A brief tour of Rust

c@pgdm.ch

January 16, 2025



Contents

Rust overview 7
“Live” coding 29
Discussion 40

A brief tour of Rust / 2025-01-16 2/40



Contents
Goals of the presentation

e Give an overview of the Rust programming language and discuss how we have been using it at $JOB.
e “Live” coding of a sequence alignment tool!

e Discussion / Q&A

Engineering Flowchart
s itdosimeryed?

No Yes
I I
Should it? Should it?
| |

¢ 1 + I3
No Yes Yes No
|

| | |

No ! No
Problem E Problem C | ()

Side goal: understand this joke (credit Tim and dullhunk)

A brief tour of Rust / 2025-01-16

3/40



Contents

Caveat lector

e |I'm no programming language extremist. | also work with Python and C++ to great success.
— | would never train NNs or write games in Rust (again).
— | was originally pretty annoyed with the whole Rust hype.

e These slides are written in Rust (I know), with Typst.

A brief tour of Rust / 2025-01-16 4/40


https://github.com/typst/typst

Contents
Using Rust

e We have been using Rust at $J0B since July 2021.
— Average of 10-15 concurrent contributors, from interns to experienced SWE and MLE.
e Technical stack:
— Python for defining and training NNs (PyTorch).
— C++ for the real-time software (including NN inference).
— Rust for the rest: data processing, ML lifecycle management, evaluation, pipelines, services...

e Why Rust?
Development velocity of Python, with performance and development-time guarantees of C++ (and beyond).

A brief tour of Rust / 2025-01-16 5/40



Contents

Rust overview 7
“Live” coding 29
Discussion 40

A brief tour of Rust / 2025-01-16 6/40



Rust overview
https://www.rust-lang.org/

o First version in 2012, now at 1.84 (release every 6 weeks).

Backed by the Rust Foundation. MIT & Apache 2.0 license.

Emphasis on performance, concurrency, type safety, memory safety, and developer experience.

e Wide and expanding adoption:
— Industry: Amazon, Google, Meta, Microsoft, Cloudflare, Github, Apple, Huawei, Discord...
— Open source: Servo, uv, Ripgrep, Wezterm, Typst, Zed, Helix, ruff, Sccache, Hyperfine, Alacritty, Polars,
InfluxDB, Meilisearch, Deno, Linux kernel...

Rust found a sweet spot: it is just as low-level as C or C++ with all the advantages of these (e.g. control,
size, speed, etc.) At the same time, it is as high-level as Haskell with an amazing amount of functional
heritage. It is still imperative, so quite accessible to most people, and it is just as flexible as Python.

— Peter Varo

A brief tour of Rust / 2025-01-16 7/40


https://www.rust-lang.org/
https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/

Rust overview

e Basic syntax similar to C++.

e Incorporates best ideas from other languages:

Algebraic data types Functional programming

— Immutability by default — Zero-cost abstractions

Pattern matching Ergonomic error handling

— Move semantics Asynchronous programming

Generics

Expression-orientation
— Traits-based OOP — Type inference
(examples later)

e Many supported targets, including WebAssembly. LLVM and gcc backends.

A brief tour of Rust / 2025-01-16 8/40



Rust overview

e Excellent built-in tooling:

— cargo (build system and dependency management)

— clippy (linter)

— fmt (formatter)

— rust-analyzer (LSP)

— rustdoc (HTML documentation)

— rustc (compiler), with excellent errors

Nice consequence: uniformity and compatibility throughout the ecosystem.
e Rich and well-documented standard library (example).

o Interoperability with other languages (e.g. C, Python via pyo3, C++ via cxx).

