [2, 1, 6], [2,−1, 6], [3, 1, 4], [3,−1, 4].

By Theorem 1.40, this is a complete system of representatives of equivalence
classes of forms of discriminant −47 and hf (−47) = 5.

Example 1.49. In Table 1.1, we give more generally the values of hf (d) for
discriminants −180 ≤ d < 0, computed using the above algorithm imple-
mented on a computer



Chapter 1. Binary quadratic forms 19

d hf (d) d hf (d) d hf (d) d hf (d) d hf (d)

−3 1○ −39 4 −75 2 −111 8 −147 2
−4 1○ −40 2 −76 3 −112 2 −148 2
−7 1○ −43 1○ −79 5 −115 2 −151 7
−8 1○ −44 3 −80 4 −116 6 −152 6
−11 1○ −47 5 −83 3 −119 10 −155 4
−12 1○ −48 2 −84 4 −120 4 −156 4
−15 2 −51 2 −87 6 −123 2 −159 10
−16 1○ −52 2 −88 2 −124 3 −160 4
−19 1○ −55 4 −91 2 −127 5 −163 1○
−20 2 −56 4 −92 3 −128 4 −164 8
−23 3 −59 3 −95 8 −131 5 −167 11
−24 2 −60 2 −96 4 −132 4 −168 4
−27 1○ −63 4 −99 2 −135 6 −171 4
−28 1○ −64 2 −100 2 −136 4 −172 3
−31 3 −67 1○ −103 5 −139 3 −175 6
−32 2 −68 4 −104 6 −140 6 −176 6
−35 2 −71 7 −107 3 −143 10 −179 5
−36 2 −72 2 −108 3 −144 4 −180 4

Table 1.1: Values of hf (d) for discriminants −180 ≤ d ≤ 1.

4. Reduction of indefinite forms

For indefinite binary quadratic forms, a similar theory of reduction still exists,
also developed by Gauss, but things are a little harder as we will shortly see.

In the following section, all discriminants will be supposed nonsquare. The
case of square discriminants is easier, but asks for some work which is less
interesting and too lengthy for this document. All the details for this case are
available in articles 206-212 of the Disquisitiones Arithmeticae [Gau86].

Definition 1.50. A primitive indefinite form [a, b, c] of a nonsquare discrim-
inant d > 0 is reduced if |2|a| −

√
d| < b <

√
d.

Remark 1.51. Following Remark 1.23, let us consider an indefinite form
f = [a, b, c] of discriminant d > 0 with ρ± = (−b±

√
d)/(2a) ∈ R the roots of

f( · , 1). We note that f if reduced if and only if

|ρ+| < 1 < |ρ−| and ρ+ρ− < 0.

Indeed, note that ρ+ρ− = 2ac = 2(b2 − d). Therefore, if f satisfies |ρ+| < 1 <
|ρ−| and ρ+ρ− < 0, we get that |b| <

√
d, so the first two inequalities give

−b+
√
d < 2|a| < b+

√
d

thus b > 0 and |2|a| −
√
d| < b. The converse is similar.
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As for the positive-definite case, there are only finitely many reduced indefinite
forms of given discriminant:

Proposition 1.52. For any nonsquare discriminant d > 0, there are only
finitely many reduced indefinite forms of discriminant d.

Proof. If [a, b, c] is an indefinite reduced form of discriminant d, this is,

|2|a| −
√
d| < b <

√
d,

we get that 0 < b <
√
d by the second inequality. The first ones gives

4a2 + (b2 − 4ac)− 4|a|
√
d < b2, so

a2 − ac < |a|
√
d,

whence |a| − sgn(a)c <
√
d. But 4ac = b2 − d < 0, so a and c have opposed

signs, which implies then by the preceding inequality that |a|+|c| <
√
d. Since

a, b, c are integers, the claim follows.

Using the proof of Proposition 1.52, the set of reduced form with given dis-
criminant d > 0 can easily be determined by trying all forms [a, b, c] with
0 < b <

√
d, |a|+ |c| <

√
d and b2 − 4ac = d.

Example 1.53. For d = 12 ≡ 0 (mod 4), there are exactly 4 reduced forms,
given by

[−2, 2, 1], [−1, 2, 2], [1, 2,−2], [2, 2,−1].

Similarly, for d = 17 ≡ 1 (mod 4), we find exactly 6 reduced forms

[−2, 1, 2], [2, 1,−2], [−2, 3, 1], [−1, 3, 2], [1, 3,−2], [2, 3,−1].

For positive-definite forms, we saw that there is exactly one reduced form
in each SL2(Z)-equivalence class, which allowed to easily compute a complete
system of representatives of C+

p (d) by finding all reduced forms of discriminant
d. In the indefinite case, we will now show that there is still at least one
reduced form in each equivalence class, but there might be more than one.

Recall that to reduce positive-definite forms, we used the two transformations

(

0 −1
1 0

)

∈ SL2(Z) and

(

1 0
k 1

)

∈ SL2(Z),

changing [a, b, c] to [a,−b, c] and [c, b′, c′] respectively, where b′ can be chosen
modulo 2a.

Combining the two transformations, we see that a form [a, b, c] is equivalent
to the forms [c, b′, c′] for all b ≡ −b (mod 2c), with c′ uniquely determined by



Chapter 1. Binary quadratic forms 21

the invariance of discriminants (i.e. c = ((b′)2 −∆([a, b, c]))/(4a)). Two such
forms are called neighbors (note that it is clearly a symmetric relation).

Gauss gave an algorithm to obtain a reduced form by passing from neighbor
to neighbor1:

Algorithm 1.54 (Reduction of indefinite forms). Let [a, b, c] be an indefinite
primitive form of nonsquare discriminant d > 0.

1. If [a, b, c] is reduced, end the algorithm

2. Let b′ ∈ Z be such that b′ ≡ −b (mod 2c) and

a) −|c| < b′ ≤ |c| if |c| >
√
d;

b)
√
d− 2|c| < b′ <

√
d if |c| <

√
d.

3. Continue the algorithm with the neighbour ρ([a, b, c]) := [c, b′, c′], where
c′ = ((b′)2 − d)/(4c).

Note that c is never equal to
√
d since d is supposed nonsquare.

Lemma 1.55. The indefinite form reduction algorithm (Algorithm 1.54) ter-
minates.

Proof. Let [a0, b0, c0] be a form of discriminant d > 0. We prove that at
each step i ≥ 1, either the neighbor [ai, bi, ci] is reduced, or it satisfies |ci| <
|ci−1|. Since the ci are integers, the algorithm must terminate (in at most ci
iterations).

Indeed, in case 2.a), the form [ai, bi, ci] obtained from [ai−1, bi−1, ci−1] verifies
|bi| ≤ |ci−1|, thus

|ci| =
|d− b2i |
4|ci−1|

≤ |d|+ |bi|2
4|ci−1|

≤ 2|ci−1|2
4|ci−1|

and |ci| < |ci−1|. In case 2.b), note that if 2|ci−1| ≤
√
d, then the form

[ai, bi, ci] obtained from [ai−1, bi−1, ci−1] is reduced. Indeed, by the choice of
b′,

|
√
d− 2|ai|| =

√
d− 2|ci−1| < bi <

√
d.

Otherwise, if 2|ci−1| >
√
d, we have that

|ci| =
d− b2i
4|ci−1|

≤ d

4|ci−1|
< |ci−1|.

1Article 171 of the Disquisitiones Arithmeticae [Gau86]. However, note that the algo-
rithm that we give is not exactly Gauss’s, since he only worked with forms [a, b, c] having b
even.
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Remark 1.56. Let f be an indefinite form. Following Remarks 1.23 and
1.51, we remark that Algorithm 1.54 acts on the roots ρ± of f( · , 1) with the
transformations

x 7→ −1

x
+ k (k ∈ Z)

(see Remark 1.44) until they verify |ρ+| < 1 < |ρ−| and ρ+ρ− < 0, i.e. when
f is reduced.

Example 1.57. The reduction algorithm on the form [333, 278, 58] passes
through the forms

[333, 278, 58] → [58,−46, 9] → [9,−8, 1] → [1, 4,−3]

and [1, 4,−3] is reduced. Figure 1.5 illustrates the transformations of the roots
noted in Remark 1.56.

0 1

ρ0+ρ0−
bb

ρ1+ρ1−
bb

ρ2+ρ2−
bb

ρ3+ρ3−
bb

Figure 1.5: Transformation of the roots during the reduction of [333, 278, 58]
with discriminant 28. The solid lines represent segments of the real line, the
intersection with the dotted line being the zeroes associated to the forms.

As an immediate consequence of Lemma 1.55 and Proposition 1.52, we have
the following results:

Proposition 1.58. Every primitive indefinite form is equivalent to some re-
duced form.

Corollary 1.59. There are only finitely many equivalence classes of primitive
indefinite forms of given discriminant.

As for the positive-definite case, we denote by hf (d), the form class num-
ber, the number of equivalence classes of primitive binary quadratic forms of
discriminant d > 0.

Practically, there is one problem left: for a discriminant d > 0, we can deter-
mine a set of representatives of SL2(Z)-equivalence classes by reduced classes,
but this set could contain two equivalent forms. Hence, we need a way to
determine the reduced forms equivalent to such a form given.
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The next Proposition explains the relationship between two equivalent reduced
forms and gives such a method.

Proposition 1.60. If f is a reduced indefinite form, there exists n ≥ 1 such
that the reduced forms equivalent to f are precisely

ρ(f), ρ2(f), . . . , ρn(f),

where ρ : Formp(d) → Formp(d) is the application defined in Algorithm 1.54.

Proof. Let d > 0 be a discriminant and f ∈ Formp(d). We note that ρ restricts
to an application

ρ′ : orbSL2(Z)(f) ∩R→ orbSL2(Z)(f) ∩R,

where R denotes the set of reduced indefinite forms. Indeed, suppose that
[a, b, c] is reduced. Remark that |c| <

√
d since |a|+ |c| <

√
d by the proof of

Proposition 1.52. We saw in the proof of Lemma 1.55 that ρ([a, b, c]) = [c, b′, c′]
is reduced if 2|c| ≤

√
d. If 2|c| >

√
d, then

|2|c| −
√
d| = 2|c| −

√
d < b′ <

√
d

by definition of b′, since |c| <
√
d.

Moreover, note that ρ′ is injective since if ρ([a1, b1, c1]) = ρ([a2, b2, c2]), then
c1 = c2. By definition of ρ, we must have b1 = b2 and finally a1 = a2 by
invariance of the discriminant.

By the finiteness of the number of reduced classes (Proposition 1.52), the map
ρ′ is bijective and

orbSL2(Z)(f) ∩R = {ρ(f), ρ2(f), . . . , ρn(f)}

for some n ≥ 1, since ρ(g) 6= g for all g ∈ R (otherwise, we get that c|b,
contradicting the primitivity).

Algorithm 1.61 (Determination of a complete system of representatives of
SL2(Z) equivalence classes of indefinite forms with given discriminant.). Let
d > 0 be a positive discriminant.

1. Determine the set R of all reduced forms of discriminant d using Propo-
sition 1.52;

2. For each reduced form f , compute ρn(f) (n ≥ 1) until obtaining a cycle
f, ρ(f), . . . , ρN (f), ρN+1(f) = f . Remove ρi(f) from R for 1 ≤ i ≤ N .

3. R is a complete reduced system of representatives of SL2(Z) equivalence
classes of indefinite forms with discriminant d.
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d hf (d) d hf (d) d hf (d) d hf (d) d hf (d)

5 1○ 52 2 92 1○ 132 2 172 1○
8 1○ 53 1○ 93 1○ 133 1○ 173 1○
12 1○ 56 1○ 96 3 136 2 176 2
13 1○ 57 1○ 97 1○ 137 1○ 177 1○
17 1○ 60 2 101 1○ 140 2 180 4
20 2 61 1○ 104 2 141 1○ 181 1○
21 1○ 65 2 105 2 145 4 184 1○
24 1○ 68 2 108 2 148 4 185 2
28 1○ 69 1○ 109 1○ 149 1○ 188 1○
29 1○ 72 2 112 2 152 1○ 189 2
32 2 73 1○ 113 1○ 153 2 192 4
33 1○ 76 1○ 116 2 156 2 193 1○
37 1○ 77 1○ 117 2 157 1○ 197 1○
40 2 80 3 120 2 160 4 200 3
41 1○ 84 2 124 1○ 161 1○ 201 1○
44 1○ 85 2 125 2 164 2 204 2
45 2 88 1○ 128 3 165 2 205 2
48 2 89 1○ 129 1○ 168 2 208 3

Table 1.2: Values of hf (d) for nonsquare discriminants 1 ≤ d ≤ 208.

Example 1.62. We saw that for d = 12 ≡ 0 (mod 4), there are exactly 4
reduced forms:

[−2, 2, 1], [−1, 2, 2], [1, 2,−2], [2, 2,−1].

The cycle associated to [−2, 2, 1] is [−2, 2, 1], [1, 2,−2], [−2, 2, 1], . . . and the
cycle associated to [−1, 2, 2] is [−1, 2, 2], [2, 2,−1], [−1, 2, 2], . . . Therefore, a
complete reduced set of reduced representatives of C+

p (12) is given by

[−2, 2, 1], [−1, 2, 2].

Example 1.63. For d = 41 ≡ 1 (mod 4), we find that there are 10 reduced
forms, but since the cycle associated to [−4, 3, 2] is

[−4, 3, 2], [2, 5,−2], [−2, 3, 4], [4, 5,−1], [−1, 5, 4],

[4, 3,−2], [−2, 5, 2], [2, 3,−4], [−4, 5, 1], [1, 5,−4], [−4, 3, 2], . . .

of length 10, there is only one SL2(Z) equivalence class.

Example 1.64. Implementing this algorithm on a computer, we find Table
1.2, similar to Table 1.1.
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5. Primes represented by a positive-definite form of discriminant
with class number one

After these considerations on the structure of equivalence classes of forms, we
can come back to representation problems, more precisely to the question of
determining which primes are represented by a given form. Although it is not
easy to answer it in a general setting, the case of forms with discriminant with
class number one is simple.

Indeed, the criterion of Proposition 1.28 lets us know when an integer is rep-
resented by some form of discriminant d. When hf (d) = 1, all forms are
mutually equivalent and since equivalent forms properly represent the same
integers (Corollary 1.26), this criterion lets us know when an integer is repre-
sented by a given form. We record this fact in the following Proposition:

Proposition 1.65. Let f be a positive-definite form of discriminant d. Sup-
pose that hf (d) = 1. Then an integer n coprime to d is properly represented
by f if and only if d is a square modulo 4n.

Corollary 1.66. Let f be a positive-definite form of discriminant 4n with
n ≥ 1. Suppose that h(4n) = 1. Then an odd prime p not dividing n is

properly represented by f if and only if
(

−n
p

)

= 1.

Proof. See Corollary 1.31.

5.1. Examples

Using the preceding results, we can now characterize primes represented by
some quadratic forms.

Proposition 1.67. If n = 1, 2, 3, 4, 7 and p 6= n is an odd prime,

p is represented by x2 + ny2 ⇔
(−n
p

)

= 1.

Proof. We see in table 1.1 that hf (−4n) = 1 for n = 1, 2, 3, 4, 7. Since the
discriminant of the form [1, 0, n] is −4n, we conclude by Corollary 1.66.

The case n = 1 asserts that a prime p is the sum of two squares if and only
if −1 is a square modulo p, i.e. p ≡ 1 (mod 4) by the first complement to
the quadratic reciprocity law. This is exactly Fermat’s famous two squares
theorem (1640), proven by Lagrange and Gauss. This proof using quadratic
forms is actually Lagrange’s.
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Remark 1.68. A classical proof of the two squares theorem uses considera-
tions about the ring of integers Z[i] of the quadratic field Q(i). However, at
the time of the discovery of a proof, in the xviiith century, ideals and number
fields were not yet formalized and the proof given by Lagrange and Gauss is
the above one, with quadratic forms. In the following chapters, we will show
that these domains are actually perfectly connected (and this partly led to
the formalization of ideals/ideals class groups, see [Kle07]).

The other cases are generalization of the two squares theorem, conjectured
by Fermat for n = 2, 3. Using quadratic reciprocity, we can similarly give
congruence conditions for a prime to be represented as x2 + ny2 for n =
1, 2, 3, 4, 7.

For example, let p an odd prime. By Proposition 1.67, p can be written as

x2 + y2 with x, y ∈ Z if and only if
(

−2
p

)

= 1. By the complementary laws to

the quadratic reciprocity,

(−2

p

)

=

(−1

p

)(

2

p

)

= (−1)
p2−1

8
+ p−1

2 =

{

1 if p ≡ 1, 3 (mod 8)

−1 otherwise,
(1.3)

whence p = x2 + 2xy2 with x, y ∈ Z if and only if p ≡ 1, 3 (mod 8).

To study primes represented by x2 + 3y2, we remark that

(−3

p

)

=

(−1

p

)(

3

p

)

= (−1)
p−1
2

(p

3

)

(−1)
p−1
2 =

(p

3

)

,

so x2 + 3y2 represents primes p such that p = 3 or p ≡ 3 (mod 3). The other
cases are similar.

Remark 1.69. Congruence conditions on representations of integer by forms
of discriminants whose class number is not 1 can also be discussed, using the
genus theory developed by Legendre. However, this is not the subject of this
project (see the Conclusion for some perspectives).



chapter 2

QUADRATIC FIELDS AND BINARY QUADRATIC

FORMS

In this chapter, we show the deep relationship between classes of binary
quadratic forms and class groups/Picard groups in orders of quadratic fields.

We begin by recalling some definitions and results about quadratic fields and
their orders. Then, we show how integral binary quadratic forms can be
associated to ideals of such orders and vice-versa. At the end of this chapter,
we will have given a complete correspondence between ideals of orders of
quadratic fields and classes of integral binary quadratic forms.

1. Quadratic fields

In Appendix A, the most important definitions and results about number
fields and their orders are recalled. In this section, we consider the particular
case of quadratic fields:

Definition 2.1. A quadratic field is an algebraic number field of degree 2.

Let K be a quadratic field. Since all number fields are simple extensions of
Q, suppose that K = Q(θ). Since θ satisfies a rational irreducible polynomial
of degree 2, we can write K = Q(

√
d) with d ∈ Z a squarefree integer and an

obvious Q-basis is (1,
√
d).

Therefore, we will let for the rest of this chapter K = Q(
√
d) be a quadratic

field, with d ∈ Z a squarefree integer.

1.1. Ring of integers, discriminant, norms and traces

The two Q-homomorphisms σ1, σ2 : K → K are given by, for a, b ∈ Z,

σ1(a+ b
√
d) = a+ b

√
d and σ2(a+ b

√
d) = a− b

√
d.

For x ∈ K, we will denote σ2(x) by x
′, the conjugate of x.

We now give the ring of integers and discriminant of a quadratic field, along
with the the norm, trace and characteristic polynomial of any element. The
following results are very standard and their proof is omitted. The latter can
be for example found in [Neu99] or [Sam71].

27
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To begin with, the ring of integers of a quadratic field has the following simple
expression.

Proposition 2.2. The ring of integers of K is given by

OK =

{

Z[
√
d] if d ≡ 2, 3 (mod 4)

Z[1+
√
d

2 ] if d ≡ 1 (mod 4).

Proposition 2.3. The discriminant of K is given by

dK =

{

4d if d ≡ 2, 3 (mod 4)

d if d ≡ 1 (mod 4).

Definition 2.4. An integer which is the discriminant of a quadratic field is
called a fundamental discriminant.

In other words, by Proposition 2.3, an integer d ∈ Z is a fundamental dis-
criminant if and only if d ≡ 1 (mod 4) and d is squarefree, or if d = 4k with
k ∈ Z squarefree such that k ≡ 2, 3 (mod 4). Of course, there exists a unique
quadratic number field for every fundamental discriminant. Note that funda-
mental discriminants are always congruent to 0 or 1 modulo 4, exactly like
those of binary quadratic forms.

