
Practical async Rust over lunch

cpg

November 2023

mailto:c@pgdm.ch

Introduction

Async Rust basics

Synchronization primitives

Streams

Mixing compute-bound code

Async I/O

When things go wrong

References

Introduction
What are we trying to do?

Goal

Run tasks in parallel so that they complete faster.

Two categories of tasks

▶ Compute-bound (CPU, memory)
→ Fully utilize the hardware.

▶ I/O-bound: reading/writing data, locally or over network.

▶ Read data from disk (network or local).
▶ Make a web request and retrieve the response.

→ Do things while waiting.

Tasks can also combine the two over their lifetime, e.g. retrieve data, then

perform a computation, then write results.

Introduction
OS threads

Send each task to a thread?

In std::sync:

pub fn spawn¡F, T¿(f: F) -¿ JoinHandle¡T¿

where

F: FnOnce() -¿ T + Send + 'static,
T: Send + 'static

So we can do:

let task1 = std::thread::spawn(—— – ... ˝);

let task2 = std::thread::spawn(—— – ... ˝);

// Wait until the tasks have completed.

// Returns an error if the thread panicked.

task1.join()?;

task2.join()?;

Issues

▶ Thread overhead (e.g. context switches), in particular if there are many
tasks.

▶ Ergonomics (e.g. synchronization between threads).

https://doc.rust-lang.org/std/sync/index.html

Introduction
OS threads: thread pool

Use a thread pool to limit the overhead.

rayon crate

One thread per CPU available (default), each with a work queue.

use rayon::prelude::*;

// Each task needs to be Send.

tasks.into˙par˙iter().for˙each(—task— ...);

With work-stealing, rayon can efficiently handle tasks spawning other tasks

(e.g. flatten).

Issues

Still not adapted for I/O-intensive tasks, e.g. sending and waiting on 100

HTTP queries.

https://docs.rs/rayon/latest/rayon/
https://en.wikipedia.org/wiki/Work_stealing

Introduction
Async concurrency model

Driving principles

▶ Large number of operations (futures), often cheap and I/O-bound.

▶ Runtime (single- or multi-threaded) cheaply switches between tasks as
they are able to make progress, until they complete.

▶ Similar ergonomics to sequential code:

async fn f(x: u64) – ... ˝

// Run sequentially

f(42).await?;

f(41).await?;

// Run concurrently, by creating a new future that will

// start both calls and and wait on them.

join!(f(42), f(41));

Async Rust basics

Futures

Async functions and tokio entrypoint

Examples of futures

Async Rust basics

Native support

▶ async fn, await

▶ Future trait in the standard library.

▶ Async traits: should be stabilized for Rust 1.75. In the meantime, use
the async trait crate.

External resources

▶ Some utilities in the futures crate: joining, selecting, streams. . .

▶ Bring your own runtime; most widely used is Tokio.

▶ Tokio brings asynchronous I/O APIs for network, filesystem, signals,
processes.

https://docs.rs/async-trait/latest/async_trait/
https://docs.rs/futures/
https://tokio.rs/

Async Rust basics
Futures

The Future trait for asynchronous computations

pub trait Future –

type Output;

// Ready? If not, make progress, without blocking.

// `Context` provides a callback for the runtime to call
// poll again when the future is ready to make more

// progress.

fn poll(self: Pin¡&mut Self¿, cx: &mut Context¡'˙¿)
-¿ Poll¡Self::Output¿;

˝

pub enum Poll¡T¿ –

Ready(T),

Pending,

˝

Role of the runtime

Polling futures until they complete, using one or more threads.

Async Rust basics
Async functions and tokio entrypoint

async fn and async block

async fn f(...) -¿ T – ... ˝

// is syntactic sugar for

fn f(...) -¿ impl Future¡Output=T¿ –

// State machine generated with all the futures

// awaited in `f`.
...

˝

async – ... ˝ // async block

Tokio entrypoint

// This simply runs the future on the main thread

// until completion.

#[tokio::main]

async fn main() – ... ˝

Async Rust basics
Examples of futures

▶ tokio::time::sleep: deeply integrated into the runtime (see (this
post)).

▶ Network I/O: the poll function can use the epoll notification
mechanism to notify the waker when more data is available, so that the

runtime can poll the future again. See this page.

▶ tokio::task::spawn blocking: runs a blocking (non-async) function
on a separate threadpool (default size 512).

pub fn spawn˙blocking¡F, R¿(f: F) -¿ JoinHandle¡R¿

where

F: FnOnce() -¿ R + Send + 'static,
R: Send + 'static;

spawn˙blocking(—— – ... ˝).await?;

▶ File I/O: Uses spawn blocking, as epoll is not available.
(io uring is, but support is still experimental).

https://tokio.rs/blog/2018-03-timers
https://en.wikipedia.org/wiki/Epoll
https://rust-lang.github.io/async-book/02_execution/05_io.html
https://tokio.rs/blog/2021-07-tokio-uring

Synchronization primitives

Running multiple futures at the same time

Sharing data

Limiting concurrency

Channels

Synchronization primitives
Running multiple futures at the same time

// Runs sequentially

f1(...).await;

f2(...).await;

// That too (unlike javascript)

let fut1 = f1(...);

let fut2 = f2(...);

fut1.await;

fut2.await;

How do we actually run futures concurrently?