A brief tour of Rust / 2025-01-16 9/40


https://doc.rust-lang.org/std/collections/struct.BTreeMap.html

Rust overview

e High-quality libraries, centralized on crates.io (similar to pip). For example:

— serde ((de)serialization) — tracing (structured logging)

— rayon (parallel iterators/thread pool) tower (networking)
— regex (regex engine) — axum (web framework)
— clap (command line arguments) — tokio (async runtime)

e Plenty of excellent learning resources:

The Rust Book

Rust by Example

— Programming Rust book

https://users.rust-lang.org/

A brief tour of Rust / 2025-01-16 10/40


https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/rust-by-example/
https://www.oreilly.com/library/view/programming-rust-2nd/9781492052586/
https://users.rust-lang.org/

Rust overview

First binary:

1 fn main() {

2 let who = "Ferris";

3 // Or without using type inference:
4 // let who: &str = "Ferris";

5 println!("Hello {}'", who);

1 $ cargo run -r
2 Hello Ferris!

A brief tour of Rust / 2025-01-16 11/40



Rust overview

Variables are immutable by default:

fn main() {
let who = "Ferris";
who = "Not Ferris";
println! ("Hello {}'", who);

cannot assign twice to immutable variable “who
immutability. 5:5

let who = "Fe

who = "Not Fe

r making this binding mutable

mut who = "Fep
+HH

(note the nice compiler errors!)

A brief tour of Rust / 2025-01-16 12/40



Rust overview

A mutable reference on a variable must be the unique reference on it.

The borrow checker enforces this, one of Rust's keys to guaranteeing memory safety.

fn main() {
let mut v: Vec<ibd> = vec![1l, 2, 31];
for vv in &v {
v.push(4); // Ouch, we modify v while iterating on it!

}

cannot borrow “v' as mutable because it is also borrowed as immutable
hecke: :13

v.push(4);

A brief tour of Rust / 2025-01-16 13/40



Rust overview

The borrow checker also checks for reference lifetimes:

// This returns a reference to a temporary object...
fn dodgy() -> &ec<u8> {
&vec![1, 2, 3]
}
fn main() {
let v = dodgy();
}

: cannot return reference to temporary value
— borrow_checker2.rs:2:5

A brief tour of Rust / 2025-01-16 14/40



Rust overview

On the other hand, this is fine:
1 fn valid(input: &Vec<u8>) -> &Vec<u8> {
2 &input

4 fn valid2(input: &Vec<String>) -> Option<&String> {
5 input.first()
}

8 fn main() {
9 let v = vec![1, 2, 3];
10 let v2 = valid(&v);

let v = vec![String::from("test")];
let v2 = valid2(&v);

(the compiler is automatically inferring lifetimes for us)

A brief tour of Rust / 2025-01-16 15/40



Rust overview
Move semantics are the default.

fn f(v: Vec<i6d>) {}
fn main() {
let v = vec![1, 2, 3];
f(v); // v is moved into f
printin!("{}", v[01); // invalid, v was moved!

es not implement the

- 'lue move
println! ("{}", v[6

of the value

e value if the performa ceptablle

A brief tour of Rust / 2025-01-16 16/40



Rust overview

1 fn
2 fn
3 fn
4
5 fn
6
7
8
9
10
11
12
13
14
15
16
o}

The copy of expensive types must be done explicitly, via the clone method.

f(v: Vec<ib4>) {} // Move
f ref(v: &ec<ib4>) {} // Reference
f mut ref(v: &mut Vec<i64>) {} // Mutable reference

main() {
let v = vec![1, 2, 31;

f(v.clone()); // Clone v explicitly
f ref(&v); // Pass v by reference

let mut v = v; // Rebind v to be mutable
f mut_ref(&mut v); // Pass v by reference

for vv in &v {} // References
for vv in &mut v {} // Mutable references
for v in v {} // v is moved

No implicit copy like in C++.

A brief tour of Rust / 2025-01-16

17/40



Rust overview

Powerful pattern matching:

1 fn print_age(age: Option<u8>) {

2 match age {

3 Some(age) if age < 150 => {

4 printin!("{}", age)

5 }

6 None => println!("No age provided"),
7 ~ => println!("Invalid age"),
}

9 }

10 fn main() {

1 print_age(None);

12 print age(Some(10));

13 print _age(Some(255));

14 }

Option<T> is a generic datatype, corresponding to an enum taking values None or Some(T).