Finally, we give an integral basis for K along with explicit expressions for the
norm, trace and discriminant of an element.

Proposition 2.5. An integral basis of K is given by (1, dK+
√
dK

2 ).

Proposition 2.6. For x = a+ b
√
d ∈ K with a, b ∈ Q, we have that

N(x) = a2 − db2,

Tr(x) = 2a,

∆(x) = X2 − 2aX + (a2 − db2) ∈ Q[X].

1.2. Orders in quadratic fields

If we want to get a relationship between ideals of quadratic fields and binary
quadratic forms, working only in the maximal order (i.e. the ring of integers)
would not be sufficient. Actually, we would only get forms with fundamental
discriminants, or equivalently, we would miss certain forms whose discriminant
is not squarefree. These facts will clearly appear at the end of the chapter.

Hence we begin by studying orders in quadratic fields. First of all, they have
very simple expressions:

Proposition 2.7. Let O be an order in K. Then F = [OK : O] is finite and

O = Z+ FOK .
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Moreover, any set O = Z + FOK with F ≥ 1 is an order in K such that
[OK : O] = F .

Before proving Proposition 2.7, we prove the following Lemma:

Lemma 2.8. Let A ⊂ B ⊂ C three free abelian groups of rank r. If [C : A] =
[C : B], then A = B.

Proof. Let a = (a1, . . . , an), b = (b1, . . . , bn) and c = (c1, . . . , cn) be Z-bases
for A,B,C. Let M1,M2 be n × n matrices such that a = M1b and b = M2c.
Since [C : A] = | detM1M2| and [C : B] = | detM2|, we get that M1 is
unimodular, so a is a basis for B, whence A = B.

Proof of Proposition 2.7. By Propositions A.6 and A.29, OK and O are free
Z-modules of rank 2, so the index c = [OK : O] is finite. Since cOK ⊂ O,
we have that Z + cOK ⊂ O. By the Lemma, it suffices to show that that
c = [OK : (Z + cOK)]. Using the integral bases given after Proposition 2.2,
we get that OK = [1, x] and Z+ cOK = [1, cx] for some x ∈ OK , so the result
is obvious.

If c ≥ 1, then O = Z + cOK is an order, because it is a subring of K,
finitely generated as a Z-module, and since OK contains a Q-basis α1, . . . , αn

of K, this ring contains the Q-basis cα1, . . . , cαn. By the last paragraph,
[OK : O] = c.

The index [OK : O] is called the conductor of the order O. By the above
proposition, for each integer F ≥ 1, there exists a unique order of conductor
F in K.

Proposition 2.9. The discriminant of an order O of conductor F is F 2dK .

Proof. In the proof of Proposition 2.7, we saw that there exists a basis (1, x)
of OK such that (1, Fx) is a basis of O, for some x ∈ OK . Consequently, by
Proposition A.13, the discriminant of O isD(1, Fx) = F 2D(1, x) = F 2dK .

Hence, we see that discriminants of orders in K are exactly fundamental dis-
criminants (i.e. discriminants of the maximal order) multiplied by a square,
this is, exactly discriminants of binary quadratic forms.

In other words, if d ≡ 0, 1 (mod 4), we can write d in a unique way as d =
F 2dK with dK the (fundamental) discriminant of a quadratic field K and
F ≥ 1 the conductor of an order in K. This gives a preview of what we will
finally obtain in the correspondence.
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Ideals and invertibility In a quadratic field, there is a simple condition for
an ideal in an order to be invertible:

Definition 2.10. Let O be an order in K. A fractional ideal a of O is proper
if O = {x ∈ K : xa ⊂ a}.

Example 2.11. All ideals in the maximal order of a number field are proper.
Actually, this is part of the standard proof that all such ideals are invertible
(e.g. see [Neu99, Prop. 3.5] or [Sam71, Theorem 2, p.50]). We will shortly
see that this can be generalized to a condition about invertibility of ideals in
arbitrary orders of quadratic fields.

Example 2.12. Let K = Q(
√
−3), whose ring of integers is OK = Z[(1 +√

−3/2)], and consider its order O of conductor 2, this is

O = Z+ 2Z

[

1 +
√
−3

2

]

= Z[
√
−3].

Then the O-ideal a = (2, 1 +
√
−3)O is not proper. Indeed, we see that a is

actually an OK-ideal, because

1 +
√
−3

2

(

2O + (1 +
√
−3)O

)

⊂ (1 +
√
−3)O +

−2 + 2
√
−3

2
O ⊂ a.

By the previous example, we get that {x ∈ K : xa ⊂ a} = OK 6= O.

The following technical lemma will be useful to prove the next theorem.

Notation 2.13. For x, y ∈ K a field, we denote by [x, y] the set Zx+ Zy.

Lemma 2.14. Let O be an order in K and let τ ∈ K be of degree 2 with
minimal polynomial ax2 + bx+ c ∈ Z[x].

1. The set Õ = [1, aτ ] is an order in K and the set a = [1, τ ] is a proper
fractional ideal of Õ.

2. If a is proper, then O = Õ.

Proof. Note that O2 is an order, because aτ ∈ OK (its minimal polynomial
being x2+abx+ca ∈ Z[x]) and 1, τ are linearly independent, so they form a Q-
basis ofK. Additionally, a is a fractional ideal of Õ, since (aτ)τ = −bτ−c ∈ a.

Let us show that a is a proper fractional ideal of Õ, i.e. {x ∈ K : xaf ⊂ af} ⊂
Õ. Let x ∈ K be such that xa ⊂ a. In particular, there exist m1,m2, n1, n2 ∈
Z such that

x = m1 + n1τ

xτ = m2 + n2τ.
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Since aτ2 + bτ + c = 0, we find that

xτ = τ(m1 + n1τ) =
−cn1
a

+ τ

(

m1 −
bn1
a

)

.

Because 1 and τ are linearly independent, this implies that a|cn1 and a|bn1.
But a, b, c are relatively prime, so a|n1, whence x ∈ Z+ aZτ = Õ.

If a is proper, then O = {x ∈ K : xa ⊂ a} = Õ.

Finally, we give the main result of this section, generalizing the fact that
invertible ideals in the maximal orders (i.e. all of them) are proper.

Proposition 2.15. Let O be an order in K and a be a fractional ideal of O.
Then a is invertible in O if and only if it is proper. Moreover, in this case,
its inverse is given by

a′/N(a),

where a′ is the conjugate ideal of a, given by a′ = {x′ : x ∈ a}.

Proof. Note that a′ is an ideal because conjugation is a Q-isomorphism which
preserves O.

Suppose that a is a proper ideal. Let us write a = [α, β] with α, β ∈ a, so
a = α[1, τ ] with τ = β/α. Let ax2 + bx+ c ∈ Z[x] be the minimal polynomial
of τ as above (so (a, b, c) = 1). By the second assertion of Lemma 2.14, we
get that O = [1, aτ ]. Moreover,

aa′ = N(α)[1, τ ][1, τ ′] = N(α)[1, τ, τ ′, ττ ′].

Since a(τ + τ ′) = −b and aττ ′ = c, we also consequently have that

aaa′ = N(α)[a, aτ, aτ ′, aττ ′] = N(α)[a, aτ,−b, c].

Using that fact that a, b, c are relatively prime, we finally get that aaa′ =
N(α)[1, aτ ] = N(α)O. But N(aa) = N(α[a, aτ ]) = N(α)|[1, aτ ]/[a, aτ ]| =
aN(α), so N(a) = N(α)/a, which concludes the proof.

1.3. Picard groups and class numbers, a first glance of the correspondence
with forms

Let d ∈ Z be a fundamental discriminant, K the quadratic field of discriminant
d and O an order in K.

Recall that we defined the Picard group of O as

Pic(O) = J(O)/P (O),
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dK h(dK) dK h(dK) dK h(dK) dK h(dK)

−3 1○ −55 4 −116 6 −168 4
−4 1○ −56 4 −119 10 −179 5
−7 1○ −59 3 −120 4 −183 8
−8 1○ −67 1○ −123 2 −184 4
−11 1○ −68 4 −127 5 −187 2
−15 2 −71 7 −131 5 −191 13
−19 1○ −79 5 −132 4 −195 4
−20 2 −83 3 −136 4 −199 9
−23 3 −84 4 −139 3 −203 4
−24 2 −87 6 −143 10 −211 3
−31 3 −88 2 −148 2 −212 6
−35 2 −91 2 −151 7 −215 14
−39 4 −95 8 −152 6 −219 4
−40 2 −103 5 −155 4 −223 7
−43 1○ −104 6 −159 10 −227 5
−47 5 −107 3 −163 1○ −228 4
−51 2 −111 8 −164 8 −231 12
−52 2 −115 2 −167 11 −232 2

Table 2.1: Values of h(dK) for fundamental discriminants −232 ≤ D ≤ 1.

where J(O) is the set of invertible fractional O-ideals and P (O) the set of
principal fractional O-ideals. We also have the narrow Picard group of O,
defined by

Pic+(O) = J(O)/P+(O),

where P+(O) ⊂ P (O) the set of principal fractional O-ideals with a generator
of positive norm.

If O is the maximal order OK , we called Pic(O) the ideal class group Cl(d)
and its cardinality is the class number h(d). In Table 2.1, we give the
class numbers of the first fundamental discriminants (we will see later how
to compute them easily). Comparing with Tables 1.1 and 1.2, we see a first
reflection of a correspondence between classes of forms and (narrow) Picard
group of quadratic fields, which can motivate what will follow.

In the following sections, we will employ ourselves to make this correspondence
explicit.

2. Associating binary quadratic forms to ideals

As before, we let K be a quadratic number field. The first step is to associate
a (primitive) binary quadratic form to each (invertible) ideal of an order of
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K.

Recall that every ideal of an order in a quadratic field is a free abelian group
of rank 2 (see Appendix A), so the following makes sense.

Proposition 2.16. Let O be the order in K of conductor F ≥ 1 and let a be
an invertible ideal of O with the choice of an ordered Z-basis (α, β). Then

fa,(α,β)(x, y) =
N(αx+ βy)

N(a)

is a primitive binary integral quadratic form of discriminant F 2dK . Moreover,
it is positive-definite when dK < 0.

Before being able to prove Proposition 2.16 entirely, we need the following
Lemma, adapted from [Shi94, Prop. 4.11].

Lemma 2.17. Let O and a as above. Then there exists x ∈ K∗ such that
xa+ FO = O.

Proof. Let τ ∈ OK such that OK = [1, τ ]. We consider the Q-linear map
f : K → Q defined as f(a + bτ) = a. Let b be such that ab = O, since a is
invertible by hypothesis, so that f(ab) = f(O) = Z. For all p ∈ Z prime, the
set f(ab) is therefore not contained in pZ, so there exists xp ∈ b such that
f(axp) 6⊂ pZ.

Let us write F = pn1
1 . . . pnr

r with p1, . . . , pr the prime numbers dividing F . By
the Chinese Theorem,

b/Fb ∼= b/pn1
1 b× · · · × b/pnr

r b

as abelian groups, so we can find x ∈ b such that x = xi + pibi with some
bi ∈ b, for i = 1, . . . , r. Now, f(ax) is not contained in piZ for all i = 1, . . . , r,
since for all i = 1, . . . , r f(ax) = f(axpi) + pif(bia). As a subgroup of Z,
f(ax) = mZ for some m ∈ Z, coprime with F by the preceding discussion.
Hence,

f(ax+ FOK) = mZ+ FZ = Z.

Let α ∈ O. Because f(ax+ FOK) = Z, there exists β ∈ ax+ FOK such that
f(α) = f(β), so α− β ∈ FZτ ⊂ FOK . But

α = β + (β − α) ∈ FOK + xα,

so O = xa+FOK . To replace OK by O in the righthand side, we remark that

O = (xa+ FOK)(xa+ FOK) ⊂ xa+ FO,

thus O = xa+ FO.
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Proof of Proposition 2.16. Explicitly, we have that

N(αX + βY ) = αα′X2 + (αβ′ + α′β)XY + ββ′Y 2 (2.1)

= N(α)X2 +Tr(αβ′)XY +N(β)Y 2. (2.2)

By Proposition 2.15, because all three coefficients lie in aa′, there exist a, b, c ∈
O such thatN(α) = aN(a), Tr(αβ′) = bN(a) andN(β) = cN(a). Since norms
and traces of algebraic integers are integers, we get that a, b, c ∈ O ∩ Q ⊂
OK ∩Q = Z, whence the form is integral. Its discriminant is given by

Tr(αβ′)2 − 4N(αβ)

N(a)2
=

(αβ′ + α′β)2 − 4αα′ββ′

N(a)2
=

(αβ′ − α′β)2

N(a)2
= F 2dK

by Proposition A.32. The coefficient of x2 of fa,(α,β) is N(α)/N(a), so the
form is positive definite if dK < 0, since in this case all norms are positive.

The harder part is to prove that fa,(α,β) is primitive. Note that it suffices to
prove that there exists an element a ∈ a such that

N(a)/N(a)

is coprime to F . Indeed, if a prime p divides the three coefficients of fa,(α,β),
then p2|F 2dK , its discriminant. Since dk is squarefree, we get that p|F . But
N(a)/N(a) is the value of fa,(α,β) at some point in Z2, so p|N(a)/N(a). This
would contradict the fact that N(a)/N(a) are coprime.

Note that again, it is sufficient to show that there exists an ideal b in O
equivalent to a such that there exists b ∈ b with N(b)/N(b) coprime to F .

By Lemma 2.17, there exists an ideal b in O equivalent to a such that b+FO =
O. This means that the multiplication by F in O/b is surjective, so it is an
isomorphism since O/a is finite. Since O/b is a finite abelian group, this
implies that |O/b| = N(b) is coprime to F by the structure Theorem. Thus
we can choose b = N(b).

2.1. Correctly ordered bases

Note that the definition above seems to depend on the choice and order of a
Z-basis for the ideal. We will now determine “good” choices of ordered bases
such that two “good” choices yield to equivalent forms.

By Proposition A.32, we have that

αβ′ − α′β = ±N(a)F
√

dK ,

where
√
dK denotes by convention the square root of dK with positive imag-

inary value if dk < 0, the usual square root otherwise. Note that therefore
(αβ′ − α′β)/

√
dK ∈ R∗ ∪ iR∗, which let us do the following definition.
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Definition 2.18. Let O be an order ofK and a be an ideal in O. A correctly
ordered basis (α, β) of a is an ordered Z-basis of a such that

αβ′ − βα′
√
dK

∈ R>0 ∪ iR>0.

Of course, any ideal of O admits a correctly ordered basis, since permuting
the elements of a basis which is not correctly ordered gives a correctly ordered
basis.

Example 2.19. Consider the prime ideal p = 〈2, 1+
√
−17〉 inK = Q(

√
−17).

Since −17 ≡ 3 (mod 4), the discriminant of K is dK = 4 · −17 = −68 and its
ring of integers is OK = Z[

√
−17]. Since

2(1−
√
−17− (1 +

√
−17))

2i
√
17

= −2/i = 2i,

the Z-basis (2, 1 +
√
−17) of p1 is correctly ordered.

Example 2.20. The idealOK itself has the correctly ordered basis (dK+
√
dK

2 , 1).
Indeed,

1√
dK

(

dK +
√
dK

2
− dK −

√
dK

2

)

= 1 > 0.

By the description of orders in quadratic field, the order of conductor F ≥ 1

has the the correctly ordered basis (dK+
√
dK

2 , F ).

The following proposition gives a first idea about why two correctly ordered
basis of an ideal will produce equivalent forms.

Proposition 2.21. Let O be an order of K and a an ideal of O. Any two
correctly ordered bases of a are equivalent under the action of an element of
SL2(Z). Conversely, the natural action of an element of SL2(Z) on a correctly
ordered basis of a viewed as an element of a×a gives another correctly ordered
basis.

Proof. Let (α, β) and (δ, γ) be two correctly ordered bases of a. Let C ∈
GL2(Z) (thus detC = ±1) be the change of basis matrix so that (α, β) =
(δ, γ)C. We get that

αβ′ − α′β = (δγ′ − γδ′) detC,

so detC =
(αβ′ − α′β)/

√
dK

(δγ′ − γδ′)/
√
dK

> 0,

1Note that it is indeed a Z-basis of p since p has norm 2, (2, 1 +
√
−17) ⊂ p and

|OK/(2, 1 +
√
−17)| = det ( 2 1

0 1 ).
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which implies that C ∈ SL2(Z).

Conversely, let (δ, γ) a correctly ordered Z-basis of a and (α, β) = (δ, γ)C with
C ∈ SL2(Z) (thus detC = 1). By the above, we have that

αβ′ − α′β√
dK

= detC · δγ
′ − γδ′√
dK

> 0

2.2. Independence of bases and equivalence classes

We can now show that, up to equivalence of forms, the choice of a correctly
ordered basis does not matter when associating a form to an ideal, as in
Proposition 2.31.

Proposition 2.22. Let O be an order in K and a an ideal of O with two
correctly ordered bases (α, β) and (δ, γ). Then fa,(α,β) and fa,(δ,γ) are properly
equivalent.

Proof. By Proposition 2.21, we can suppose that (α, β) = (δ, γ)σ with σ ∈
SL2(Z). Then

N(αX + βY ) = N((X,Y )(α, β)T ) = N((X,Y )σT (δ, γ)T ),

which means exactly that fa,(α,β) = σT fa,(δ,γ).

For an ideal a of an orderO inK, we will therefore denote by fa the equivalence
class of the binary quadratic form fa,(α,β), where (α, β) is any correctly ordered
basis for a.

Finally, we prove that two equivalent ideals give equivalent forms under the
restriction that this equivalence is in a narrow Picard group. We will discuss
this restriction further at the end of the chapter.

Proposition 2.23. If a and b are two ideals in an order O of K that are
equivalent in Pic+(O), then fa = fb.

Proof. Suppose that b = a(x) with x ∈ K of positive norm and let (α, β) be
a correctly ordered basis for a. Then (xα, xβ) is a basis for b. Since

xαx′β′ − xβx′α′
√
dK

= N(x)
αβ′ − βα′

√
dK

,

and N(x) > 0, this is a correctly-ordered basis. Therefore, because N(a(x)) =
N(a)|N(x)|,

fb(X,Y ) =
N(xαX + xβY )

N(b)
=

N(x)

|N(x)|fa(X,Y ) = fa(X,Y ).
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To sum up this section, we proved that, up to equivalence, the form obtained
from an ideal does not depend on the choice of an ordered basis nor on ideal
equivalence.

Note that since any class of the Picard group of an order O in K contains an
ideal of O, we can also define a mapping from Pic(O) to equivalence classes
of binary quadratic forms.

2.3. Injectivity up to equivalences

If we consider equivalence of forms and ideals, then the mapping from Propo-
sition 2.16 is injective:

Proposition 2.24. Let a and b be two ideals of an order O in K. If fa = fb,
then a = b.

Proof. Let B1 = (α1, β1) and B2 = (α2, β2)) be correctly ordered bases for the
ideals a, respectively b. Since fa,B1 and fb,B2 are properly equivalent forms,
there exists σ =

(

a b
c d

)

∈ SL2(Z) such that fa,B1 = σfb,B2 , namely

fa,B1(x, y) =
N(α1x+ β1y)

N(a)
=
N(α2(ax+ cy) + β2(bx+ dy))

N(b)
. (2.3)

The zeroes of fa,B1( · , 1) are −β1/α1 and −β′1/α′
1. By the above equation,

they are equal (up to the order) to the ones of the rightmost hand side of
(2.3), which are

−cα2 + dβ2
aα2 + bβ2

and − cα′
2 + dβ′2

aα′
2 + bβ′2

.