For example, process 100 HTTP queries, making progress on some while

others are waiting on I/O.

Synchronization primitives
Running multiple futures at the same time

Joining futures

// Runs in parallel, but in the same task (=¿ thread).

use futures::–future::join˙all, join˝;

join!(f1(...), f2(...));

join˙all(vec![f1(...), f2(...)]).await;

// If the order does not matter:

use futures::stream::–StreamExt, FuturesUnordered˝;

let fut: FuturesUnordered = it.collect();

fut.collect().await?;

The join methods create a new future that polls all the futures to

completion.

Technical anecdote: an earlier version of the join all method had quadratic complexity because every poll would poll all the futures.

Since then, the task uses a more clever (but slightly more expensive) implementation when there are more than 30 futures.

Warning

Do not try to join an ungodly amount of futures without limiting concurrency.

https://github.com/rust-lang/futures-rs/issues/2201

Synchronization primitives
Running multiple futures at the same time

Tasks are the scheduling units in tokio.

▶ Cheap alternative to OS threads.

▶ Calling await in a task yields to other tasks.

▶ Tasks can move between threads (work stealing), not futures.

Spawning tasks

pub fn spawn¡F¿(future: F) -¿ JoinHandle¡F::Output¿

where

F: Future + Send + 'static, F::Output: Send + 'static;

Example:

// Start running both tasks.

// Each task will be scheduled on a member of the thread pool.

let task1 = tokio::task::spawn(async – f1(...).await ˝);

let task2 = tokio::task::spawn(async – f2(...).await ˝);

// Error if the tasks panicked or have been cancelled.

task1.await?;

task2.await?;

https://docs.rs/tokio/latest/tokio/task/index.html

Synchronization primitives
Running multiple futures at the same time

Spawning vs joining

▶ Drawback: Unlike join, spawn requires Send + ’static (naturally).

▶ Advantage: Allows parallelism of compute-bound segments (when using a
multithreaded runtime).

Warning

This compiles, but likely does not do what you want:

async fn f() – ... ˝

tokio::task::spawn(async – f() ˝).await?.await;

Synchronization primitives
Running multiple futures at the same time

Comparison

// Sequential

f(0).await;

f(1).await;

// Concurrent, same thread (same task)

join˙all([f(0), f(1)]).await;

// Concurrent, possibly multi-threaded (different tasks)

let task1 = tokio::task::spawn(f(0));

let task2 = tokio::task::spawn(f(1));

task1.await?;

task2.await?;

rayon threadpool for compute-bound sync tasks.

futures::join await multiple futures.

task::spawn run a future as a separate task.

task::spawn blocking run a sync/blocking function on a large

threadpool.

Bounds: spawn and spawn blocking require Send + ’static.

Synchronization primitives

Running multiple futures at the same time

Sharing data

Limiting concurrency

Channels

Synchronization primitives
Sharing data

How to make data readeable/writeable from different futures/tasks (possibly

on different threads)?

The borrow checker forces us to think about

▶ Lifetimes

▶ Mutability

but therefore enables fearless concurrency

(although this does not cover deadlocks!).

Non-mutable references without spawning

No special attention required:

async fn f(x: &T) – ... ˝

futures::join˙all([f(&x), f(&x)]).await;

Synchronization primitives
Sharing data

Meeting a ’static lifetime when spawning

// 'static not met, will not compile:
tokio::spawn(async move –f(&s)˝.await);

// Shared ownership of x with Arc (atomic reference count)

let x: Arc¡T¿ = std::sync::Arc::new(x);

tokio::spawn(–

let s = s.clone(); // cheap

async move – f(s.clone()).await ˝

˝).await;

Notes:

▶ Network clients (reqwest, tonic. . .) are usually hiding an Arc and are
therefore already cheaply Clone-able.

▶ An Arc’ed variable cannot be mutated unless interior mutability is used
(e.g. a Mutex).

Synchronization primitives
Sharing data

Mutating data: (async) Mutexes

use tokio::sync::Mutex;

let x = Mutex::new(x);

async fn f(x: &Mutex¡T¿) –

// This will block any other call from locking

// until the guard is dropped.

let guard = x.lock().await;

// The guard can be used transparently

// as a &T of a &mut T.

˝

Can be combined with Arc when spawning: Arc¡Mutex¡T¿¿.