A brief tour of Rust / 2025-01-16 18/40



Rust overview

Enums and pattern matching:

enum Entity {
Person {
first name: String,
last name: String,

age: u8,
+
Company {
name: String,
+
Custom(String), // Tuple variant
Unknown, // Unit variant

}
fn f(e: &Entity) {
match e {
Entity::Company { name } => {}
_ = {}

A brief tour of Rust / 2025-01-16

19/40



Rust overview

Error handling with Result<T,E>:

1 // A function that returns a result

2> fn double(x: i32) -> Result<i32, ()> {

3 if x == 10 {

4 return Err(());

5 }

6 0k(2 * x)

7}

8 // An error will translate in a non-zero exit code
9 fn main() -> Result<(), ()> {
10 // Note that ? operator
11 let r: i32 = double(1)? + double(2)?;
12 Ok(())
3}
1 let x r?; // is syntactic sugar for:

2 let x match r { Ok(r) => r, Err(e) => { return Err(e)} };

A brief tour of Rust / 2025-01-16 20/40



Rust overview

Iterators and functional programming:

fn main() {
let s = (0..100_i64)
filter(|i] 1 % 2 == 0)
.map(|i] [i.pow(2), i.pow(3)])
.flatten()
.sum: :<ib4>();

let x: Option<i64> = Some(10);
let x: 164 = x.map(|x| x * 2).unwrap or(2);

Very convenient for manipulating Iterators (map, filter, flatten, etc.), Options, Results...

Async (streams) and parallel (rayon) variants as well.

A brief tour of Rust / 2025-01-16 21/40



Rust overview

Defining a struct and methods:

#[derive(Debug)] // Derive macro
struct Person {

name: String,

age: u8,

impl Person {
fn can vote(&self) -> bool {
self.age >= 18
}
}
fn main() {
let p = Person {
name: "Linus".into(),
age: 55,
I
// Prints Person { name: "Linus", age: 55 } true
printin!("{:?} {:?}", p, p.can vote());

A brief tour of Rust / 2025-01-16

22/40



Rust overview

Traits and generics:

1

struct Person {
name: String,
age: u8,
}
trait Entity {
fn identifier(&self) -> &String;
}
impl Entity for Person {
fn identifier(&self) -> &String {
&self.name
}
}
fn call(e: &impl Entity) {
println!("{}", e.identifier());
}
// Alternatively:
fn call2<E: Entity>(e: &E) {}

A brief tour of Rust / 2025-01-16

23/40



Rust overview

An incredibly useful crate: serde.

use serde::{Deserialize, Serialize};

#[derive(Debug, Serialize, Deserialize)]
struct Person {

name: String,

age: us8,

skills: Vec<String>,

#[derive(Debug, Serialize, Deserialize)]
struct Persons(Vec<Person>);

fn save(p: &Persons) -> serde json::Result<()> {
std::fs::write("out.json", &serde json::to string pretty(&p)?);
Ok(())

This enables serialization and deserialization in JSON, CSV, YAML, CBOR, Bincode, TOML, Pickle, etc.

New formats can be easily implemented (by implementing a trait), as well as custom handling of types.

A brief tour of Rust / 2025-01-16

24/40


https://serde.rs/

Rust overview

Clippy performs powerful static analysis, which helps the user write idiomatic, performant, and bug-free code.

struct Foo(f32);
impl std::ops::Add for Foo {
type Output = Foo;
fn add(self, other: Foo) -> Foo {
Foo(self.® - other.0)
}
}

fn main() {}

warning: suspicious use of

help: for furth
note: “#Hwarn(c

" in “Add® impl

tion vi t http1 /{rust-lang.github.io/rus
picious i i on by default

See all lints on https://rust-lang.github.io/rust-clippy/master/

A brief tour of Rust / 2025-01-16

25/40


https://rust-lang.github.io/rust-clippy/master/

Rust overview

Leftover

e Documentation (rustdoc).

e Concurrent execution: Rust's memory management allows fearless concurrency.
The language does not prevent deadlocks, but it is impossible to create memory safety issues (e.g. access
from two threads) in safe Rust. Remember that it is not possible to take a mutable reference while there exist

immutable references, and vice-versa.
e Asynchronous programming: https://c.pgdm.ch/notes/practical-async-rust-talk/
o Check out the crates available on https://crates.io See also https://blessed.rs/crates for a curated list.
e Zero-dependency binaries (compile against an old glibc and use rustls instead of opensst).

e Cross-compilation.