Therefore, there exists λ ∈ K such that
{

aα2 + bβ2 = λα1

cα2 + dβ2 = λβ1
or

{

aα2 + bβ2 = λα′
1

cα2 + dβ2 = λβ′1.
(2.4)

Plugging λ into equation (2.3) gives λλ′ = N(a)/N(b) > 0. Remark that in
the second case of (2.4), we would have

(

a b
c d

)(

α2 α′
2

β2 β′2

)

=

(

λα′
1 λ′α1

λβ′1 λ′β1

)

.

Taking determinants would give
α2β′

2−α′

2β2

α1β′

1−α′

1β1
= −λλ′ < 0, contradictory to the

hypothesis that (α1, β1) and (α2, β2) are correctly ordered. Consequently, the
first case of (2.4) holds. Since (λα1, λβ1) arises from a SL2(Z)-transformation
of the basis (α2, β2) of b, it is also a basis of b. Therefore a = (λ)b, whence a

and b are equivalent ideals as wanted.
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3. Associating ideals to binary quadratic forms

Let O be the order of conductor F ≥ 1 in a quadratic field K of discriminant
dk. We showed in the previous section that there is an injection from Pic+(O)
to C+

p (d) with d = F 2dK .

We now prove that this mapping is actually onto and we give its inverse.

Proposition 2.25. Let f = [a, b, c] be an primitive binary quadratic form of
discriminant d = F 2dK , with dK a fundamental discriminant, and let K be
the quadratic field of discriminant dK . Suppose that f is positive definite if
d < 0. Then

af =

[

λa, λ
b− F

√
dK

2

]

with λ =

{

1 if a > 0

F
√
dK otherwise

is a fractional ideal of the order of conductor F in K, such that faf = f .
Moreover, the ideal af is invertible if f is primitive.

Proof. By Proposition 2.7, the order of conductor F in K = Q(
√
d) is O =

Z+FOK . In the first place, we check that β := (b−F
√
dK)/2 ∈ O. Note that

by assumption b2 − 4ac = F 2dK , so F 2d ≡ b2 (mod 2), thus Fd ≡ b (mod 2).
We can therefore write

β =
b+ FdK

2
− F

(

dK +
√
dK

2

)

∈ Z+ FOK = O,

so we even have O = [1, β] by Proposition 2.5. Note that we also have λ ∈ O.

Since a ∈ Z and β 6∈ Z, it is obvious that these are Z-linearly independent
elements of O. The set [λa, λβ] is a fractional ideal of O, because

[λa, λβ]O = [λa, λβ][1, β] ⊂ [λa, aλβ, λβ, λβ2]

and, since b2 − 4ac = F 2dK ,

β2 =
F 2dK − b2

4
+ bβ = −ac+ bβ ∈ [a, β].

The discriminant of the Z-basis (a, β) is given by

∆(α, β) = det

(

a (b− F
√
dK)/2

a (b+ F
√
dK)/2

)2

= a2F 2dK .

Now, (λa, λβ) is by definition a basis for af with discriminant ∆(λa, λβ) =
N(λ)2∆(a, β). The norm of af is, by Proposition A.32,

N(af ) =

∣

∣

∣

∣

∆(λa, λβ)

F 2dK

∣

∣

∣

∣

1
2

= |aN(λ)|.
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The basis (λa, λβ) is correctly ordered if adN(λ)/
√
dK = N(λ)a

√
dK belongs

to R>0∪ iR>0. Since N(λ) = 1 if a > 0 and N(λ) = −F 2dK if a < 0, the basis
is always correctly ordered, because we suppose that f is positive definite (so
a > 0) when dKk < 0.

Note that N(a) = a2, Tr(αβ′) = ab and N(β) = (b2 − dk)/4 = ac. The class
faf is then given, from Equation (2.2), by the class of

faf ,(λa,λβ)(X,Y ) = 1/N(af )
(

N(λa)X2 +Tr(λλ′aβ′)XY +N(λβ)Y 2
)

= N(λ)/N(af )
(

X2 +Tr(αβ′)XY +N(β)Y 2
)

= N(λ)/(|aN(λ)|)
(

a2X2 + abXY + acY 2
)

= sgn(N(λ))sgn(a)f(X,Y ) = f(X,Y ).

Finally, we show that af is invertible if f is primitive. Using Proposition 2.15,
it suffices to show that a is a proper ideal of O.

Remark that τ = β/a is a root of f( · ,−1) and [1, aτ ] = [1, β] = O. By Lemma
2.14, [1, τ ] is a proper fractional ideal of O, thus a = a[1, τ ] is a proper ideal
of O.

Remark 2.26. Note that in the above proof, any element of O with negative
norm would have been suitable for the value of λ when a < 0.

The following Corollary finally shows that we get a mapping from C+
p (d) to

Pic2(O), with d and O as above.

Corollary 2.27. If f and g are two equivalent primitive forms, then af = ag.

Proof. By Proposition 2.25, we have that faf = f and fag = g, whence af = ag
by Proposition 2.24.

4. The correspondence

Let d ∈ Z be a fundamental discriminant. Let us denote by C+(d) the set of
classes of (positive definite if d < 0) primitive binary quadratic forms.

We sum up the results obtained above in the following theorem.

Theorem 2.28. Let d ∈ Z be an integer such that d ≡ 0, 1 (mod 4) and write
d = F 2dK with dk a fundamental discriminant. Let K be the quadratic field
of discriminant dK and O its order of conductor F . Then there is a bijection
between

Pic+(O) and C+
p (d).

Explicitly, we define φ : Pic+(O) → C+
p (d) and ψ : C+

p (d) → Pic+(O) by:
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− If a is an ideal class of Pic+(O), let [α, β] a correctly ordered basis of
any ideal of O contained in a and let

φ(a) =
N(αx+ βy)

N(a)
∈ C+

p (d).

− If f = [a, b, c] is a class of C+
p (d), let

ψ(f) =

[

a,

(

b− F
√
d

2

)]

∈ Pic+(O).

Proof. The two maps are well-defined by Propositions 2.16 and 2.22 (ideals
to forms) and Propositions 2.25, 2.27, 2.23 (forms to ideals). The second
claim of Proposition 2.25 gives that φ ◦ ψ = idC(d), so φ is surjective. By
Proposition 2.24, φ is injective, whence we have a bijective correspondence
and φ−1 = ψ.

Note that in both cases, real and imaginary, we have to make a restriction
on one of the sets, Pic(O) or Cp(d). Recall that of course, if O is an order
in an imaginary quadratic field, then Pic+(O) = Pic(O), since all norms are
positive. Conversely, we have that C+(d) = C(d) if d > 0 by definition.

In the following sections, we treat some particular cases and work a little on
these restrictions.

4.1. Narrow Picard groups

In the imaginary case, norms are all always negative, so Picard group and
narrow Picard groups of orders are equal.

In the real case, we only have a correspondence with a narrow Picard group.
In this case, how do they relate to Picard groups?

Let O be an order in a real quadratic field K with discriminant d. By the
third isomorphism theorem,

Pic(O) = J(O)/P (O) ∼=
(

J(O)/P+(O)
) / (

P (O)/P+(O)
)

= Pic+(O)
/ (

P (O)/P+(O)
)

,

where J(O) is the set of invertible fractional ideals of O, P (O) the set of
principal fractional ideals and P+(O) ⊂ P (O) the set of principal fractional
ideals with a generator of positive norm.

We note that |P (O)/P+(O)| ≤ 2. Indeed, choose two elements x+, x− ∈ K+

with positive and negative norm, respectively. This is possible since we are
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in a real quadratic field (for example, take x+ = 1, x− =
√
d) Then every

element of P (O) with positive (resp. negative) is equivalent to x+ (resp. x−)
in P (O)/P+(O). Moreover, x+ and x− are equivalent if and only if O∗ has
an element of negative norm, this is, an element of norm −1. So

|Pic+(O)| =
{

|Pic(O)| if O∗ has an element of norm − 1

2|Pic(O)| otherwise.

On the other hand, we can also lift the restriction on the Picard group (i.e.
consider the Picard group instead of the narrow one) and put it on the class
group of form, which is useful when we are interested in the Picard group.

To do that, let d > 0 be a positive discriminant and let us consider the group
action of Z/2 on C(d) defined as follows

0 · [a, b, c] = [a, b, c],

1 · [a, b, c] = [−a, b,−c]

for all forms [a, b, c] of discriminant d. This is well-defined since if σf = g

for two forms f, g with σ =
(

α β
δ γ

)

∈ SL2(Z), then
(

−α β
δ −γ

)

(1 · f) = 1 · g.
Of course, this action restricts to an action on Cp(d) and we can consider the
quotient set C(d)/(Z/2). In other words, we identify the class of a form [a, b, c]
with the class of the form [−a, b,−c].
Note that this implies that we identify the class of a form f(x, y) with the
class of the form −f(y, x). Indeed, if f = [a, b, c], then f is SL2(Z)-equivalent
to [c,−b, a], which is Z/2-equivalent to [−c,−b,−a] = −[c, b, a] (see Chapter
1, reduction of forms). We then have the following result

Corollary 2.29. Let d > 0 be an integer such that d ≡ 0, 1 (mod 4) and write
d = F 2dK with dk a fundamental discriminant. Let K be the real quadratic
field of discriminant dK and O its order of conductor F . Then there is a
bijection between

Pic(O) and Cp(d)/(Z/2).

Proof. The restriction to the narrow Picard group had to be introduced in
Proposition 2.23. Indeed, suppose that a and b are two equivalent ideals in
Pic(O), this is b = a(x) with x ∈ K∗. Let (α, β) be a correctly ordered basis
for a and it follows that (xα, xβ) is a basis for b. Since

xαx′β′ − xβx′α′
√
dK

= N(x)
αβ′ − βα′

√
dK

,

the couple (xα, xβ) is a correctly ordered basis for b when N(x) > 0 and we
saw that in this case fb = fa. Now, if N(x) < 0, then (xβ, xα) is a correctly
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ordered basis for b and

fb(X,Y ) =
N(xβX + xαY )

N(b)
=

N(x)

|N(x)|fa(Y,X) = −fa(Y,X).

Since we identify fa(Y,X) with −fa(X,Y ) in Cp(d)/(Z/2), we obtain that
fa = fb in Cp(d)/(Z/2). In a similar manner than before, we consider the
maps φ : Pic(O) → Cp(d)/(Z/2) and ψ : Cp(d)/(Z/2) → Pic(O) defined by:

− If a is an ideal class of Pic(O), let [α, β] a correctly ordered basis of any
ideal of O contained in a and let

φ(a) =
N(αx+ βy)

N(a)
∈ Cp(d)/(Z/2).

− If f = [a, b, c] is a class of Cp(d)/(Z/2), let

ψ(f) =

[

a,

(

b− F
√
d

2

)]

∈ Pic(O).

By Propositions 2.16, 2.22 (ideals to forms), 2.25, 2.27 and the above (forms to
ideals), these maps are well-defined, noting that the definition ψ also doesn’t
depend on the Z/2-class of the element of Cp(d). The second claim of Propo-
sition 2.25 gives that φ ◦ψ = idC(d), so φ is surjective. By Proposition 2.24, φ
is injective, whence we have a bijective correspondence and φ−1 = ψ.

4.2. Negative-definite forms

In the definite case, we only considered positive-definite forms. However, this
is not a restriction, because, if we let C−(d) be the equivalence classes of
negative-definite forms of discriminant d < 0, the following result holds:

Proposition 2.30. Let d < 0 be a negative discriminant. Then C+(d) is in
a one-to-one correspondence with C−(d) through the following map

C+(d) → C−(d)

f 7→ −f

Proof. Since −I ∈ SL2(Z), it is clear that this map is well-defined. Indeed, it
certainly sends positive-definite forms to negative-definite forms and if f is a
f be positive-definite form of discriminant d equivalent, then σ(−f) = −σ(f)
for all σ ∈ SL2(Z). Moreover, the map is clearly bijective.
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4.3. Primitivity

Finally, we remark that in the case of fundamental discriminants, the primi-
tivity hypothesis drops.

Proposition 2.31. Let dK be a fundamental discriminant. Then any binary
quadratic form of discriminant dK is primitive.

Proof. Let f = [a, b, c] be a binary quadratic form with discriminant dK =
∆(f) = b2 − 4ac. Let K = Q(

√
d) be the quadratic field of discriminant

dK . Suppose that a positive integer k divides a, b, c. Then k2 divides dK . If
d ≡ 1 (mod 4), then dK = d and since d is squarefree, we have k = 1. If
d ≡ 2, 3 (mod 4), then dk = 4d and k = 2. In this case, let a1, b1, c1 ∈ Z such
that a = 2a1, b = 2b1 and c = 2c1. Substituting and dividing by 4, we get
that d ≡ b22 (mod 4). Since the quadratic residues modulo 4 are 0 and 1 and
because d is squarefree, we get d ≡ 1 (mod 4), a contradiction.

In other words, C+
p (d) = C+(d) if d is a fundamental discriminant.

Corollary 2.32. If K is a quadratic field of discriminant d, then the narrow
class group Cl+(d) is in a bijective correspondence with C+(d).



chapter 3

USING THE TWO POINTS OF VIEW

If d is the discriminant of a quadratic form, we proved in the previous chapter
the existence of a one-to-one correspondence between C+

p (d) and the narrow
Picard group of a certain order in a quadratic field and conversely, the narrow
Picard group of any order in a quadratic field is in a one-to-one correspondence
with C+

p (d) for some discriminant d.

This correspondence is very interesting, since it allows one to transpose ques-
tions and structures from one side to the other, simplifying some problems or
providing new ideas.

In this chapter, we will study the most important consequences of the corre-
spondence, focusing on class numbers, class groups and number of representa-
tions, preparing at the same time the proof of Dirichlet class number formula,
which will be done in the next chapter.

1. Gauss composition law and the group structure

The main theorem of elementary algebraic number theory is that Cl(K) is a
finite abelian group for any number field K. More generally, if O is an order
of K, we also defined Pic(O) to be an abelian group, which is also finite (see
Appendix A).

By the correspondence of Theorem 2.28, for any d ≡ 0, 1 (mod 4), the set
C+
p (d) is in a one-to-one correspondence with a narrow Picard group of a

quadratic field, so it can be endowed with the structure of an abelian group!
Looking only at forms, this is not clear at all that we can give them a natural
group structure!

More precisely, let d ≡ 0, 1 (mod 4) be an integer and write d = F 2dK with
dK a fundamental discriminant, F ≥ 1. As always, let K be a quadratic field
of discriminant dK and O = Z+ FOK its order of conductor F .

The group law ⋆ induced on C+
p (d) is explicitly given by

g ⋆ h = φ
(

ψ(g)ψ(h)
)

(g, h ∈ C+
p (d))

with ψ : C+
p (d) → Pic+(O) the bijection of Theorem 2.28 and φ : Pic+(O) →

C+
p (d) its inverse. The identity element is given by φ(O) and by Proposition

2.15, the inverse of g ∈ C+
p (d) is φ(ψ(g)′/N(a)).

44
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Therefore, we have by construction

Pic+(O) ∼= C+
p (d)

as finite abelian groups.

1.1. Historical remarks and perspectives

In the time of Gauss, the explicit concept of groups or finite abelian groups
did not exist, nor ideals or ideal class groups. He actually found intrinsically
the existence of the composition law and its properties turning equivalence
classes of forms of equal discriminant into a group.

Actually, this work of Gauss was part of the thought process that led to the
definition of ideals and ideal class groups by Dedekind, who generalized ideas
of:

− Gauss (group law on equivalence classes, this is, literally, a class group);

− Kummer (”ideal numbers” in cyclotomic fields, special algebraic integers
in connection with the now-called ideals);

− Kronecker (who generalized Kummer’s ideas to arbitrary number fields).

See [Kle07, Ch 2, §2.2] for a detailed account.

This theory of composition can be found in the Disquisitiones Arithmeticae
[Gau86, Art. 235-249], but defining the composition of two forms is very
complicated, proving that it respects equivalence and yields a group law is
even harder. A particular easier case of Gauss composition was given by
Legendre and Dirichlet and can be found in [Cox89, Ch. 1, §3.A], but a lot of
work is still required to show that this composition is associative.

Two centuries after Gauss, Manjul Bhargava (Princeton University) discov-
ered during his PhD (2001) a very elegant way to look at Gauss composition
law, which he was able to generalize to objects such as binary cubic forms or
pairs of binary quadratic forms, along with interpretations in class groups of
orders in quadratic fields (see [Bha04a])!

Bhargava’s first idea is the following1: consider the free abelian group of rank
8 defined by C2 = Z2 ⊗ Z2 ⊗ Z2. If (v1, v2) is the canonical basis for Z2, any
element in C2 can be written uniquely as

av1 ⊗ v1 ⊗ v1 + bv1 ⊗ v2 ⊗ v1 + cv2 ⊗ v1 ⊗ v1 + dv2 ⊗ v2 ⊗ v1

+ ev1 ⊗ v1 ⊗ v2 + fv1 ⊗ v2 ⊗ v2 + gv2 ⊗ v1 ⊗ v2 + hv2 ⊗ v2 ⊗ v2

1In the following paragraphs, we give a brief description of the main ideas leading to the
second view of Gauss composition, rather than a detailed treatment.
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with a, b, c, e, e, f, g, h ∈ Z, so we can view it as a cube with side 2 centered at
the origin, whose vertex (i, j, k) is labelled with the coefficient of vi ⊗ vj ⊗ vk
for 0 ≤ i, j, k ≤ 1, |i|+ |j|+ |k| = 1 (see Figure 3.1).

e

a
b

f

gh

c d

Figure 3.1: A cube of integers and its three slicings.

Such a cube can be sliced in three ways, through the planes orthogonal to the
axes, and each slicing yields a pair of faces, the two parallel to the cutting
plane. Hence, the three slicings can be viewed as the three pairs of matrices

M1 =

(

a b
c d

)

, N1 =

(

e f
g h

)

M2 =

(

a c
e g

)

, N2 =

(

b d
f h

)

M3 =

(

a e
b f

)

, N3 =

(

c g
d h

)

.

Note that any of these pairs of matrices entirely defines the element, so we
have a bijection between C2 and the set of pairs of 2× 2 integer matrices. An
action of the group Γ = SL2(Z) × SL2(Z) × SL2(Z) can be defined on C2 in
the following manner:

− For i = 1, 2, 3, SL2(Z) acts on C2 by acting on (Mi, Ni) by

SL2(Z) ∋ ( r s
t u ) · (Mi, Ni) 7→ (rMi + sNi, tMi + uNi),

where we identify C2 with pairs of 2× 2 integer matrices.

− For (σ1, σ2, σ3) ∈ Γ and z ∈ C2, we define

(σ1, σ2, σ3) · z = σ1 · (σ2 · (σ3 · z)).

Using the fact that row and column operations on square matrices com-
mute, we prove that the order of composition on the right-hand side
does not matter. Therefore, it defines a group action of Γ on C2.
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Then, we can associate to any element z ∈ C2 three binary quadratic forms

Qz
i (x, y) = − det (xMi −Niy) (i = 1, 2, 3),

whose discriminants are equal (which can be checked by a simple computa-
tion). We can therefore define the discriminant of z as the discriminant of Qz

i

for i = 1, 2, 3. Bhargava’s first result is the following:

Theorem 3.1. Let d ≡ 0, 1 (mod 4) be an integer and let Qid,d be any prim-
itive binary quadratic form of discriminant d such there is an element z ∈ C2
with Qz

1 = Qz
2 = Qz

3 = Qid,d. Then there exists a unique group law on Cp(d)
such that

1. Qid,d is the additive identity;

2. For any w ∈ C2 with discriminant d such that Qw
1 , Q

w
2 , Q

w
3 are primitive,

Qw
1 +Qw

2 +Qw
3 = Qid,d.

Conversely, given binary quadratic forms Q1, Q2, Q3 with Q1 + Q2 + Q3 =
Qid,d, there exists an element w ∈ C2 with discriminant d, unique up to Γ-
equivalence, such that Qw

i = Qi.