Warning

Do not use std::sync::Mutex unless you are sure of what you are doing

(risk of deadlocks). See the documentation.

https://docs.rs/tokio/latest/tokio/sync/struct.Mutex.html

Synchronization primitives
Sharing data

Mutating data: Read-write locks

Allow an arbitrary number of readers OR a single writer.

use tokio::sync::RwLock;

let x = RwLock::new(x);

// Read with multiple readers

let f = —— async – let x = x.read().await; ... ˝;

futures::future::join˙all([f(), f()]).await;

// Write. Blocks any call to .read()

let w = x.write().await;

*w = Default::default();

Can be combined with Arc when spawning: Arc¡RwLock¡T¿¿.

Deadlock warning

let r = x.read().await;

let x = x.write().await;

Same with “write then read”. Call drop or downgrade.

Synchronization primitives
Limiting concurrency

Async allows us to create a very large amount of tasks, but it is still often

desirable to put limit on the concurrency:

▶ Limits of the network resources we are accessing (e.g. APIs).

▶ I/O limits.

▶ CPU-bound tasks, whether they execute in the runtime thread or on the
large blocking threadpool.

Semaphores

use tokio::sync::Semaphore;

let sem = Semaphore::new(10);

// Blocks until a permit is available.

let permit = sem.acquire().await?;

Synchronization primitives
Limiting concurrency

Semaphores and spawning

let sem = std::sync::Arc::new(tokio::sync::Semaphore::new(2));

let mut tasks = vec![];

for item in items –

let permit = sem.clone().acquire˙owned().await;

// Permit is moved to the task.

tasks.push(tokio::task::spawn(async move –

// do things, permit gets dropped at the end

˝));

˝

for task in tasks –

task.await?;

˝

Alternative: move a clone of the Arc’ed semaphore into the task and acquire

a permit inside it. The difference is that we will not block during the for loop

as permits are released.

Synchronization primitives
Channels

Channels in tokio

In tokio::sync:

Producers Consumers Remarks

oneshot 1 1 Single value

mpsc ∞ 1 Send work or receive results.

broadcast ∞ ∞ Each consumer receives each value.

watch 1 ∞

mpsc comes as bounded or unbounded, broadcast is always bounded.

Usage generically looks like:

// Depending on the channel rx and/or tx can be Clone'd.
let (rx, tx) = channel::new();

rx.send(value).await;

let value = tx.recv().await;

Streams
Definition

Streams are essentially “async iterators”.

The Stream trait

pub trait Iterator –

type Item;

fn next(&mut self) -¿ Option¡Self::Item¿;

˝

pub trait Stream –

type Item;

async fn poll˙next(&mut self) -¿ Option¡Self::Item¿;

˝

They provide for example more flexible ways of processing a list of futures

than join:

filtering, mapping, flattening, controlling concurrency. . .

https://docs.rs/futures/latest/futures/stream/trait.Stream.html

Streams
Definition

The StreamExt and TryStreamExt traits provide useful methods to work on

streams (resp. of streams of results).

let results: Vec¡˙¿ = stream::iter(tasks)

.enumerate()

.map(—(i, task)— –

let client = client.clone();

async move –

...

˝

˝)

.buffer˙unordered(8)

.collect()

.await;

When using these, make sure to understand the Item types of your streams

before and after functions are applied, by reading the Trait implementation

documentation section on the return type of the combinator.

https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html
https://docs.rs/futures/latest/futures/stream/trait.TryStreamExt.html

Mixing compute-bound code

Blocking the runtime

A compute-bound blocking call in an async function will prevent the

corresponding runtime thread from polling its futures.

async fn f(x: T) –

let y = g(x).await;

cpu˙heavy(y); // blocks the runtime thread

˝

This could for example prevent a server from serving requests, or result in a

deadlock.

Rule of thumb

Do not spend a long time without await’ing.

Seen so far:
rayon small threadpool for compute-bound tasks.

task::spawn run a future on a separate task.

task::spawn blocking run a sync/blocking function on a large

threadpool (512 threads).

Mixing compute-bound code

Options

▶ Use tokio::task::spawn. Even on a multi-threaded runtime, this does
not guarantee that the task will run on a separate worker thread!

(task spawned on the worker’s queue + infrequent work stealing.)

▶ Use the spawn blocking threadpool, making sure to limit concurrency
(e.g. with a Semaphore).

▶ Use a separate threadpool, e.g. rayon: rayon::spawn and use a
tokio::sync::oneshot to await the result from tokio.

▶ Use a separate tokio executor (see this post).

Even when using a small threadpool for compute-bound segments, make sure

to control concurrency, for example to avoid queued tasks to consume all

memory.