A brief tour of Rust / 2025-01-16 26/40


https://c.pgdm.ch/notes/practical-async-rust-talk/
https://crates.io
https://blessed.rs/crates

Rust overview

Negative aspects

cargo check is fairly fast to run, even on very large codebases, but building in release mode can take a while.

Multiple optimizations are possible (disable LTO, enable incremental, caching in Cl...).

The learning curve is steeper than with Python, especially when working with concurrent code.
In our experience, it takes people roughly 2-3 weeks to be fully productive (working in an existing codebase is

easier than starting from scratch, though).

The borrow checker requires different thinking and adapted architectures. For beginners, this means that
prototyping ideas will be slow and possibly painful.

While the language is already fairly mature, it is rapidly evolving and some features are still under

development (e.g. native async traits).
Dependency creep, due to the easy of adding them and transitivity.

Often adds to tech stacks with multiple other languages (Python, C++, Go...).

A brief tour of Rust / 2025-01-16 27/40



Contents

Rust overview 7
“Live” coding 29
Discussion 40

A brief tour of Rust / 2025-01-16 28/40



“Live" coding

Implement a small binary performing sequence alignment of FASTA files.

e Command line parsing with clap. e Structured logging with tracing.
e Parallel processing with rayon. e HTTP mode with axum.
e Serialization with serde. e (Python integration)

You can also follow along on https://github.com/cpg314 /sequence-alignment for the full source code.

To install Rust: https://www.rust-lang.org/learn/get-started (install rustup and pull the latest toolchain).

A brief tour of Rust / 2025-01-16 29/40


https://github.com/cpg314/sequence-alignment
https://www.rust-lang.org/learn/get-started

“Live" coding

$ alignment -h
Usage: alignment [OPTIONS] <COMMAND>

Commands:
align Align the first two sequences in a FASTA file
serve Launch alignment HTTP service
help Print this message or the help of the given subcommand(s)

Options:
--mismatch-penalty <MISMATCH PENALTY> [default: -2]
--gap-penalty <GAP_PENALTY> [default: -1]
-h, --help Print help

Align HBB_HUMAN with HBB_HORSE (from UniProt):

H-LDNLKGTFAT- LSELHCDKLHVDPENFRLLGNVLVCV-LA-H -FTPPV--QAA-YQKVVAGVANALAHKYH
HHLDNLKGTFA-ALSELHCDKLHVDPENFRLLGNVLV-VVLAR )] QKVVAGVANALAHKYH

A brief tour of Rust / 2025-01-16 30/40



“Live" coding
Representing sequences:

1 /// A sequence represented as a list of 'T°
2 #[derive(Deserialize, Debug, Default)]
3 pub struct Sequence<T = char>(pub Vec<T>);

Representing a FASTA file:

1 /// A single sequence with metadata

2 #[derive(Debug)]

3  pub struct FastaSequence<T> {

4 pub meta: String,

5 pub sequence: Sequence<T>,

6 1}

7

8 /// A decoded FASTA file as a list of sequences
9  #[derive(Debug)]

10 pub struct Fasta<T>(pub Vec<FastaSequence<T>>);

A brief tour of Rust / 2025-01-16 31/40



“Live" coding

1 impl<T: From<char>> Fasta<T> {

2 #[tracing::instrument]

3 pub fn from path(p: &Path) -> anyhow::Result<Self> {
4 info!("Parsing FASTA file");

5 let data = std::fs::read_to_string(p)?;

6 let lines = data.lines();

7 let mut sequences = vec![];