Notice the striking similarity with the group law on points on elliptic curves:
a base point O is chosen, we define a first composition law ∗ on the points of
the curve and for all points P1, P2 on the curve, we prove that there exists an
unique group law + on the points of the curve such that

P1 + P2 + P1 ∗ P2 = O.

For an elementary account of this, see [ST10].

b

b

b

b

P1

P2

P1 ∗ P2

P1 + P2

Figure 3.2: A case of the composition law on an elliptic curve.

The natural choice for the identity element in Theorem 3.1 is the principal
form (1.1) (as the point ∞ ∈ P1(C) is a natural choice for elliptic curves in
the Weierstrass normal form). In this case, the group law obtained is precisely
Gauss’s one!
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Proposition 3.2. Let d ≡ 0, 1 (mod 4) be an integer and let (Cp(d),+) be
the abelian group obtained from Theorem 3.1 with the principal form (1.1) of
discriminant d. Then (Cp(d),+) is the abelian group obtained with Gauss’s
group law.

Therefore, the group (Cp(d),+) arising from Gauss’s complicated composition
law can simply be viewed as the free abelian group generated by elements
of Cp(d) modulo the relation where the principal form of discriminant d is
identified to 0 and where for all w ∈ C2 with discriminant d, the element
Qw

1 +Qw
2 +Qw

3 is identified with 0.

Bhargava proves these results either using the correspondence with quadratic
fields or using Dirichlet’s version of Gauss composition (see [Bha04a]).

In his second paper [Bha04b], Bhargava also developed composition laws on
other spaces of forms of higher orders (such as ternary cubic forms), with
interpretations in class groups of orders of cubic fields. Finally, the third and
fourth paper of this series, [Bha04c] and [Bha08], extend these ideas toward
the question of the parametrizations of quartic and quintic rings.

1.2. Explicit formulas

Using some calculations already done, we can easily explicitly determine the
identity element and inverses of the group law on C+

p (d).

By Example 2.20, a correctly ordered basis for the O-ideal O is
{

(F
√
dK , 1) if dK ≡ 2, 3 (mod 4)

(F 1+
√
dK

2 , 1) if dK ≡ 1 (mod 4).
(3.1)

Therefore, the identity element of C+
p (d) is

{

[−dK , 0, 1] if dK ≡ 2, 3 (mod 4)

[(F − dK)/4, F, 1] if dK ≡ 1 (mod 4).
(3.2)

For inverses, using that the inverse of the class of an ideal a is simply given
by the class of a′ (Proposition 2.15), we can use the calculations done in the
proof of Proposition 2.25 to get that for all [a, b, c] ∈ C+

p (d),

[a, b, c]
−1

= [c, b, a]

(note that a and c get inverted because the basis of a′ naturally obtained
from a correctly ordered basis of a is not correctly ordered). Applying the
transformation

(

0 −1
1 0

)

∈ SL2(Z), we get that

[a, b, c]
−1

= [a,−b, c],
which is reduced when [a, b, c] is reduced.
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1.3. Explicit determination of Picard groups

A practical use of the correspondence is that it allows one to compute Picard
groups and class numbers of orders in quadratic fields easily and explicitly.

Indeed, such computations in the setting of quadratic field are usually tedious.
For example, to determine the class group of a quadratic field, we can use
the bound given by Minkowski’s theorem on the norm of ideals in a certain
system of representatives, then determine all nonequivalent ideals of that norm
(see Example 3.4 below). In a non-maximal order, the method is even more
complicated.

If we work from the point of view of binary quadratic forms, it is easy to
determine a complete system of representatives, as we have seen in Chapter
1 (reduction of forms). It suffices then to transpose the results with the
correspondence.

Example 3.3. We computed in Example 1.48 that |C+
p (−47)| = 5, represen-

tatives of the classes being given by

[1, 1, 12], [2, 1, 6], [2,−1, 6], [3, 1, 4], [3,−1, 4].

Let’s give the correspondence between Cl(−47) and C+
p (−47) (which are there-

fore both isomorphic to the cyclic group Z/5) explicitly.

Let K = Q(
√
−47), which is a quadratic field of discriminant −47 (note that

−47 ≡ 1 (mod 4)). By Example 2.20, a correctly ordered Z-basis of OK is

given by (1+
√
d

2 , 1). By Equation (3.2), the class of OK in Cl(−47) corresponds
to

[12, 1, 1] = [1, 1, 12].

The ideal class associated to the class [2, 1, 6] is

[

2, (1−
√
−47)/2

]

,

whence [2,−1, 6] is associated to the ideal

[

2, (1 +
√
−47)/2

]

(note that since 1 +
√
−47 and 1 −

√
−47 belong to the product of these

two ideals, their classes are inverses as predicted). In the same way, it can

be shown that [3, 1, 4] is associated to the ideal [3, (1−
√
−47)/2], and that

[3,−1, 4] is associated to the ideal [3, (1 +
√
−47)/2]. Note that we’ve thus

determined a complete system of representatives of the ideal class group in a
very easy systematical way.

Example 3.4. To compute a complete system of representatives of Cl(−47)
(as in the previous example), but staying in the setting of quadratic fields,
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we could use the fact that any class of Cl(−47) contains an ideal with norm
smaller than

4

π
· 2!
22

·
√
47 ≤ 4.5

(by Minkowski’s bound). Therefore, we would have to determine all ideals of
norm 2, 3 and 4 in K = Q(

√
−47). For example, let a be an ideal of OK of

norm 2, with K. Because 2 ∈ a, we have that a|(2). By Kummer-Dedekind
Theorem (Proposition A.23),

(2) = p1p2

with p1 = (2)+((1+
√
−47)/2) and p2 = (2)+((

√
−47−1)/2) non-equivalent

prime ideals. Therefore, there are exactly two ideals of norm 2 in Cl(−47),
given by p1 and p2. We can see that this process is tedious and not systematical
with non-prime norms.

Example 3.5. In Example 1.62, we proved that a complete reduced set of
representatives of C+

p (12) is given by

[−2, 2, 1], [−1, 2, 2].

We have 12 = 22 · 3, so the order of conductor 2 in Q(
√
3) has narrow Pi-

card group of order 2 and we can easily compute the ideals associated to the
forms above, as before. If we consider C+

p (12)/Z/2, the class of [−2, 2, 1] is
identified with the class of [2, 2,−1], which is equal to the class of [−1, 2, 2].
Consequently, the Picard group of this order has cardinality 1.

Example 3.6. In Tables 3.1, 3.2 (imaginary case) and 3.3 (real case), we
give, by implementing (in Sage) the above ideas on a computer, the explicit
correspondence between C+

p (d) and the associated Picard group for all form
discriminants −68 ≤ d ≤ −3.

2. Class numbers

In the previous section, we dealt with the first consequences of the corre-
spondence on the structure of C+

p (d) and narrow Picard groups in quadratic
fields.

In this section, we explore the cardinalities of these sets, in particular class
numbers, and their relationships.

Recall that we defined:
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d hf (d) Quadratic field Conductor of O Repr. of C+
p (d) Repr. of Pic(O)

-3 1 Q(
√
−3) 1 [1, 1, 1]

[

1,− 1
2

√
−3 + 1

2

]

-4 1 Q(
√
−1) 2 [1, 0, 1]

[

1,−
√
−1
]

-7 1 Q(
√
−7) 1 [1, 1, 2]

[

1,− 1
2

√
−7 + 1

2

]

-8 1 Q(
√
−2) 2 [1, 0, 2]

[

1,−
√
−2
]

-11 1 Q(
√
−11) 1 [1, 1, 3]

[

1,− 1
2

√
−11 + 1

2

]

-12 1 Q(
√
−3) 2 [1, 0, 3]

[

1,−
√
−3
]

-15 2 Q(
√
−15) 1

[1, 1, 4]
[

1,− 1
2

√
−15 + 1

2

]

[2, 1, 2]
[

2,− 1
2

√
−15 + 1

2

]

-16 1 Q(
√
−1) 4 [1, 0, 4]

[

1,−2
√
−1
]

-19 1 Q(
√
−19) 1 [1, 1, 5]

[

1,− 1
2

√
−19 + 1

2

]

-20 2 Q(
√
−5) 2

[1, 0, 5]
[

1,−
√
−5
]

[2, 2, 3]
[

2,−
√
−5 + 1

]

-23 3 Q(
√
−23) 1

[1, 1, 6]
[

1,− 1
2

√
−23 + 1

2

]

[2, 1, 3]
[

2,− 1
2

√
−23 + 1

2

]

[2,−1, 3]
[

2,− 1
2

√
−23− 1

2

]

-24 2 Q(
√
−6) 2

[1, 0, 6]
[

1,−
√
−6
]

[2, 0, 3]
[

2,−
√
−6
]

-27 1 Q(
√
−3) 3 [1, 1, 7]

[

1,− 3
2

√
−3 + 1

2

]

-28 1 Q(
√
−7) 2 [1, 0, 7]

[

1,−
√
−7
]

-31 3 Q(
√
−31) 1

[1, 1, 8]
[

1,− 1
2

√
−31 + 1

2

]

[2, 1, 4]
[

2,− 1
2

√
−31 + 1

2

]

[2,−1, 4]
[

2,− 1
2

√
−31− 1

2

]

-32 2 Q(
√
−2) 4

[1, 0, 8]
[

1,−2
√
−2
]

[3, 2, 3]
[

3,−2
√
−2 + 1

]

-35 2 Q(
√
−35) 1

[1, 1, 9]
[

1,− 1
2

√
−35 + 1

2

]

[3, 1, 3]
[

3,− 1
2

√
−35 + 1

2

]

-36 2 Q(
√
−1) 6

[1, 0, 9]
[

1,−3
√
−1
]

[2, 2, 5]
[

2,−3
√
−1 + 1

]

-39 4 Q(
√
−39) 1

[1, 1, 10]
[

1,− 1
2

√
−39 + 1

2

]

[2, 1, 5]
[

2,− 1
2

√
−39 + 1

2

]

[2,−1, 5]
[

2,− 1
2

√
−39− 1

2

]

[3, 3, 4]
[

3,− 1
2

√
−39 + 3

2

]

-40 2 Q(
√
−10) 2

[1, 0, 10]
[

1,−
√
−10

]

[2, 0, 5]
[

2,−
√
−10

]

Table 3.1: Explicit correspondence between C+
p (d) and Picard groups for

−40 ≤ d ≤ −3, d ≡ 0, 1 (mod 4)
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d hf (d) Quadratic field Conductor of O Repr. of C+
p (d) Repr. of Pic(O)

-43 1 Q(
√
−43) 1 [1, 1, 11]

[

1,− 1
2

√
−43 + 1

2

]

-44 3 Q(
√
−11) 2

[1, 0, 11]
[

1,−
√
−11

]

[3, 2, 4]
[

3,−
√
−11 + 1

]

[3,−2, 4]
[

3,−
√
−11− 1

]

-47 5 Q(
√
−47) 1

[1, 1, 12]
[

1,− 1
2

√
−47 + 1

2

]

[2, 1, 6]
[

2,− 1
2

√
−47 + 1

2

]

[2,−1, 6]
[

2,− 1
2

√
−47− 1

2

]

[3, 1, 4]
[

3,− 1
2

√
−47 + 1

2

]

[3,−1, 4]
[

3,− 1
2

√
−47− 1

2

]

-48 2 Q(
√
−3) 4

[1, 0, 12]
[

1,−2
√
−3
]

[3, 0, 4]
[

3,−2
√
−3
]

-51 2 Q(
√
−51) 1

[1, 1, 13]
[

1,− 1
2

√
−51 + 1

2

]

[3, 3, 5]
[

3,− 1
2

√
−51 + 3

2

]

-52 2 Q(
√
−13) 2

[1, 0, 13]
[

1,−
√
−13

]

[2, 2, 7]
[

2,−
√
−13 + 1

]

-55 4 Q(
√
−55) 1

[1, 1, 14]
[

1,− 1
2

√
−55 + 1

2

]

[2, 1, 7]
[

2,− 1
2

√
−55 + 1

2

]

[2,−1, 7]
[

2,− 1
2

√
−55− 1

2

]

[4, 3, 4]
[

4,− 1
2

√
−55 + 3

2

]

-56 4 Q(
√
−14) 2

[1, 0, 14]
[

1,−
√
−14

]

[2, 0, 7]
[

2,−
√
−14

]

[3, 2, 5]
[

3,−
√
−14 + 1

]

[3,−2, 5]
[

3,−
√
−14− 1

]

-59 3 Q(
√
−59) 1

[1, 1, 15]
[

1,− 1
2

√
−59 + 1

2

]

[3, 1, 5]
[

3,− 1
2

√
−59 + 1

2

]

[3,−1, 5]
[

3,− 1
2

√
−59− 1

2

]

-60 2 Q(
√
−15) 2

[1, 0, 15]
[

1,−
√
−15

]

[3, 0, 5]
[

3,−
√
−15

]

-63 4 Q(
√
−7) 3

[1, 1, 16]
[

1,− 3
2

√
−7 + 1

2

]

[2, 1, 8]
[

2,− 3
2

√
−7 + 1

2

]

[2,−1, 8]
[

2,− 3
2

√
−7− 1

2

]

[4, 1, 4]
[

4,− 3
2

√
−7 + 1

2

]

-64 2 Q(
√
−1) 8

[1, 0, 16]
[

1,−4
√
−1
]

[4, 4, 5]
[

4,−4
√
−1 + 2

]

-67 1 Q(
√
−67) 1 [1, 1, 17]

[

1,− 1
2

√
−67 + 1

2

]

-68 4 Q(
√
−17) 2

[1, 0, 17]
[

1,−
√
−17

]

[2, 2, 9]
[

2,−
√
−17 + 1

]

[3, 2, 6]
[

3,−
√
−17 + 1

]

[3,−2, 6]
[

3,−
√
−17− 1

]

Table 3.2: Explicit correspondence between C+
p (d) and Picard groups for

−68 ≤ d ≤ −41, d ≡ 0, 1 (mod 4)
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d hf (d) Quadratic field Conductor of O Repr. of C+
p
(d)/(Z/2Z) Repr. of Pic(O)

5 1 Q(
√
5) 1 [−1, 1, 1]

[

−
√
5, 12

√
5− 5

2

]

8 1 Q(
√
2) 2 [−1, 2, 1]

[

−2
√
2, 2

√
2− 4

]

12 1 Q(
√
3) 2 [−2, 2, 1]

[

−4
√
3, 2

√
3− 6

]

13 1 Q(
√
13) 1 [−1, 3, 1]

[

−
√
13, 32

√
13− 13

2

]

17 1 Q(
√
17) 1 [−2, 1, 2]

[

−2
√
17, 12

√
17− 17

2

]

20 2 Q(
√
5) 2

[−2, 2, 2]
[

−4
√
5, 2

√
5− 10

]

[−1, 4, 1]
[

−2
√
5, 4

√
5− 10

]

21 1 Q(
√
21) 1 [−3, 3, 1]

[

−3
√
21, 32

√
21− 21

2

]

24 1 Q(
√
6) 2 [−2, 4, 1]

[

−4
√
6, 4

√
6− 12

]

28 1 Q(
√
7) 2 [−3, 2, 2]

[

−6
√
7, 2

√
7− 14

]

29 1 Q(
√
29) 1 [−1, 5, 1]

[

−
√
29, 52

√
29− 29

2

]

32 2 Q(
√
2) 4

[−4, 4, 1]
[

−16
√
2, 8

√
2− 16

]

[−2, 4, 2]
[

−8
√
2, 8

√
2− 16

]

33 1 Q(
√
33) 1 [−3, 3, 2]

[

−3
√
33, 32

√
33− 33

2

]

37 1 Q(
√
37) 1 [−3, 1, 3]

[

−3
√
37, 12

√
37− 37

2

]

40 2 Q(
√
10) 2

[−3, 2, 3]
[

−6
√
10, 2

√
10− 20

]

[−1, 6, 1]
[

−2
√
10, 6

√
10− 20

]

41 1 Q(
√
41) 1 [−4, 3, 2]

[

−4
√
41, 32

√
41− 41

2

]

44 1 Q(
√
11) 2 [−2, 6, 1]

[

−4
√
11, 6

√
11− 22

]

45 2 Q(
√
5) 3

[−3, 3, 3]
[

−9
√
5, 92

√
5− 45

2

]

[−5, 5, 1]
[

−15
√
5, 152

√
5− 45

2

]

48 2 Q(
√
3) 4

[−4, 4, 2]
[

−16
√
3, 8

√
3− 24

]

[−3, 6, 1]
[

−12
√
3, 12

√
3− 24

]

52 2 Q(
√
13) 2

[−4, 2, 3]
[

−8
√
13, 2

√
13− 26

]

[−2, 6, 2]
[

−4
√
13, 6

√
13− 26

]

53 1 Q(
√
53) 1 [−1, 7, 1]

[

−
√
53, 72

√
53− 53

2

]

56 1 Q(
√
14) 2 [−5, 4, 2]

[

−10
√
14, 4

√
14− 28

]

57 1 Q(
√
57) 1 [−4, 3, 3]

[

−4
√
57, 32

√
57− 57

2

]

60 2 Q(
√
15) 2

[−6, 6, 1]
[

−12
√
15, 6

√
15− 30

]

[−3, 6, 2]
[

−6
√
15, 6

√
15− 30

]

61 1 Q(
√
61) 1 [−3, 5, 3]

[

−3
√
61, 52

√
61− 61

2

]

65 2 Q(
√
65) 1

[−4, 1, 4]
[

−4
√
65, 12

√
65− 65

2

]

[−5, 5, 2]
[

−5
√
65, 52

√
65− 65

2

]

Table 3.3: Explicit correspondence between C+
p (d)/(Z/2Z) and Picard groups

for 1 ≤ d ≤ 65, d ≡ 0, 1 (mod 4).
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− for d ≡ 0, 1 (mod 4), the class number hf (d) to be the cardinality of
C+
p (d), which we proved to be finite;

− for d a fundamental discriminant, the class number of the quadratic field
K of discriminant d, defined as h(d) = |Cl(K)|, which is, as the class
number of any number field, finite by Minkowski’s theorem;

− more generally, we can also consider cardinalities of (narrow) Picard
groups of orders in quadratic fields.

By the correspondence (Theorem 2.28), we can immediately relate these no-
tions, as Tables 1.1 and 1.2 suggested:

Proposition 3.7. Let d ≡ 0, 1 (mod 4) and write d = F 2dK with dK a
fundamental discriminant and F ≥ 1. Let O be the order of conductor F in
the quadratic field K of discriminant dK . Then

|Pic(O)| =











hf (d) if d < 0

hf (d) if d > 0 and O has a unit of norm − 1

hf (d)/2 otherwise.

Proof. By Theorem 2.28, the narrow Picard group Pic+(O) is in a one-to-one
correspondence with C+

p (d). If d < 0, Pic+(O) = Pic(O) and if d > 0, then,
by Section 2.4.1 of the previous chapter, |Pic(O)| = 2|Pic+(O)| or |Pic(O)| =
|Pic+(O)| depending on the existence of a unit with norm −1.

In the point of view of quadratic fields, the class number measures in a certain
way by how much the ring of integers fails to be an UFD (see Proposition
A.27). For binary quadratic forms, class numbers can help to determine which
integers are represented by some forms (see Section 1.5 of Chapter 1), so this
notion is doubly interesting.

The following questions arise naturally (and they transpose for h by Proposi-
tion 3.7):

1. Does there exist infinitely many d ≡ 0, 1 (mod 4) such that hf (d) = 1?
(class number one problem)

2. More generally, does there exist infinitely many d ≡ 0, 1 (mod 4) such
that hf (f) = n for a given integer n ≥ 1? Can an efficient way to find
them be given?