Interesting reads:

▶ https://ryhl.io/blog/async-what-is-blocking/

▶ https://github.com/tokio-rs/doc-push/issues/77

▶ https://github.com/tokio-rs/tokio/pull/4105

https://thenewstack.io/using-rustlangs-async-tokio-runtime-for-cpu-bound-tasks/
https://ryhl.io/blog/async-what-is-blocking/
https://github.com/tokio-rs/doc-push/issues/77
https://github.com/tokio-rs/tokio/pull/4105

Async I/O

Async IO traits

Filesystem

Async I/O
Async IO traits

Tokio async IO traits

Non-blocking/async analogues of the standard library traits.
std::io:: tokio::io::

Read AsyncRead

BufRead AsyncBufRead

Seek AsyncSeek

Write AsyncWrite

▶ Most high-level functions (e.g. read/write buffers) are available in the
[Trait]Ext extension traits.

▶ The above traits are implemented on tokio analogues of std structs:

std::fs tokio::fs

std::net tokio::net

std::io tokio::io

std::process tokio::process

Async I/O
Async IO traits

Common operations:

▶ Using higher-level libraries (e.g. reqwest, tonic) and reading/writing
buffers at once.

▶ Reading or writing buffers from/to implementors of async read/write
traits.

▶ Copying data between an AsyncRead and an AsyncWrite, using
tokio::io::copy.

Async I/O
Filesystem

Caveat

The tokio::fs operations can be significantly slower than the sync

(std::fs) ones.

We trade-off performance for non-blocking operations.

The tokio::fs operations rely on spawn blocking (in absence of a useful

epoll). A large part of the overhead then comes from moving data across

threads. But also polling, etc. See this issue.

In some cases (very low latency filesystem I/O), it might make sense to

directly use blocking calls. See for example this post.

https://github.com/tokio-rs/tokio/issues/3664
http://gravitext.com/2020/01/13/blocking-permit.html

When things go wrong

General issues

Deadlocks

error: future cannot be sent between threads safely

--¿ src/main.rs:18:5

—

18 — require˙send(send˙fut);

— ˆˆˆˆˆˆˆˆˆˆˆˆ future created by async block is not `Send`
—

= help: the trait `Sync` is not implemented for `RefCell¡i32¿`
= note: if you want to do aliasing and mutation between multiple

threads, use `std::sync::RwLock` instead
note: future is not `Send` as it awaits another future which

is not `Send`

When things go wrong
General issues

▶ Lifetime issues:

▶ higher-ranked lifetime error is very common with streams. A solution
is usually either to ensure that stream::iter is passed a ’static object,

or to call boxed() on your stream. See this.

▶ Annotate lifetimes on functions that take multiple references on
arguments/outputs.

▶ Cannot infer type in async blocks:

async –

..

Ok::¡T,E¿ // Annotate the type, e.g. anyhow::Ok(x)

˝

▶ Object needs to be ’static: Wrap into an Arc.

▶ Object needs to be Send (e.g. RNG): Put the non-Send code into a
scope (see this page).

▶ Recursion: Use the async recursion crate.

▶ Traits: Use the async trait crate (until Rust 1.75).

https://github.com/rust-lang/rust/issues/102211
https://rust-lang.github.io/async-book/07_workarounds/03_send_approximation.html
https://docs.rs/async-recursion/latest/async_recursion/
https://docs.rs/async-trait

When things go wrong
Deadlocks

Deadlock

▶ Task 1 waits on task 2.
▶ Task 2 can progress only when task 1 does.

// Say `fut` can only complete when cleanup is called
fut.await;

cleanup.await; // this is never reached

Unfortunately, Rust’s memory safety features do not help with

deadlocks.

When things go wrong
Deadlocks

Most common deadlock reasons

▶ Sync Mutex used in async context.

▶ Attempting to acquire a lock twice in the same task.
▶ Call lock twice on Mutex. Use drop.
▶ Call read then write or vice-versa on a RwLock. Use drop or downgrade.

▶ Using multiple locks.

▶ Use a bounded queue without reading the results.

▶ More complex circularities.

Debugging tools

▶ Careful documentation of the locking paths.

▶ tokio console

▶ timed lock crate

https://github.com/tokio-rs/console
https://docs.rs/timed-locks/latest/timed_locks/

References

▶ Official async Rust book

▶ Tokio tutorial

▶ Tokio documentation

https://rust-lang.github.io/async-book/
https://tokio.rs/tokio/tutorial
https://docs.rs/tokio/latest/tokio/

	Introduction
	What are we trying to do?
	OS threads
	OS threads: thread pool
	Async concurrency model

	Async Rust basics
	Futures
	Async functions and tokio entrypoint
	Examples of futures

	Synchronization primitives
	Running multiple futures at the same time
	
	Sharing data
	Limiting concurrency
	Channels

	Streams
	Definition
	Using streams

	Mixing compute-bound code
	Async I/O
	Async IO traits
	Filesystem

	When things go wrong
	General issues
	Deadlocks

	References