3. What is the asymptotic behavior of hf (d) with d ≡ 0, 1 (mod 4)?

We see in Table 1.1 that hf (d) seems to grow as −d grows and that hf (d) = 1
for d = −3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163.
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In his Disquisitiones arithmeticae [Gau86, Art 303-304], Gauss made several
conjectures about these questions:

1. h(d) → ∞ when d→ −∞,

2. There are no other negative discriminants with class number one than
the thirteen above,

3. For some small integer, he claims to give complete list of negative dis-
criminants with this class number,

4. There are infinitely many positive discriminants with class number one.

The first conjecture has been proved by Hans Heilbronn (1908-1975) in 1934.
The class number problems for small integers have been solved between 1952
and 2004 for integers up to 100. The class number one problem for imaginary
quadratic field has been solved by Heegner, Stark and Baker in 1967, who
proved that the above list is indeed complete, as Gauss guessed. The fourth
question, class number one problem for real quadratic fields, is still open.

2.1. Class number one problem for even negative discriminants

We’ve already seen in the previous section how computation of class numbers
and Picard groups from the point of view of forms is easier. In this section,
we will treat more theoretical points.

Indeed, we answer the class number one problem for even negative discrimi-
nants, in a theorem proven by Landau in 1903. To do it, we use the point of
view of forms.

Theorem 3.8 (Class number one problem for even negative discriminants).
For d < 0, we have that hf (4d) = 1 if and only if d = −1,−2,−3,−4,−7.

As a Corollary, we will get, by Proposition 3.7,

Corollary 3.9. If d ≡ 2, 3 (mod 1) is a squarefree negative integer, then
h(d) = 1 if and only if d = −4 or d = −8.

Proof. If d ≡ 2, 3 (mod 1) is squarefree and negative, then hf (4d) = h(4d).
The result follows since only −1 and −2 are congruent to 2, 3 modulo 4 among
−1,−2,−3,−4,−7.

First, we prove the following lemma:

Lemma 3.10. Let ∆ = −4d with d ∈ N. If 1 < n < d and if there exists
β ∈ Z such that β2 ≡ −d (mod n) and (n, (b2 + d)/n) = 1, then hf (∆) > 1.
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Proof. Suppose that hf (∆) = 1. By assumption, let c ∈ Z be such that
d = β2−nc. Multiplying by 4, this gives (2β)2 = ∆+4nc. Since (n, c) = 1 by
hypothesis, the form [n, 2β, c] is primitive with discriminant ∆ and properly
represents n. Note that this argument is a variation of the one given in the
proof of Proposition 1.28. Because h(∆) = 1 the form [n, 2β, c] is equivalent
to the principal form 1.1 of discriminant ∆, namely [1, 0, d]. By Corollary
1.26, n is properly represented by [1, 0, d], i.e. there exists x, y ∈ Z coprime
such that

x2 + dy2 = n.

But this is clearly impossible being given that 1 < n < d.

Proof of Theorem 3.8. We begin by proving the three following points:

− If hf (∆) = 1, either d = 1, either d is a prime power. Indeed, we
could otherwise write d = d1d2 with 1 < d1, d2 < d and (d1, d2) = 1.
Using Lemma 3.10 with n = d1 (noting that −d ≡ 0 (mod d1) and
(d1, d/n) = 1 by hypothesis) would give hf (∆) = 1, a contradiction;

− If d = 2α with α ≥ 3, then hf (∆) > 1. Indeed, we simply apply Lemma
3.10 with n = 4, remarking that −2α ≡ 22 ≡ 0 (mod 4) and that
(4, 4 + 2α) = (4, 2α−2 + 1) = 1.

− If d > 7 is odd, then hf (∆) > 1. We use Lemma 3.10 with n = 2, 4, 8,
depending on the congruence class of d modulo 16:

– If d ≡ 1, 5, 9, 13 (mod 16), we can take n = 2 and β = 1. Indeed,
for k ∈ Z and c = 1, 5, 9, 13, we have

d+ β2

2
=

16k + c+ 1

2
= 8k +

c+ 1

2
≡ 1 (mod 2).

– If d ≡ 3, 11 (mod 16), we can take n = 4 and β = 1. Indeed,
−3 ≡ −11 ≡ 12 (mod 4) and for k ∈ Z and c = 3, 11, we similarly
have

d+ β2

4
= 4k +

c+ 1

4
≡ 1, 3 (mod 4).

– If d ≡ 7, 15 (mod 16), we can take n = 8 and β = 1 (in the first
case) or β = 3 (in the second case). Indeed, −7 ≡ −15 ≡ 1 ≡ 32

(mod 8) and for k ∈ Z and c = 7, 15, we have d+β2

4 ≡ 1 (mod 2).

By the above, if hf (∆) = 1, then d = 1 or d = 2, 4 (power of 2) or d = 3, 7
(power of an odd prime, d < 7). By the calculations of Table 1.1, the converse
follows.
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3. Units, automorphisms and Pell’s equation

Let d ≡ 0, 1 (mod 4) be an integer and let us consider the set Formp(d) of
primitive integral binary quadratic forms.

Recall that an automorphism of a form f ∈ Formp(d) is an element of the
isotropy group Aut(f) of f under the action of SL2(Z). We will shortly see
that automorphisms play an important role in the questions concerning rep-
resentation of integers by certain forms.

The first questions that arise are: does a given form have infinitely many
automorphisms? Otherwise how many? Can they parametrized?

These questions can be easily answered using the correspondence of the pre-
vious chapter, as we will now see.

The corresponding concept involved in the context of quadratic fields is units
of orders (as subrings of maximal orders).

Proposition 3.11. Let K be a quadratic field, O an order in K. Then x ∈ O
is a unit if and only if N(x) = ±1.

Proof. If x is a unit, there exists y ∈ O such that xy = 1. Taking norms gives
N(x)N(y) = 1. Since O ⊂ OK and norms of algebraic integers are integers,
we get that N(x) = ±1.

Suppose now that N(x) = ±1. Since xx′ = N(x) = ±1, we have that x−1 =
±x′. But O = Z + FOK for an integer F ≥ 1, so O is stable by conjugation
and x−1 = x′ ∈ O.

Remark 3.12. The result is still true in any number field K for the maximal
order OK . Indeed, if N(x) = 1, Proposition A.9 gives that the characteristic
polynomial of x has a constant coefficient equal to ±1, which is true if and
only if the same holds for the minimal polynomial of x, by Proposition A.9.
Suppose that the latter is

Xn + an−1X
n−1 + · · ·+ a1X ± 1 ∈ Z[X].

Then 1/x is a root of the monic integral polynomial

±Xn + a1X
n−1 + · · ·+ an−1X + 1 ∈ Z[X],

therefore 1/x ∈ OK and x is a unit in K.

Proposition 3.13. Let d be a form discriminant and g ∈ Form+
p (d). Let us

write d = F 2dK with dK the discriminant of a quadratic field K and F ≥ 1.
Let O be the order of K of conductor F . Then there is an isomorphism between
Aut(g) and O∗.
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Proof. By the correspondence (Theorem 2.28 and previous results), there ex-
ists a proper ideal a = [α, β] of O such that g is equivalent to fa,(α,β). Since
the groups of automorphisms of two equivalent forms are conjugate, we can
suppose without loss of generality that g = fa,(α,β).

If x ∈ O∗ is a unit, then (xα, xβ) is another basis for a. Let σx ∈ SL2(Z) be
the change of basis matrix. By Proposition 2.22, we have that σTx g = g, so
σTx ∈ Aut(g). The map

O∗ → Aut(f)

x 7→ σTx

is of course injective (if σx = σy for two units x, y of O, then xα = yα, so
x = y). Moreover, it is clearly a group homomorphism.

Also, if σ =
(

a b
c d

)

∈ Aut(g), then f[α,β] = σf[α,β]. By the proof of Proposition
2.24, we find λ ∈ K such that

{

λα = aα+ bβ

λβ = cα+ dβ

and [α, β] = (λ)[α, β]. Taking norms gives N(λ) = ±1. Note that λ ∈ {x ∈
K : xa ⊂ x} by the equations above, so λ ∈ O since a is proper. Consequently,
λ ∈ O∗ (Proposition 3.11) and σ = σTλ , so we get that the above map is
surjective.

Since all groups of automorphisms are isomorphic to the same group of units,
we have the following result:

Corollary 3.14. Let d be a form discriminant. Then for all f, g ∈ Form+
p (d),

Aut(f) ∼= Aut(g).

3.1. Determination of the groups of units and automorphisms

Let K = Q(
√
d) be a quadratic field of discriminant dK and O its order of

conductor F ≥ 1. By the previous section, determining the automorphisms
of a binary quadratic form of discriminant F 2dK amounts to determining the
group of units of O. This is a relatively simple problem, which we will now
solve.

By Proposition 2.5, a Z-basis of O is given by (1, F (dK+
√
dK)/2). Therefore,

by Proposition 3.11, the units of O are in a one-to-one correspondence with
the solutions (m,n) ∈ Z2 to the equations

N(m+ nF (dK +
√

dK)/2) = ±1.
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Explicitly, this amounts to the diophantine equations

(2m+ nFdk)
2 − dK(nF )2 = ±4.

This can be reparametrized as all integral solutions (u, n) ∈ Z2

u2 − dn2 = ±4 (3.3)

with u = 2m+nFdK . Indeed, if u2 − dn2 = ±4, then u2 ≡ F 2dKn
2 (mod 2),

so u ≡ FdKn (mod 2).

The family of diophantine equations Pm,n : x2 − ny2 = m with m,n integers
and n nonsquare is known as (generalizations of) Pell’s equations and is
very famous historically.

Proposition 3.15 (Units in imaginary quadratic fields). Let d < 0 be a
squarefree negative integer and K = Q(

√
d). Moreover, let F ≥ 1 and O the

order of K of conductor F . Then the group of units of O is given by

O∗ ∼=











Z/4 if d = −1 and F = 1

Z/6 if d = −3 and F = 1

Z/2 otherwise.

Proof. For the sake of clarity, let D = −d > 0. By Equation (3.3), a general
element x = m+ nF (dK +

√
dK)/2 ∈ O is a unit if and only if

u2 +Dn2 = ±4 (3.4)

with m,n ∈ Z, u = 2m + nFdk. Of course, there are no solutions with the
right hand side equal to −4. For the other equation, the solutions (u, n) ∈ Z

to (3.4) are, using that
√
2,
√
3 6∈ Q,

(u, n) = (±2, 0)

(u, n) = (±1,±3/
√
D) if

√
3/
√
D ∈ Z

(u, n) = (0,±2/
√
D) if 2/

√
D ∈ Z.

Therefore, the couples (m,n) = (±1, 0) are always associated (as above) to
units. Note that

√
D = F

√
−dK , thus, since dK ≡ 1, 2, 3 (mod 4):

−
√
3/
√
D ∈ Z if and only if d = −3 (i.e. dK = −3 and F = 1).

− 2/
√
D ∈ Z if and only if d = −1 (i.e. dK = −4 and F = 1).

Therefore O∗ has cardinality 2 (and thus isomorphic to Z/2) with the units
associated to (m,n) = (±1, 0), except when
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1. d = −1: in this case, (u, n) = (0,±1) are the two other solutions to
(3.3), so we have have two more units, associated to (m,n) = ±(2, 1).
Since i has order 4, we have that O∗ ∼= Z/4.

2. d = −3: in this case, (u, n) = (±1,±1) are the four other solutions to
(3.3) and we have have four more units, associated to (m,n) = ±(2, 1)
and (m,n) = ±(1, 1). A small calculation shows that the unit 1

2(1+
√
−3)

associated to (m,n) = (2, 1) has order 6, so O∗ ∼= Z/6.

As a direct consequence of Propositions 1.35, 3.13 and 3.15, we get the follow-
ing description of automorphism groups of forms of negative discriminants:

Corollary 3.16. Let f be a primitive binary quadratic form of discriminant
d < 0. Then

Aut(f) ∼=











Z/4 if d = −4

Z/6 if d = −3

Z/2 otherwise.

Example 3.17. Let us give explicitly the group of automorphisms of a form
f of discriminant d < 0 (and the associated units).

We already gave the two general automorphisms of any form

id and σ1 =

(

−1 0
0 −1

)

∈ SL2(Z),

so if d 6= −3,−4, then Aut(f) = {id, σ1}.
For d = −4, the associated order is OQ(i) = Z[i] and the proof of Proposition
3.15 gives the four units

(m− 2n) + ni

with (m,n) = (±1, 0),±(2, 1). Recall that h(−4) = 1, so it suffices, by Propo-
sition 1.35, to determine the automorphisms of the principal form [1, 0, 1],
whose associated ideal is simply OK . By the proof of Proposition 3.13, the
automorphism associated to a unit x ∈ O is given by the transpose of the
change of basis matrix from (1,−i) to (x,−xi).
Explicitly, after a few simple calculations, we find the following correspon-
dence:

Unit Automorphism

1 id

−1 σ1

i
(

0 1
−1 0

)

−i
(

0 −1
1 0

)

.
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Similarly, for d = −3, K = Q(
√
−3), the units of OK are given by (m−3n/2)+

n
√
−3/2 for (m,n) = (±1, 0),±(2, 1),±(1, 1) (Proposition 3.15). We also have

h(−4) = 1 (see Chapter 1), so it again suffices to determine the automorphisms
of the principal form f = [1, 1, 1] associated to the ideal [1, (1−

√
−3)/2]. We

find the following correspondence:

Unit Automorphism

1 id
−1 σ1

1/2(1 +
√
−3)

(

1 −1
1 0

)

−1/2(1 +
√
−3)

(−1 1
−1 0

)

1/2(1−
√
−3)

(

0 −1
1 −1

)

−1/2(1−
√
−3)

(

0 1
−1 1

)

.

In particular, we see that Aut(f) is the cyclic group (of order 6) generated by
(

1 −1
1 0

)

.

Remark 3.18. It is also possible to deduce these results only in the context
of forms. See for example [Gra07, ex. 4.1f, p. 3].

Proposition 3.19 (Units in real quadratic fields). Let d > 0 be a squarefree
positive integer and K = Q(

√
d). Moreover, let F ≥ 1 and O be the order

of K of conductor F . Then there are infinitely many units in O and more
precisely,

O∗ ∼= Z/2Z× Z.

Sketch of the proof. By Equation (3.3), an element x = m+nF (dK+
√
dK)/2 ∈

O is a unit if and only if
u2 − dn2 = ±4.

with u = 2m+ nFdK . First of all, we deal with O∗
+, the elements of O∗ with

positive norms, this is when the right hand side of the above equation is equal
to 4. From the theory of Pell equations, there exists an element x ∈ O∗

+ ⊂ R

such that x > 1. Then, it can be shown2 that there exists an minimal element
among elements strictly bigger than 1 in O∗

+, say z. Then for any y ∈ O∗
+

there exists n ∈ Z such that zn ≤ y < zn+1, by monotonicity of n 7→ zn.
By minimality of z, this implies that y = zn, so we have an isomorphism of
groups

Z → O∗
+

n 7→ zn.

Finally, since any element x ∈ O can be written as x = ±y with y ∈ O∗
+, the

result follows.

2See [Fla89, Chapter 4.3] for details.
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Remark 3.20. Note that Propositions 3.19 and 3.15 are particular cases of
Dirichlet unit theorem, in quadratic fields.

As a direct consequence of Propositions 1.35, 3.13 and 3.19, we get:

Corollary 3.21. Let f ∈ Form+
p (d) with d > 0. Then

Aut(f) ∼= Z/2Z× Z.

Example 3.22. In the same way that we gave a list of all automorphisms in
in the case of negative discriminants (Example 3.17), we can parametrize them
for positive discriminants. Let f = [a, b, c] be a form of positive discriminant
d ≡ 0, 1 (mod 4) and write d = F 2dK with F ≥ 1, dK the discriminant of a
quadratic field K. The ideal associated to f is

af =

[

λa, λ
b− F

√
dK

2

]

with λ =

{

1 if a > 0

F
√
dK otherwise

,

which admits the correctly Z-basis (α, β) = (λa, λ(b−F
√
dK)/2) by Proposi-

tion 2.25.

By Equation (3.3), an element x = m+nF (dK +
√
dK)/2 of O is a unit if and

only if
u2 − dn2 = ±4.

with m,n ∈ Z, u = 2m+ nFdK . We compute that for a solution (m,n) ∈ Z2

of one of the above equations, the transpose of the change of basis matrix
from (α, β) to (xα, xβ) with x the unit associated to (u, n) is

(

(u+ nb)/2 −na
nc (u− nb)/2

)

.

Therefore,

Aut(f) =

{(

(u+ nb)/2 −na
nc (u− nb)/2

)

∈ SL2(Z) : u
2 − dn2 = ±4

}

.

Remark 3.23. As a consequence of the above results, it can be shown that
the set of solutions of some Pell equations (namely the above ones) also has
the structure of an abelian group! For details, see [Fla89, Chapter 4.3].

Remark 3.24. As with the imaginary case, it is also possible to determine
the automorphism group without looking at quadratic fields, but it is less
straightforward. An idea is to consider at first things in a bigger group than
SL2(Z), e.g. GL2(Q(

√
d)), were groups of automorphisms can be diagonalized.

There, any form is equivalent to a multiple of [0, 1, 0], whose group of automor-
phisms is easy to determine. Then, it is possible to express the automorphism
group of any form (in SL2(Z)) from the one of [0, 1, 0] in GL2(Q(

√
d)).
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3.2. Actions of automorphism groups

For any binary quadratic form f , we can consider the natural (right) action
of Aut(f) ⊂ SL2(Z) on Z2. This action is interesting because of its links
with representations of integers by forms. Indeed, note for example that if
n is represented by f and σ ∈ Aut(f), then f(x, y) = σf(x, y) = f((x, y)σ),
so (x, y)σ is another representation of n by f . In other words, Aut(f) acts
on the set of representations of n by f . Note that Aut(f) preserves proper
representations, since the action of SL2(Z) on Z2 preserves the gcd3

We will discuss this in details in the following sections. For now, we give the
following Lemma about fixed points of this action, which will be useful later.

Lemma 3.25. For f ∈ Form+
p (d) a binary quadratic form of discriminant

d 6= 0, the only point of Z2 fixed by an element σ ∈ Aut(f) is 0.

Proof. Suppose that there exists σ =
(

a b
c d

)

∈ SL2(Z)− id such that (x, y)σ =
(x, y) for some (x, y) ∈ Z2 − 0. This implies that

0 = det

(

a− 1 b
c d− 1

)

= ad− a− d+ 1− bc = 2− a− d,

i.e. a + d = 2. By looking at the explicit descriptions of Examples 3.17 and
3.22, we see that it can happen if and only if σ = id.

4. Integers represented by forms and by norms of ideals

We finally come back to the study of representation of integers by forms, where
we will use the correspondence and our knowledge of quadratic fields to get
interesting results.

Let d ≡ 0, 1 (mod 4) be an integer and write d = F 2dK with dK the discrim-
inant of a quadratic field K and F ≥ 1. Moreover, let O be the order of K
with conductor F .

The following two questions arise naturally:

1. Which integers are represented by norms of ideals in O?

2. Which integers are represented by forms of discriminant d?

We already obtained a few results about the second one in Chapter 1, staying
in the point of view of forms. The next Proposition shows that the two
problems are equivalent and its proof gives an explicit method to pass from
one to the other.

3If σ = ( a b
c d ) and (x, y) ∈ Z2, then (x, y)σ = (ax + cy, bx + dy) and remark that if an

integer divides ax+ cy, bx+ dy, then it divides d(ax+ cy)− c(bx+ dy) = x. The same holds
for y and the other way is clear.
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Proposition 3.26. An integer n ∈ Z is properly represented by a form of
Form+

p (d) if and only if n is the norm of an invertible ideal in O.

Proof. Let f ∈ Form+
p (d) be a primitive form representing n. By Proposition

1.25, f is equivalent to a form g = [n, b, c] of discriminant d with b, c ∈ Z. We
saw in the proof of Proposition 2.25 that N(ag) = n, so n is the norm of the
ideal ag of O.

Conversely, let a be an ideal in O with a basis (α, β) and n = N(a). Since
N(a) ∈ a, we choose x, y ∈ Z such that N(a) = xα+ yβ. By definition,

fa,(α,β)(x, y) =
N(N(a))

N(a)
= N(a) = n.

The correspondence of Proposition 3.26 can be refined with respect to repre-
sentations as follows:

Definition 3.27. If f is a form of discriminant d and n ≥ 1, we denote by
R(f, n) the set {(x, y) ∈ Z2 : f(x, y) = n} of representations of n by f and by
Rp(f, n) the setR(f, n)∩{(x, y) ∈ Z2 : x, y coprime} of proper representations.

Proposition 3.28. Let n ≥ 1 be an integer and f1, . . . , fr be a complete
system of representatives of C+

p (d), with d ≡ 0, 1 (mod 4) a discriminant.
Then there is a one-to-one correspondence between

r
∐

i=1

R(fi, n)/Aut(fi) and {a proper ideal of O : N(a) = n}.

To prove it, we use the following Lemma:

Lemma 3.29. If an integer n ∈ Z is represented properly by a binary quadratic
form f through (x, y) ∈ Z2, there exists a unique σ = ( x y

∗ ∗ ) ∈ SL2(Z) such
that σf = [n, b, c] with 0 ≤ b < 2n.

Proof. Let f be a binary quadratic form of discriminant d and (x, y) ∈ Rp(n, f).
So there exists a solution (α, β) ∈ Z2 to the diophantine equation

αx+ βy = 1.

Moreover, all solutions are given by {(α + ky, β − kx) : k ∈ Z}, as it is well
known from elementary number theory. As we saw in the proof of Lemma
1.25,

σk =

(

x y
−(β − kx) (α+ ky)

)

∈ SL2(Z)
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verifies σkf = [n, bk, ck] for all k ∈ Z, with bk, ck ∈ Z. Since discriminants
are preserved through equivalence, we have that d = b2 − 4ac, so b2 ≡ d
(mod 4n). A simple calculation then shows that, for σkf = [n, bk, ck], we have
bk = 2kn+ b0 for all k ∈ Z, whence the conclusion.

Proof of Proposition 3.28. We first define maps

hi : R(fi, n) → {a proper ideal of O : N(a) = n} (i = 1, . . . , r)

by the following: if (x, y) ∈ R(fi, n), write (x, y) = e(x′, y′) with x′, y′ ∈ Z

coprime and e ≥ 1. Of course, (x′, y′) ∈ Rp(f, n/c
2). By Lemma 3.29, there

exists a unique matrix σ =
(

x′ y′
∗ ∗

)

∈ SL2(Z) such that σf = [n2/e, b, c] with
0 ≤ b < 2n. By Proposition 3.26, N(aσf ) = n/e2. We set hi(x, y) = caσf , so
that N(hi(x, y)) = n.

We show that this map does not depend on the automorphism class of the
representation. If τ ∈ Aut(fi) and (x, y) ∈ R(fi, n), then (w, z) = (x, y)τ is
another representation of n by fi. Let us write (x, y) = e(x′, y′) with x′, y′ ∈ Z

coprime and e ≥ 1. Since SL2(Z) preserves the gcd (see the preceding section),
we can also write (w, z) = e(w′, z′) with e ≥ 1. Let σ ∈ SL2(Z) be the matrix
associated to (x′, y′) ∈ R(fi, n/e

2) as above. Note that f = τf , so we have
στf = [n/e2, b, c] and

στ =

(

x′ y′

∗ ∗

)

,

so hi((x, y)τ) = eaστf = eaσf = h(x, y).

Therefore, we can induce maps hi : R(fi, n)/Aut(fi) → {a proper ideal of O :
N(a) = n}, and then a map

h =
r
∐

i=1

hi :
r
∐

i=1

R(fi, n)/Aut(fi) → {a proper ideal of O : N(a) = n}.

We show that h is injective. Indeed, suppose that (x1, y1) ∈ R(fi, n) and
(x2, y2) ∈ R(fj , n) are such that

h([(x1, y1)]) = b = h([(x2, y2)]).

For l = 1, 2, we write (xl, yl) = el(x
′
l, y

′
l) with el ≥ 1 and x′l, y

′
l ∈ Z coprime.

By definition, there exist σ1, σ2 ∈ SL2(Z) such that

σ1fi = [n/e21, b1, c1] and σ2fi = [n/e22, b2, c2]

with 0 ≤ b1, b2 < 2n, c1, c2 ∈ Z, satisfying

b = e1aσ1fi = e2aσ2fj .
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By Theorem 2.28, σ1fi and σ2fj are equivalent forms. Since f1, . . . , fr forms
a complete reduced system of representatives of the class of forms in C+

p (d),

we get that i = j and σ−1
1 σ2 ∈ Aut(fi). Since (1, 0)σl = (xl, yl) for l = 1, 2,

we finally obtain
(x1, y1) = (1, 0)σ1 = (x2, y2)σ1σ

−1
2 ,

whence the injectivity.

We finally prove that h is surjective. Let b be a proper ideal in O of norm
N(b) = n and choose a correctly ordered Z-basis (α, β) of b. Since N(b) ∈ b,
there exists x, y ∈ Z such that xα+ yβ = N(b). Again, write (x, y) = e(x′, y′)
with e ≥ 1 and x′, y′ ∈ Z coprime. Then, the primitive form fb,(α,β) properly
represents n/e2 through (x′, y′) ∈ Z2, since

fb,(α,β)(x
′, y′) =

N(x′α+ y′β)
N(b)

=
N(b)2/e2

N(b)
= n/e2.

Without loss of generality, suppose that fb,(α,β) is equivalent to f1 and let
σ ∈ SL2(Z) such that σf1 = fb,(n,α). Note that f1 represents n/e through

(w, z) = (x′, y′)σT . Let τ = ( w z
∗ ∗ ) such that τf1 = [n/e2, b′, c′] with 0 ≤ b′ <

2n. By definition,

h1((x, y)τ) = eaτf1 = eaτσ−1fb,(α,β)
,

which is equivalent to b by the correspondence theorem. In other words, there
exists λ ∈ K∗ such that (x)b = h1((x, y)τ). Since h1((x, y)τ) and b have norm
n, we conclude that N(x) = 1.

Finally, since b is proper, we have by definition {z ∈ K : xa ⊂ b} = O, so
λ ∈ O∗ and b = h1((1, 0)τ), which gives the surjectivity.

We will illustrate this proposition extensively at the end of the next section.

5. Number of representations of an integer by forms of given
discriminant

In the previous section, we determined a strong relationship between repre-
sentations of an integers by binary quadratic forms and norms of ideals. We
will now use this to determine explicitly the number of representations of an
integer by binary quadratic forms of given discriminant.

First of all, we have to be more exact with this notion, because:

1. Equivalent forms represent the same integers, therefore if an integer is
represented by a form, it is represented by infinitely many of them.
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2. The number of representations of an integer by a given form can be infi-
nite, since the group of automorphisms of forms of positive discriminant
is infinite and acts on sets of representations of an integer by a given
form.

To avoid these two problems, we will study the sets of representations by
primitive nonequivalent forms modulo automorphisms. Formally, this is, for
d ≡ 0, 1 (mod 4) a discriminant:

Rd(n) =

r
∐

i=1

R(fi, n)/Aut(fi),

where f1, . . . , fr is a complete system of representatives of C+
p (d). Recall that

equivalent form represent the same integers, so this does not depend on the
choice of the representatives and is hence well-defined.

The main theorem of this section is

Theorem 3.30. Let d ≡ 0, 1 (mod 4) be a discriminant and n ≥ 1 an integer.
Then

rd(n) := |Rd(n)| =
∑

m|n

(

d

m

)

,

where
( ·
·
)

is the Kronecker symbol.

In other words, the global question of determining the number of represen-
tations of an integer by all equivalent forms modulo automorphisms has a
remarkably nice answer. In the next chapter, we will also work on represen-
tations by a given form and we will see that the problem is harder.

Remark 3.31. Note that it is sufficient to work for representations of positive
integers since if n < 0 is an integer, then rd(−n) = rd(n), since a represen-
tations (x, y) ∈ Z2 of −n by a form f = [a, b, c] of discriminant d yields to
a representation of n by −f = [−a,−b,−c] of discriminants d through (x, y).
Since f is equivalent to a form g if and only if −f is equivalent to −g, whence
the claim.

As an immediate corollary, we will have for the definite case:

Corollary 3.32. Let d ≡ 0, 1 (mod 4) be a positive discriminant and n ≥ 1
an integer. Then the number of representations of n by equivalent positive
forms of discriminant d is

w
∑

m|n

(

d

m

)

,

where w is the number of automorphisms of a positive form of discriminant d
as given by Corollary 3.16.
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Proof. Immediately follows from Proposition 3.28 since no non-trivial au-
tomorphism of a form fixes a non-zero element of Z2 (Lemma 3.25). In-
deed, in the notations of Proposition 3.28, we have that |R(fi, p)/Aut(fi)| =
|Rp(fi, p)|/|Aut(fi)| and by Corollary 3.16, |Aut(f1)| = · · · = |Aut(fr)| :=
w.

In the next section, we will use this explicit expression for |Rd(n)| to obtain
the Dirichlet class number formula and other interesting results.

We give two proofs of this theorem: a first, straightforward and elegant, using
the point of view of quadratic fields and the second, longer and less insightful,
using only the point of view of binary quadratic forms. Thus, we will be able
to appreciate the efforts put into obtaining the correspondence between binary
forms and ideals of quadratic fields.

5.1. Proof from the point of view of quadratic fields

Let d ≡ 0, 1 (mod 4) be a negative integer and write d = F 2dK with dK a
fundamental discriminant and F ≥ 1. Let O be the order of conductor F in
the quadratic field of discriminant d.

Let us restate the result of Proposition 3.28 in terms of cardinalities:

Corollary 3.33. For n ≥ 1 an integer, we have that

rd(n) = |{a proper ideal of O : N(a) = n}| .

If d is a fundamental discriminant, we will be able to determine explicitly the
left hand side of the above equation, using the fact that maximal orders are
Dedekind domains. Therefore, we suppose from now that d is a fundamental
discriminant.

Corollary 3.34. For d < 0 a fundamental discriminant, rd(n) is a multi-
plicative function.

Proof. Let m,n ∈ Z be coprime integers. For k ∈ N, we define E(k) =
{a ideal of OK : N(a) = k} and we give a bijective map

f : E(mn) → E(m)× E(n).

If a ∈ E(mn), then mn = N(a) ∈ a, so a divides (mn) = (m)(n). By unique
factorization, we can write a = bc in a unique way with b, c ideals of OK such
that b|(m) but b 6 |(n) and c|(n) but c 6 |(m). Since N(b)|b and N(c)|c, we must
have N(b) = m and N(c) = n. Therefore, we can define f(a) = (b, c). Then
f is clearly injective. Moreover, if b ∈ E(n) and c ∈ E(m), then bc ∈ E(mn)
and f(bc) = (b, c), so we have a bijection and the result follows.
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Therefore, it suffices to determine rd at powers of prime numbers, which we
do now.

Corollary 3.35. For d < 0 a fundamental discriminant, p a prime number
and k ≥ 1, we have that

rd(p
k) =

k
∑

i=0

(

d

pi

)

.

Proof. By Corollary 3.34, we need to determine

∣

∣

∣{a ideal of OK : N(a) = pk}
∣

∣

∣ .

If a is an ideal of norm pk, then pk ∈ a, so a divides (pk). By Kummer-
Dedekind Theorem (Proposition A.23), we have that

(p) =











p1p2 (p1 prime, p1 6= p2) if (d/p) = 1

p2 (p prime) if (d/p) = 0

(p) ((p) prime) if (d/p) = −1.

Indeed, we have OK = Z[(d +
√
d)/2] (Proposition 2.5) and the minimal

polynomial of (d+
√
d)/2 is

f = X2 − dX +
d(d− 1)

4
∈ Z[X]

with discriminant d. Consequently, viewed in Zp[X], f is irreducible if and
only if (d/p) = −1, factors into two distinct irreducibles if and only if (d/p) = 1
and factors into the square of an irreducible if and only if p|d.
Note that in the first case, N(p1) = N(p2) = p and in the second caseN(p) = p
too. Consequently, we see that

− if (d/p) = 1, there are k+1 ideals of norm p, given by pk1, p
k−1
1 p2, . . . , p

k
2,

where (p) = p1p2.

− if (d/p) = 0, there is one ideal of norm p, given by pk, where (p) = p2k.

− if (d/p) = −1, there is one ideal of norm p if k is even, given by pk/2

where (p) is prime, and zero ideals of norm p if k is odd.

In the three cases, we have that rd(p
k) =

∑k
i=0

(

d/pi
)

and the result follows
by Corollary 3.34.

We are now able to prove Theorem 3.30 easily.
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Proof of Theorem 3.30. We write n = pv11 . . . pvrr , where p1, . . . , pr are the dis-
tinct primes dividing n. By the multiplicativity of rd, Corollary 3.35 and the
properties of the Kronecker symbol, we have that

rd(n) =

r
∏

i=1

rd(p
vi
i ) =

r
∏

i=1

k
∑

j=0

(

d

pi

)

=
∑

m|n

(

d

m

)

.

Remark 3.36. The restriction to fundamental discriminants could perhaps
be lifted, but it would not be straightforward, since orders are usually not
Dedekind domains. By lack of time and space, this has not been researched
further. Anyway, the same result will be proved below in the general case
and we only need fundamental discriminants to get to Dirichlet class number
formula.

5.2. Proof from the point of view of forms

To compare with the preceding approach (i.e. using the correspondence with
quadratic fields) and appreciate its elegance, we do another proof of Theorem
3.30 staying in the point of view of forms.

The first idea is to refine Proposition 1.28 and Lemma 1.25 to get a result
similar to Proposition 3.28.

Proposition 3.37. Let n ≥ 1 be an integer and d ≡ 0, 1 (mod 4) be a dis-
criminant. Then if f1, . . . , fr is a complete reduced system of representatives
of C+

p (d), then

r
∐

i=1

Rp(fi, n)/Aut(fi) and {b ∈ Z/2n : b2 ≡ d (mod 4n)}

are in a one-to-one correspondence.

Proof. The proof is quite similar to the one of Proposition 3.28 (except that
we work with proper representations).

Let f1, . . . , fr be a complete reduced system of representatives of C+(d). We
first define maps

hi : Rp(fi, n)/Aut(fi) → {b ∈ Z/2n : b2 ≡ d (mod 4n)}

by hi(x, y) = b′, where b is such that σf = [n, b′, c′] with σ = ( x y
∗ ∗ ) ∈ SL2(Z)

the unique matrix for which 0 ≤ b′ < 2n (Lemma 3.29).

If τ ∈ Aut(fi), then (x′, y′) = (x, y)τ is another representation of n by fi. As
in the proof of Proposition 3.28, we see that hi((x, y)τ) = hi(x, y).
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Therefore, we can induce maps hi : R(fi, p)/Aut(fi) → {b ∈ Z/2n : b2 ≡ d
(mod 4n)}, and then a map

h =
r
∐

i=1

hi : Rd(n) → {b ∈ Z/2n : b2 ≡ d (mod 4n)}.

We show that this map is injective. Indeed, suppose that (x1, y1) ∈ Z2 and
(x2, y2) ∈ Z2 are representations of n by fi, respectively fj , such that

h([(x1, y1)]) = [b]Z/2n = h([(x2, y2)])

with 0 ≤ b < 2n. By definition, there exists σ1, σ2 ∈ SL2(Z) such that
σ1fi = [n, b, c1] and σ2fi = [n, b, c2] with c1, c2ıZ. Consequently, since c1, c2
are determined by n, b and d, we get that

σ1fi = σ2fj , this is σ
−1
2 σ1fi = fj .

As in the proof of Proposition 3.28, we conclude that i = j and σ1σ
−1
2 (x1, y1) =

(x2, y2) with σ1σ
−1
2 ∈ Aut(fi), whence the injectivity.

We finally prove that h is surjective. Let 0 ≤ b < 2n such that b2 ≡ d
(mod 4n), i.e. d = b2−4nc for some c ∈ Z. The form [n, b, c] has discriminant
d, so it is equivalent to one of the fi, say f1 without loss of generality. Let
σ ∈ SL2(Z) such that σf1 = [n, b, c]. Note that n is properly represented by f1
through σT (1, 0). By definition, we consequently get that h(σT (1, 0)) = b.

The next step is to determine the cardinality of {b ∈ Z/2n : b2 ≡ d (mod 4n)}
for n, d as above.

Definition 3.38. For m,n ≥ 1, let Sm(n) = |{x ∈ Z/m : x2 ≡ n (mod m)}|
be the number of solutions to x2 ≡ n in Z/m.

Lemma 3.39. Let p be a prime number, r ≥ 1 and n ≥ 1 an integer coprime
to p. Then

Spr(n) = 1 +

(

n

p

)

for p > 2, r ≥ 1

and if n is odd, r > 2,

S2(n) = 1, S4(n) =

{

0 if n ≡ 3 (mod 4)

2 if n ≡ 1 (mod 4)
, S2r(n) =

{

4 if n ≡ 1 (mod 8)

0 otherwise.

Proof. See [Lan99, Theorem 87, p. 62].

Lemma 3.40. Let d ≡ 0, 1 (mod 4) be an integer and n > 0 coprime to d.
Then

S4n(d) = 2
∑

m|n squarefree

(

d

m

)

,

where
( ·
·
)

is the Kronecker symbol.
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Proof. We write n = 2d0pd11 · · · pdrr with p1, . . . , pr > 2 the prime numbers
dividing n and d1, . . . , d2 ≥ 0. By the Chinese Theorem,

Z/4n ∼= Z/2d0+2 × Z/pd11 × · · · × Z/pdrr

as rings. The number S4n(d) can therefore be deduced from Lemma 3.39.
Looking at the different cases for S2d0+2(d), we see that it equals 2

(

1 +
(

d
2

))

if d0 ≥ 1 (i.e. 2|n) and 2 if d0 = 0 (i.e. 2 6 |n). Therefore

S4n(d) = 2
∏

p|n

(

1 +

(

d

p

))

=
∑

m|n squarefree

(

d

m

)

by the multiplicative properties of the Kronecker symbol.

Proof of Theorem 3.30. By Proposition 3.37, we have that

r
∑

i=1

|Rp(fi, p)/Aut(fi)| =
∣

∣{b ∈ Z/2n : b2 ≡ d (mod 4n)}
∣

∣ .

Note that

|{x ∈ Z/4n : x2 ≡ d (mod 4n)}| = 2|{x ∈ Z/2n : x2 ≡ d (mod 4n)}|.

Indeed, we can define a map ϕ : {x ∈ Z/4n : x2 ≡ d (mod 4n)} → Z/2 ×
{x ∈ Z/2n : x2 ≡ d (mod 4n)}, where ϕ([x]) = (0, [x]) if 0 ≤ x < 2n and
ϕ([x]) = (1, [x]) if 2n ≤ x < 4n. It is well-defined, injective, and surjective
because for all 0 ≤ x < 2n such that x2 ≡ d (mod 4n), we have (x+2n)2 ≡ d
(mod 4n) and then

ϕ([x]) = (0, [x]), ϕ([x+ 2n]) = (1, [x]).

We can now count the number of proper representations of n, combining
Proposition 3.37 and Lemma 3.40:

r
∑

i=1

|Rp(fi, n)/Aut(fi)| =
∑

m|n
m squarefree

(

d

m

)

.

If (x, y) ∈ Z2 is any (proper or improper) representation of n by fi, we can
write x = lx′ and y = ly′ with l = (x, y) and x′, y′ ∈ Z coprime. So we
have n = fi(x, y) = l2fi(x

′, y′), this is (x′, y′) is a proper representation of the
integer n/l2. Conversely, if 1 ≤ l|n2 and (x′, y′) ∈ Z2 is a proper representation
of n/l2 by fi, then l(x

′, y′) is an improper representation n by fi. Hence we
see that there is a bijection between

R(fi, n) and
∐

1≤l|n2

Rp(fi, n/l
2).
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Hence, permuting sums, we finally obtain that

rd(n) =

r
∑

i=1

|Rp(fi, n)/Aut(fi)| =

r
∑

i=1

∑

1≤l|n2

|Rp(fi, n/l
2)/Aut(fi)|

=
∑

1≤l|n2

∑

m| n
l2

m squarefree

(

d

m

)

=
∑

1≤l|n2

∑

ml2|n
m squarefree

(

d

m

)

=
∑

m|n

(

d

m

)

.

5.3. Examples

Note that Propositions 3.28 and 3.37 with their proofs give explicit methods
to determine all representations of an integer by a given form and invertible
ideals of given norm in orders of quadratic fields.

In this paragraph, we illustrate these on a couple of examples.

Example 3.41. We compute the correspondence of Proposition 3.37 explic-
itly for d = −3 and n = 309. We know that h(−3) = 1 all primitive positive-
definite forms of discriminant à −3 being equivalent to [1, 1, 1]. Theorem 3.30
gives

rd(n) = w
∑

m|n

(

d

m

)

= 6 · 2 = 12.

There are two solutions to b2 ≡ −3 (mod 4 · 309) for b ∈ Z/(2 · 309), given
by b = 93, 525. As in the proof of Proposition 3.37, the forms attached are,
respectively,

f1 = [309, 93, 7] and f2 = [309, 525, 223].

Using the method of Proposition 1.43, we find that fi = σi[1, 1, 1] with

σ1 =

(

20 −7
3 −1

)

and σ2 =

(

−13 −7
−11 −6

)

The proper representations of 309 by [1, 1, 1] nonequivalent under automor-
phisms are then given by (20,−7) and (−11,−6). Using the explicit list of
automorphisms computed in Example 3.17, we find that all proper represen-
tations of 309 by f1 are given by the 6 · 2 = 12 solutions

(−20, 7), (11, 6), (20,−7), (−11,−6), (13,−20), (−17, 11), (−13, 20), (17,−11),

(−7,−13), (−6, 17), (7, 13), (6,−17).



Chapter 3. Using the two points of view 74

Since 309 = 3 · 103 is squarefree, there are no unproper representations of
309 by [1, 1, 1]. Otherwise, we’d also have to determine the representations of
309/l2 for each l square dividing 309.

Let K = Q(
√
−3). By Proposition 3.28, there are exactly 2 ideals of norm

309, given by af1 and af2 , namely

[309, (93−
√
−3)/2] and [309, (525−

√
−3)/2].

Example 3.42. We illustrate the correspondence of Proposition 3.37 for d =
−23 and n = 16. We saw in Table 3.1 that h(−23) = 3, with the reduced
forms

f1 = [1, 1, 6], f2 = [2, 1, 3], f3 = [2,−1, 3].

There are two solutions to b2 ≡ −23 (mod 4 · 16) for b ∈ Z/(2 · 16), given by
b = 13, 19. The forms attached are, respectively,

g1 = [16, 13, 3] and g2 = [16, 19, 6].

We have f1 = σ1g2 and f2 = σ1g3 with

σ1 =

(

−1 −2
0 −1

)

and σ2 =

(

1 −2
1 −1

)

.

The proper representations of 16 by f1 and f2 nonequivalent under automor-
phisms are therefore given by (−1,−2), respectively (1,−2). We proceed as
before to get them all. Also, there are two ideals of norm 16 in OK with
K = Q(

√
−23) by Proposition 3.28, given by

[16, (13−
√
−23)/2] and [16, (19−

√
−23)/2].

Example 3.43. To illustrate the indefinite case, we compute the correspon-
dence of Proposition 3.37 explicitly for d = 28 and n = 333. There are
four solutions to b2 ≡ 28 (mod 4 · 333) for b ∈ Z/(2 · 333), given by b =
278, 314, 352, 388. The forms attached are, respectively,

g1 = [333, 278, 58], g2 = [333, 314, 74], g3 = [333, 352, 93], g4 = [333, 388, 113].

Using reduction of indefinite forms (see Chapter 1), we see that they are all
equivalent to the form f = [1, 4,−3] (see Example 1.57), i.e. gi = σif with

σ1 =

(

12 7
5 3

)

, σ2 =

(

−15 −2
−7 −1

)

, σ3 =

(

23 −2
12 −1

)

, σ4 =

(

40 −7
23 −4

)

.

Therefore, proper representations of 333 by f nonequivalent under automor-
phisms of f are given by

s1 = (12, 7), s2 = (−15,−2), s3 = (23,−2), s4 = (40,−7).
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Using the explicit description of the automorphisms of f given in Example
3.22, we can parametrize all proper representations of 333 by f , namely

si

(

(m− 4n)/2 −n
−3n (m+ 4n)/2

)

withm,n ∈ Z solutions to the Pell equationsm2−28n2 = ±4 and i = 1, . . . , 4.

Let K = Q(
√
7) and O = Z + 2OK the order of conductor 2 in K. By

Proposition 3.28, there are four invertible ideals of norm 333 in O, given by

[333, (278− 2
√
7)], [333, (314− 2

√
7)], [333, (352− 2

√
7)], [333, (388− 2

√
7)].



chapter 4

DIRICHLET CLASS NUMBER FORMULA

With the theory developed and the results obtained in the previous chapter,
we are now in position to prove the famous Dirichlet class number formula,
which gives an explicit formula for hf (d), the number of classes of forms of
discriminant d (or equivalently, up to a constant, the cardinality of the Picard
group of an order in a quadratic field/class number h(d) if d is a fundamental
discriminant), in terms of a Dirichlet L-series.

The main result of the previous chapter is Theorem 3.30, which gives an
explicit expression for the global problem of counting all representations of
an integer by nonequivalent forms modulo automorphisms. More precisely, if
n ≥ 1 and d ≡ 0, 1 (mod 4) is a discriminant, then

rd(n) =
∑

m|n

(

d

m

)

. (4.1)

The idea which will lead to the class number formula is to approximate the
average

Ad(N) :=
1

N

∑

n≤N

rd(n)

in two ways, working form by form, by counting lattice points in geometrical
shapes, and globally (i.e. considering a whole system of representatives at the
same time), using Formula (4.1).

1. A global estimation with L-series

1.1. Dirichlet characters and L-series

First of all, we briefly recall some facts and definitions about Dirichlet char-
acters and L-series, for the record.

Definition 4.1. A Dirichlet character modulo q ≥ 1 is a character of the
group (Z/n)∗, this is a group homomorphism χ : (Z/q)∗ → C∗.

Example 4.2. If q is an nonzero integer such that q ≡ 0, 1 (mod 4), then the
Kronecker symbol

( ·
·
)

gives a character χ modulo q defined by

χ(n) =
( q

n

)

.

76
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We extend the domain of all Dirichlet characters χ modulo q to Z/q by setting
χ(x) = 0 if (n, x) > 1, so we get arithmetic functions. We denote by χ0 the
trivial character modulo q (i.e. χ(x) = 1 for all x ∈ (Z/q)∗)

Proposition 4.3. If χ is a Dirichlet character modulo q, then |χ(x)| ≤ 1 for
all x ∈ Z/q and

∣

∣

∣

∣

∣

∑

x∈I
χ(x)

∣

∣

∣

∣

∣

≤ q

for all bounded interval I ⊂ N.

Proof. See [Dav00, Ch. 4].

Definition 4.4. The Dirichlet L-series associated to a Dirichlet character
χ is the series

L(χ, s) =
∑

n≥1

χ(n)

ns
(s ∈ C).

Proposition 4.5. Let χ be a Dirichlet character modulo q. If χ is not the
trivial character, then L(χ, s) converges uniformly on all compact sets of the
half-plane Re(s) > 0 and defines an holomorphic function in this domain.
Moreover, we have the following estimation for the partial sums:

∑

1≤n≤N

χ(n)

ns
= L(χ, s) +O

(

q|s|
σNσ

)

for all N ≥ 1 and s ∈ C such that σ = Re(s) > 0.

Proof. See [Dav00, Ch. 4].

1.2. The global asymptotic estimation

Using Equation (4.1) and permuting the sums, we obtain

NAd(N) =
∑

n≤N

rd(n) = w
∑

n≤N

∑

m|n

(

d

m

)

= w
∑

m≤N

∑

n≤N
m|n

(

d

m

)

= w
∑

m≤N

[

N

m

](

d

m

)

.

A straightforward way to approximate this sum would be to write [N/m] =
N/m + O(1), but this would give Ad(N) = constant + O(1) and we want an
explicit formula. Instead, we split the sum at some 1 < K < N (to determine
later) and work on the two parts separately (Dirichlet hyperbola method).
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For the highest values, note that

∑

K<m≤N

[

N

m

](

d

m

)

=
∑

K<m≤N

∑

l≤N/m

(

d

m

)

≤
∑

K<m≤N

∑

l≤N/K

(

d

m

)

,

so we can use Proposition 4.3 to get
∣

∣

∣

∣

∣

∣

∑

K<m≤N

[

N

m

](

d

m

)

∣

∣

∣

∣

∣

∣

≤ |d|N
K
.

For the lower part, we can use the straightforward approximation of [N/m],
to get

∑

m≤K

[

N

m

](

d

m

)

=
∑

m≤K

(

N

m
+O(1)

)(

d

m

)

= N
∑

m≤K

1

m

(

d

m

)

+O(K).

Note that here, we will control the error term by a good choice of K.

By Proposition 4.5, the first term of the rightmost expression is L(
(

d
·
)

, 1) +
O(N |d|/K). Therefore,

∑

m≤K

[

N

m

](

d

m

)

= NL((d/·), 1) +O(N |d|/K) +O(K)

and combining the two parts, we finally get

NAd(N) =
N |d|
K

+NL((d/·), 1) +O(N |d|/K) +O(K).

Thus, we can choose K =
√

N |d| (which is smaller than N as soon as N ≥ |d|)
to obtain

Ad(N) =
|d|
K

+ L((d/·), 1) +O(|d|/N) +O(K/N)

= L((d/·), 1) + o(1). (4.2)

as N → ∞.

2. A ”geometrical” estimation working form by form

After the global estimation done in the previous section, we shall now proceed
in an of Ad(N) working form by form. The goal is to obtain an expression

Ad(N) = C + o(1)

when N → ∞, with C independent from N . Indeed, we would then directly
get an explicit expression for hf (d).
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Let d ≡ 0, 1 (mod 4) be a discriminant and f1, . . . , fhf (d) ∈ Form+
p (d) a com-

plete reduced system of representatives of C+
p (d) . We remark that

rd(N) =

∣

∣

∣

∣

∣

∣

hf (d)
∐

i=1

R(fi, n)/Aut(fi)

∣

∣

∣

∣

∣

∣

=

hf (d)
∑

i=1

|R(fi, n)/Aut(fi)|,

so permuting the two sums, we obtain problems concerning one form at a
time,

NAd(N) =

hf (d)
∑

i=1

∑

n≤N

|R(fi, n)/Aut(fi)|, (4.3)

namely counting the number of proper representations of 0, . . . , N by a given
form, modulo automorphisms.

We begin by the case of definite forms, since it is easier. Indeed, if d < 0,
then |Aut(f1)| = · · · = |Aut(fhf (d))| := w < ∞ by Corollary 3.16 and hence,
Equation (4.3) reads

wNAd(N) =

hf (d)
∑

i=1





∑

n≤N

rfi(n)



 ,

with rfi(n) := |R(fi, n)|. In other words, we have to count the number of
integral points inside the ellipse defined by each of the fi.

2.1. Integral points inside an ellipse

Let f = [a, b, c] be a reduced form of discriminant d = b2 − 4ac < 0 (in
particular, a > 0). For an integer N ≥ 1 fixed, we are interested in the number
of integers (x, y) ∈ Z2 such that ax2+ bxy+ cy2 ≤ N , this is the number η(E)
of integral points inside the (solid) ellipse (E) : ax2 + bxy + cy2 ≤ N .

To approximate η(E), we consider for each P = (x, y) ∈ Z2 the square of side
1/2 centered in P ,

SP = {(z1, z2) ∈ R2 : |x− z1| ≤ 1/2, |y − z2| ≤ 1/2}.

Then note that

Area(E) =
∑

P∈E∩Bc∩Z2

1−Area

(

⋃

P∈B∩E
(SP ∩ Ec)

)

+Area

(

⋃

P∈B∩Ec

(SP ∩ E)

)

= η(E)−
∑

P∈B∩E
Area(SP ∩ Ec) +

∑

P∈B∩EC

Area(SP ∩ E)

≤ η(E) +
∑

P∈B
1.
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Figure 4.1: Integral points inside an ellipse.

where B = {P ∈ Z2 : SP ∩ ∂E 6= ∅}. Therefore, we could approximate η(E)
by Area(E) with an error smaller than |B|.
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Figure 4.2: Approximating η(E) with Area(E).

Note that, completing the square, the relation ax2 + bxy + cy2 ≤ N can be
rewritten as

(√
ax+

b

2
√
a
y

)2

+
|d|
4a
y2 ≤ N. (4.4)

Hence, we see that

|y| ≤
√

4aN/|d| and
∣

∣

∣

∣

√
ax+

b

2
√
a
y

∣

∣

∣

∣

≤
√

4aN − |d|y2
4a

≤
√
N.
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Geometrically, it means that the ellipse is contained in a parallelogram ABCD
withAB =

√

N/a and whose perpendicular height from C has length
√

4aN/|d|
(see Figure 4.3). Less precisely, it also implies that the ellipse is contained in
a rectangle of sides

√

N/a and
√

4aN/|d|.

√

N/a

√

4a
N
/|d|

A B

C
D

b b

bb

Figure 4.3: Ellipse bounded by a parallelogram.

We prove the following generalization of the classical sum-integral comparison
(see [Krä88]):

Proposition 4.6. Let D ⊂ Rm be a measurable set which is contained in a
hyper-rectangle D′ ⊂ Rn, D′ = {x ∈ Rn : |xi − yi| ≤ ri} for some yi ∈ R,
ri > 0, 1 ≤ i ≤ m. Then, if f : D′ → R is a non-negative continuous bounded
function monotonic in each variable, we have that

∑

n∈D
f(n) =

∫

D
f(x1, . . . , xm)dx1 · · · dxn +O

(

m
∑

i=1

r1 . . . rm
ri

)

.

Proof. We proceed by induction on m ≥ 1. If m = 1, this is the classical
integral-series comparison:

∑

n∈D
f(n) =

∫

x∈D
f(x)dx+O

(

max
x∈D

f(x)

)

.

Suppose that the result holds for some m − 1 ≥ 1 and let us prove it for m.
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Let D,D′ and f as above. Then by hypothesis and the case n = 1,

∑

n∈D
f(n) =

∑

(n1,...,nm−1)∈π(D)

∑

(n1,...,nm)∈D
f(n1, . . . , nm)

≪
∫

π(D)





∑

x=(x1,...,xm−1,nm)∈D
f(x)



 dx1 · · · dxm−1 +

m−1
∑

i=1

r1 . . . rm
ri

≤
∫

π(D)





∑

x=(x1,...,xm−1,nm)∈D′

f(x)



 dx1 · · · dxm−1 +
m−1
∑

i=1

r1 . . . rm
ri

≪
∫

π(D)

(∫

D
f(x1, . . . , xm)dxm + 1

)

dx1 . . . dxm−1 +
m−1
∑

i=1

r1 . . . rm
ri

=

∫

D
f(x)dx+

m−1
∑

i=1

r1 . . . rm
ri

+ r1 . . . rm−1

=

∫

D
f(x)dx+

m
∑

i=1

r1 . . . rm
ri

,

where π : Rm → Rm−1 is the projection forgetting the mth variable. The
reverse inequality is proved similarly.

By Proposition 4.6 applied to our ellipse contained in a rectangle, we finally
get that

η(E) =
∑

n∈E
1 = Area(E) +O

(

√

aN/|d|+
√

N/a
)

.

The area of E is easily computed with the change of variables s =
√
ax +

b/(2
√
a)y and t = y, using Equation (4.4):

Area(E) =

∫ ∫

E
dxdy =

1√
a

∫

ds

∫

dt 1s2+|d|/(4a)t2≤N =
2πN
√

|d|
,

since the area of the ellipse E′ : s2 + |d|/(4a)t2 ≤ N is 2πN
√

a/|d|.
Thus, we finally obtain that

η(E) =
2πN
√

|d|
+Od(

√
N). (4.5)

Indeed, a is bounded by a constant depending only on d (see Proposition 1.41)
as long as f is reduced.
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2.2. Conclusion

We can now return to Equation 4.3 and use the approximation obtained in
the last paragraph:

NAd(N) =

hf (d)
∑

i=1

∑

n≤N

rfi(n) =

hf (d)
∑

i=1

(

2πN
√

|d|
+Od(

√
N)

)

therefore

Ad(N) =
2πhf (d)
√

|d|
+O

(

hf (d)/
√
N
)

. (4.6)

3. The class number formula for imaginary quadratic fields

In the two previous section, we obtained the estimations

wAd(N) =
2πhf (d)
√

|d|
+O

(

hf (d)/
√
N
)

(Equation (4.6))

when d < 0 and

Ad(N) = L((d/·), 1) + o(1) (Equation (4.2)).

Combining the two ones, we immediately get an explicit formula for hf (which
is equal to h for negative fundamental discriminants by Proposition 3.7),
Dirichlet class number formula for imaginary quadratic fields:

Proposition 4.7 (Dirichlet class number formula for imaginary quadratic
fields, 1839). Let d ≡ 0, 1 (mod 4) be a negative discriminant. Then

hf (d) =
w

2π

√

|d|L((d/·), 1).

Note that as an immediate corollary, because hf (d) is the cardinal of a group,
we get that

L((d/·), 1) ≥ 2π

w
√

|d|
and since w = 2 if d < −4, this implies L((d/·), 1) ≥ π/

√

|d| in this case.

4. The form-by-form estimation in the indefinite case

We return to the form-by-form estimation in the indefinite case. Recall that
by Equation (4.3), we want to find an estimation of

∑

n≤N |R(f, n)/Aut(f)|
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for a given indefinite form f , since

NAd(N) =

hf (d)
∑

i=1

∑

n≤N

|R(fi, n)/Aut(fi)| (4.7)

if f1, . . . , fhf (d) is a complete system of representatives of C+
p (d). Without loss

of generality, we can suppose that theX2-coefficients of these forms is positive.
Indeed, if f is an indefinite form, then f represents a positive number n and
by Proposition 1.25, we get that f is equivalent to a form [n, ∗, ∗].
The situation is more complicated than in the definite case, because Aut(f)
is infinite and the same holds for R(f, n) as soon as it contains an element.

To overcome this, the idea is, given an indefinite form f , to find a set of rep-
resentatives of R(f, n)/Aut(f) (so points in Z2) characterized in a geometric
way so we can count them as what we did in the definite case.

4.1. Determining a set of representatives

Let f = [a, b, c] be an indefinite form. By Example 3.22, the Aut(f)-orbit of
an element (x, y) ∈ Rp(f, n) is given by

{

(x, y)

(

(u+ nb)/2 −na
nc (u− nb)/2

)

: u2 − dn2 = ±4

}

.

Recall that Aut(f) is isomorphic to Z/2×Z (Proposition 3.19) and the same
holds for the group of solutions (u, n) ∈ Z2 to u2−dn2 = ±4 with the induced
group structure from Aut(f). More precisely, it can be shown (see [Fla89, Ch.
4, §3]) that there exists a real number εd > 1 such that

{(u, n) ∈ Z2 : u2 − dn2 = ±4} =

{

(u, n) ∈ Z2 :
u+ n

√
d

2
= ±εkd, k ∈ Z

}

.

Explicitly, εd = (t0 + u0
√
d)/2, with (t0, u0) ∈ Z2 the solution to the Pell

equation t2 − du2 with u0, t0 > 0 and u0 minimal.

Now, let ρ± = (−b±
√
d)/(2a) be the two zeroes of f( · , 1) so that

f = a(X − Y ρ+)(X − Y ρ−).

If (x′, y′) is another representation of n by f equivalent to (x, y),

(x′, y′) = (x, y)

(

(u+ nb)/2 −na
nc (u− nb)/2

)

,
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with u2 − dn2 = ±4 (x, y), then the first factor transforms to

x′ − y′ρ+ =
u+ nb

2
x+ ncy − ρ1

(

−nax+
u− nb

2
y

)

=

(

u+
√
dn

2

)

x+

(

n(4nc− b2) + bu−
√
du+

√
dnb

4a

)

y

=
u+

√
dn

2
(x− yρ+) = ±εkd(x− yρ+).

for some k ∈ Z and similarly

x′ − y′ρ− =
u−

√
dn

2
(x− yρ−) = ±ε−k

d (x− yρ−).

Therefore, we have the relation

x′ − y′ρ+
x′ − y′ρ−

= ε2kd
x− yρ+
x− yρ−

,

which implies that a representative (x′, y′) of R(f, n)/Aut(f) can be uniquely
determined with the condition

1 ≤ x′ − y′ρ+
x′ − y′ρ−

< ε2d.

Recall that
(−1 0

0 −1

)

is always an automorphism, so (−x,−y) ∈ R(n, f) is
equivalent to (x, y). Consequently, we may assume that x′ − y′ρ− is positive.
A representation satisfying these conditions will be called f -primary. By
definition, there are finitely many of them.

4.2. Integral points counting

By the previous paragraph, for f an indefinite form,

∑

n≤N

|Rp(f, n)/Aut(f)| =
∑

n≤N

∑

(x,y)∈Rp(f,n)
f−primary

1

and we are again reduced to computing the number of integral points inside
a certain region of the plane, namely

E =

{

(x, y) ∈ Z2 : f(x, y) ≤ N, x− yρ− > 0, 1 ≤ x− yρ+
x− yρ−

< ε2
}

with ρ± are the roots of f( · , 1) as given in the previous paragraph.
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Since this region is still included in the ellipse f(x, y) = N , it is, as in Para-
graph 4.2.1, contained in a rectangle of sides

√

N/a and
√

4aN/|d|. We may
therefore apply Proposition 4.6:

∑

(x,y)∈E
1 = Area(E) +O

(

√

N/a+
√

4aN/|d|
)

.

To determine the area of E, we do the change of variables

u(x, y) = x− yρ+

v(x, y) = x− yρ−

whose Jacobian is ρ+ − ρ− =
√
d/a. Since f(x, y) = a(x− yρ+)(x− yρ−), we

see that E can be written in the coordinates as

E =

{

(x, y) ∈ Z2 : au(x, y)v(x, y) ≤ N, v(x, y) > 0, 1 ≤ u(x, y)

v(x, y)
< ε2

}

.

√

N/a ε
√

N/a
u

v

Figure 4.4: The region E in coordinates (u, v).

Consequently,

Area(E) =
a√
d

(

∫

√
N/a

0

(

u− u

ε2

)

du+

∫ ε
√

N/a

√
N/a

(

N

au
− u

ε2

)

du

)

=
a√
d

((

1− 1

ε2

)

N

a
+
N

a
log ε− ε2

N

aε2
+

N

aε2

)

=
N√
d
log ε.

Hence,

∑

(x,y)∈E
1 =

N√
d
log ε+O

(

√

N/a+
√

4aN/|d|
)

=
N√
d
log ε+Od(

√
N), (4.8)
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since a is bounded by a constant depending on d (see Proposition 1.52).

4.3. Conclusion

By Equation (4.7) and our form-by-form estimation (Equation (4.8)), we ob-
tain that

NAd(N) =

hf (d)
∑

i=1

∑

n≤N

|R(fi, n)/Aut(fi)| =
hf (d)
∑

i=1

(

N√
d
log ε+Od(

√
N)

)

,

therefore

Ad(N) =
hf (d)√

d
log ε+Od

(

hf (d)/
√
N
)

. (4.9)

5. The class number formula for real quadratic fields

In a similar manner than for positive discriminants, we obtained the estimation

Ad(N) =
hf (d)√

d
log ε+Od

(

hf (d)/
√
N
)

Equation (4.9)

and we still have the global estimation

Ad(N) = L((d/·), 1) + o(1) (Equation (4.2)).

Combining these, we directly obtain

Proposition 4.8 (Dirichlet class number formula for real quadratic fields,
1839). Let d ≡ 0, 1 (mod 4) be a positive squarefree discriminant. Then

hf (d) =
1

log εd

√
dL((d/·), 1),

where εd = (t0 + u0
√
d)/2, with (t0, u0) ∈ Z2 is the solution to Pell equation

t2 − du2 with u0, t0 > 0 and u0 minimal.

Remark that the only difference with the imaginary case is that the factor
w/(2π) is replaced by 1/ log εd.

By Proposition 3.7, we get a similar formula for h(d) when d > 0 is a funda-
mental discriminant (namely the same one, multiplied by a factor of 1 or 1/2,
depending on whether the ring of integers of Q(

√
d) has a unit of norm −1 or

not), Dirichlet class number formula for real quadratic fields.
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5.1. A lower bound for L((d/·), 1)

As in the imaginary case, we can use the class number formula to obtain a
lower bound for L((d/·), 1) when d > 0. Indeed, since hf (d) is the cardinal of
a group, we get that

L((d/·), 1) ≥ log εd√
d
.

On the other hand,

εd =
t0 + u0

√
d

2
>

√
d,

because t20 = 4 + du20 > du20 ≥ d. Thus

L((d/·), 1) ≥ log
√
d√

d
.



chapter 5

CONCLUSION AND PERSPECTIVES

The aim of this project was to study and present the relationship between
binary quadratic forms and quadratic fields. As a final result, we obtained the
Dirichlet class number formula, expressing class numbers of quadratic fields in
terms of a L-series. In a certain sense, this result and its proof summed up the
correspondence between forms and quadratic fields, since the main ingredients
of the proof were:

− Using the equality up to a constant of hf and h to move the problem
between class numbers of forms and class numbers of quadratic fields.
In the point of view of forms, a lattice point counting led to an estimation
of the number of representations of some integers by a given form;

− Obtaining a closed expression counting representations of a given inte-
gers by forms of given discriminants (modulo equivalence of forms and
actions of automorphisms).
To do this, we transposed the problem in the point of view of quadratic
fields, seeing it as the question of integers represented by norms of ideals,
where the problem was much easier to understand and solve (observing
how ideals generated by prime numbers factorize).

Being without any doubt a beautiful theoretical result, we saw that the corre-
spondence could moreover be used in computations, being of benefit for both
points of view. This is, for example:

− Determining Picard groups of orders in quadratic fields explicitly using
the theory of reduction of forms;

− Determining and parametrizing representations of integers by given forms,
using the parametrization of automorphisms obtained from units in or-
ders of quadratic fields.

Perspectives

The following topics could be studied further to the subjects introduced in
this document:

− Asymptotic formulas for averages of class numbers, as conjectured by

89



Chapter 5. Conclusion and perspectives 90

Gauss in the Disquisitiones Arithmeticae [Gau86, Art. 302 and 304]:

∑

k≤N

h(−4k) ∼ 4π

21ζ(3)
N3/2,

∑

k≤N

h(4k) log ǫ4k ∼ 4π2

21ζ(3)
N3/2.

The first one, in the imaginary case, was proven by Lipschitz in 1865.
The second one, in real case, was proven (along with more precise ver-
sions and for all discriminants) by Siegel in 1944 ([Sie44]), using the
Pólya-Vinogradov inequality.

− We could investigate how the structure of the class groups (forms and
Picard groups) can be determined using the two settings (recall that
these are finite abelian groups) and complete Tables 3.1 and 3.3 with
this information.

− Genus theory, allowing to say much more about representation of inte-
gers whose discriminant has class number more than 1 (see [Cox89]).

− Bhargava’s articles [Bha04a], [Bha04b], [Bha04c] and [Bha08], intro-
duced in Chapter 3.

− Generalization of Dirichlet class number formula in Picard groups of
orders in quadratic fields and Heegner, Stark and Baker’s proof for the
answer to the class number one problem (see [Cox89, Ch. 2, §7]).

− Siegel’s formula: for any ε > 0, there exists a constant C(ε) > 0 (not
computable) such that for all fundamental discriminants d,

h(d) > C(ε)|d|1/2−ε

or Goldfeld-Gross-Zagier’s formula, whose constant is explicit:

h(d) =
log |dK |
7000

∏

p|d

(

1− ⌈2√p⌉
p+ 1

)

.
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[Sam71] Pierre Samuel. Théorie algébrique des nombres. Hermann, Paris, 1971.

91

http://www.dms.umontreal.ca/~andrew/Courses/MAT6684.W07.html
http://www.sagemath.org


Bibliography 92

[Shi94] Goro Shimura. Introduction to the arithmetic theory of automorphic func-
tions. Princeton University Press, Princeton, N.J, 1994.

[Sie44] Carl Ludwig Siegel. The average measure of quadratic forms with given
determinant and signature. Annals of Mathematics, 45(4):pp. 667–685,
1944.

[ST10] Joseph Silverman and John Tate. Rational points on elliptic curves.
Springer-Verlag, New York, 2010.

[Ste03] William Stein. Elementary number theory and elliptic curves.
http://modular.math.washington.edu/edu/Fall2002/124/stein/,
2003.

[Sti10] John Stillwell. Mathematics and its history. Springer, New York, 2010.

http://modular.math.washington.edu/edu/Fall2002/124/stein/


appendix a

NUMBER FIELDS

Definition A.1. An (algebraic) number field is a finite extension of Q.

Proposition A.2. Any number field K is a simple extension, i.e. there exists x ∈ K
such that K = Q(x).

In the rest of this chapter, let K be a number field.

1. Ring of integers

Definition A.3. An element of K is an algebraic integer if it is the root of an
monic polynomial with integer coefficients.

Proposition A.4. An element of K is an algebraic integer if and only if its minimal
polynomial on Q has integer coefficients.

Proof. See sections 2.1-2.3 of [Sam71] or section I.2 of [Neu99].

Proposition A.5. The set of algebraic integers of K is a ring, denoted by OK , the
ring of integers. We have that OK ∩Q = Z and K is the field of fractions of OK .
More precisely, every element of K can be written as a/b where a ∈ OK and b ∈ Q∗

Proof. See sections 2.1-2.3 of [Sam71] or section I.2 of [Neu99].

Proposition A.6. The ring of integers of K is a free abelian group of rank the degree
of K. In particular, K possesses a Q-basis consisting of algebraic integers.

Speaking of free abelian group, let us recall the following result:

Proposition A.7. Let G be a free abelian group of rank n with basis (x1, . . . , xn). Let
C a n× n matrix with integer entries and define yi =

∑n
j=1 cijxj ∈ G for 1 ≤ i ≤ n.

Then (y1, . . . , yn) is a basis for G if and only if C ∈ GLn(Z).

2. Norm, trace and characteristic polynomial

Definition A.8. Let K an algebraic number field. For all x ∈ K, we can consider
the Q-linear map mx : K → K given by mx(y) = xy. Then for all x ∈ K, we define

− NK(x) = det(mx) ∈ Q, the norm of x;

− TrK(x) = Tr(mx) ∈ Q, the trace of x;

− ∆K(x) = det(X id−mx) ∈ Q[X] the characteristic polynomial of x.
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Proposition A.9. Let K an algebraic number field and x, x′ ∈ K, a ∈ Q. Then

− The trace is a Q-linear function;

− The norm is a multiplicative function and N(a) = an, N(ax) = anN(x);

− The characteristic polynomial of x verifies ∆(x) = Xn − Tr(x)Xn−1 + · · · +
(−1)nN(x).

Proposition A.10. Let K = Q(θ) be an algebraic number field of degree n and
x ∈ K. If σ1, . . . , σn : K → C are the n distinct K-homomorphisms, then

N(x) =

n
∏

i=1

σi(x), Tr(x) =

n
∑

i=1

σi(x), ∆(x) =

n
∏

i=1

(X − σi(x)).

Corollary A.11. If x is an algebraic integer of a number field, then the same holds
for NK(x) and TrK(x).

3. Discriminants

Definition A.12. Let K be an algebraic number field and let (x1, . . . , xn) be a
Q-basis of K. The discriminant of (x1, . . . , xn) is

D(x1, . . . , xn) = det(Tr(xixj))ij .

Proposition A.13. Let K = Q(θ) be an algebraic number field of degree n and
(x1, . . . , xn) a Q-basis of K. If σ1, . . . , σn : K → C are the n distinct K-homomorphisms,
then

1. D(x1, . . . , xn) = (det(σi(xj))ij)
2 6= 0;

2. D(x1, . . . , xn) is a nonzero rational integer;

3. If (y1, . . . , yn) is another Q-basis, then

D(y1, . . . , yn) = det(M)2D(x1, . . . , xn),

where (y1, . . . , yn)
T =M(x1, . . . , xn)

T .

Proposition A.14. Let K be an algebraic number field of degree n and (x1, . . . , xn)
a Q-basis of K. If D(x1, . . . , xn) is squarefree, then (x1, . . . , xn) is an integral basis

(i.e. a basis for the free abelian group OK).

Note that any integral basis is a Q-basis for the number field (by the last part of
Proposition A.5). Moreover, the discriminants of any such basis are all equal. Indeed,
if (x1, . . . , xn) and (y1, . . . , yn) are two integral basis for a number field K, let M be
the transition matrix. Then M is an unimodular matrix and detM = ±1, which
gives the result by Proposition A.13.

Thus we can define the following:

Definition A.15. The discriminant dK of a number field K is the discriminant of
any integral basis.
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4. Ideals

Proposition A.16. For every ideal a of OK , the index [OK : a] is finite and a is a
free abelian group of rank the degree of K.

Unfortunately, the ring of integers of a number field is generally not a unique factor-
ization domain. Nonetheless, we get such a property if we look at a generalization of
ideals:

Definition A.17. Let K be a number field. A fractional ideal of K is a set of the
form

a−1a,

where a is an ideal of OK and a a nonzero element of OK . We denote by IK the set
of nonzero fractional ideals of K.

The product of two fractional ideals is then defined in the same way than for ideals
and it is a composition law in IK .

Theorem A.18. Let a ∈ IK be a nonzero fractional ideal. Then:

1. The ideal a has an inverse with respect to the multiplication in IK , denoted by
a−1. Therefore, IK has an abelian group structure for the multiplication with
identity OK ;

2. There exist distinct prime ideals p1, . . . , pr of OK and integers n1, . . . , nr ∈ Z

such that
a = pn1

1 · · · pnr

r .

Moreover, this decomposition is unique up to permutation of the factors.

Proof. See section 3.4 of [Sam71] or section II.3 of [Neu99].

Definition A.19. We say that b divides a (written a|b) if there exists an ideal c
such that a = bc.

Proposition A.20. If a and b are two ideals of K, then a|b if and only if a ⊃ b.

Proposition A.21. Let a be an ideal of OK . Then O/a is finite and we call its
cardinality the norm N(a) of the ideal. More precisely, if (x1, . . . , xn) is any Z-basis
for a, then

N(a)2 =
D(x1, . . . , xn)

dK
.

The terminology norm is meaningful by the first point of the following proposition.

Proposition A.22. Let a, b nonzero ideals of OK . Then

1. If a = 〈x〉 is a principal ideal, then N(a) = |N(x)|;
2. N(ab) = N(a)N(b);

3. If N(a) is a prime number, then a is a prime ideal;

4. If a is a prime ideal, then it divides exactly one prime number p and N(a) = pm

with m smaller than the degree of K.



Appendix A. Number fields 96

The Kummer-Dedekind Theorem gives a simple way to compute the decomposition
under an hypothesis on OK (which holds for example for quadratic or cyclotomic
fields):

Proposition A.23 (Kummer-Dedekind). Suppose that OK = Z[θ] and let f ∈ Z[X]
the minimal polynomial of θ over Q. If p is a prime number, let

fn1

1 . . . fnr

r

be the decomposition into irreducibles of f in Zp[X]. Then the ideals

pi = (p) + (fi(θ))

of OK are prime (1 ≤ i ≤ r) and the decomposition of (p) into prime ideals in Cl(K)
is

(p) = pn1

1 . . . pnr

r .

Proof. See for example [Coh93, Th. 4.8.13].

5. Ideal class group

Definition A.24. Let K be a number field and I0 the subgroup of IK consisting of
principal fractional ideals (i.e. fractional ideals xOK for x ∈ K∗). The ideal class
group Cl(K) is the quotient group IK/I0.

Theorem A.25 (Minkowski). The ideal class group of a number field is finite.

Proof. See section 4.3 or [Sam71] or section I.6 (theorem 6.3) of [Neu99].

Definition A.26. The class number h(K) of a number field K is the cardinality
of its ideal class group.

Proposition A.27. The ring of integers OK of a number field K is an unique fac-
torization domain if and only if h(K) = 1.

6. Orders

It is also interesting to work on subrings of K sharing important properties of the
ring of integers OK , except that they might not be integrally closed, so they might
not be Dedekind domain (i.e. factorization of invertible ideals as product of primes
ideals) nor verify that all ideals are invertible.

The proof of the following result can be found in [Neu99, Ch. I, §12] or [Cox89, Ch.
II, §7].

Definition A.28. An order in a number field K is a subring O ⊂ K such that

1. O is a finitely generated Z-module;

2. O contains a Q-basis of K.



Appendix A. Number fields 97

By Propositions A.5 and A.6, the ring of integers OK itself is an order. We call it
the maximal order in K.

Proposition A.29. Any order O in K is a noetherian ring, a free Z-module of rank
the degree of K and is contained in OK . Moreover, we have that K = QO.

Thus, we see that orders are actually subrings of the ring of integers.

As with OK , any Z-basis for an order O is also a Q-basis for K and the discriminants
of all such basis are equal. Therefore, we can define the discriminant of O as the
discriminant of any Z-basis of O.

6.1. Ideals

As we did in maximal orders, we can also consider ideals and fractional ideals (i.e.
subsets of K of the form xa where x ∈ K∗ and a an O-ideal) in any order. We have
the following similar results.

Proposition A.30. A nonzero fractional ideal in an order is a free Z-module of rank
the degree of K.

Proposition A.31. All prime ideals in an order of a number field are maximal.

Proposition A.32. Let a be an ideal of an order O in K. Then O/a is finite and
we call its cardinality the norm N(a) of the ideal. The following properties hold:

1. For all x ∈ O, N((x)) = |N(x)|.
2. For all invertible ideals a, b in O, N(ab) = N(a)N(b)

3. If (x1, . . . , xn) is any Z-basis of an ideal a in O, then

N(a)2 =
D(x1, . . . , xn)

dK
.

However, we will not generally have a property of unique factorization of ideals as
prime ideals or invertibility with fractional ideals.

6.2. Picard groups

Still, we define a generalized version of the class group, restricting ourselves to invert-
ible ideals. Let O be an order in K. Denote by J(O) the set of invertible fractional
O-ideals and P (O) the set of principal fractional O-ideals. Clearly, P (O) ⊂ J(O).

Definition A.33. The Picard group of O is the quotient group

Pic(O) = J(O)/P (O).

We will also need a ”bigger” version of the Picard group:

Definition A.34. The narrow Picard group of O is the quotient group

Pic+(O) = J(O)/P+(O),
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where P+(O) is the ideals in P (O) with a generator of positive norm.

Example A.35. The Picard group of the maximal order is of course the ideal class
group of K.

Theorem A.36. The groups O∗

K/O∗, Pic(O) and Pic+(O) are finite.

Proof. See [Neu99, Theorem 12.12].
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