8 for line in lines {

9 if let Some(meta) = line.strip prefix(">") {
10 sequences.push(FastaSequence {

11 meta: meta.into(),

12 sequence: Default::default(),

13 1)

14 } else {

15 match sequences.last mut() {

16 Some(1l) => l.sequence.0.extend(line.chars().map(T::from)),
17 None => anyhow::bail! ("Sequence without metadata")
18 }

19 }

20 }

21 Ok(Self(sequences))

22 }

23 }

A brief tour of Rust / 2025-01-16 32/40



“Live" coding

Representing alignments :

1 /// An alignment of two sequences

2 #[derive(Debug, Serialize, Deserialize)]

3 pub struct Alignment<T> {

4 pub alignment: VecDeque<[Option<T>; 2]>,

5 /// Note that the score depends on the aligner parameters
6 score: f32,

7}

8

9 impl<T: PartialEg> Alignment<T> {

10 /// Ratio of the number of aligned pairs divided by the length including gaps
11 fn matching ratio(&self) -> 32 {

12 self.alignment

13 Jiter()

14 .filter(|[a, b]| a.is_some() && a == b)

15 .count() as f32

16 / self.alignment.len() as f32

17 }

18 }

A brief tour of Rust / 2025-01-16 33/40



“Live" coding

1 #[derive(Parser, Debug, Copy, Clone)]

2 pub struct Aligner {

3 #[clap(long, default_value t=-2.0)]
4 mismatch_penalty: f32,

5 #[clap(long, default value t=-1.0)]
6 gap_penalty: f32,

7

8

9

}
impl Aligner {
10 /// Align two sequences and return an alignment
11
12 pub fn align<T: std::cmp::PartialEq + Copy>(&self, seqs: [&Sequence<T>; 2]) -> Alignment<T> {
13 // Needleman-Wunsch
14 }
1 let fasta = fasta::Fasta::<char>::from_path(fasta)?;
2 anyhow::ensure! (fasta.0.len() == 2, "Expecting exactly two sequences");
3 let seql = &fasta.0[0];
4 let seq2 = &fasta.0[1];
5 info!("Aligning {:?} with {:?}", seql.meta, seq2.meta);
6 let alignment = args.aligner.align([&seql.sequence, &seq2.sequence]);
7 info!("{}", alignment);

A brief tour of Rust / 2025-01-16 34/40



“Live" coding

Serialize alignments with Serde:

#[derive(Debug, Serialize, Deserialize)]
pub struct Alignment<T> {
pub alignment: VecDeque<[Option<T>; 2]>,
/// Note that the score depends on the aligner parameters
score: f32,
}
impl<T: Serialize> Alignment<T> {
pub fn write(&self, filename: &Path) -> anyhow::Result<()> {
// Swap JSON for your favourite format (e.g. bincode, cbor...)
Ok(std::fs::write(filename, serde_json::to_string(&self)?)?)

A brief tour of Rust / 2025-01-16 35/40



“Live" coding
Command line arguments with clap:

#[derive(Parser)]
struct Flags {

}

#[clap(flatten)]
aligner: align::Aligner,
#[clap(subcommand) ]
mode: Mode,

#[derive(Subcommand) ]
enum Mode {

Align {
fasta: PathBuf,
#[clap(long, short, default value t = 1)]
runs: u32,
#[clap(long, conflicts with = "runs")]
output: Option<PathBuf>,

I

Serve {
#[clap(long, default_value t = 3000)]
port: u32,

I

A brief tour of Rust / 2025-01-16

36/40



“Live" coding
Parallel processing with rayon:

(0..*runs)

// Parallelism with rayon

.into_par_iter()

.try for_each(]_| {
let seql = &fasta.0[0];
let seq2 = &fasta.0[1];
info!("Aligning\n{:?} with\n{:?}", seql.meta, seq2.meta);
let alignment = args.aligner.align([&seql.sequence, &seq2.sequencel]);
info!("{}", alignment);
if let Some(output) = &output {

alignment.write(output)?;

}
anyhow: : 0k (())

H

10° runs on the HBB HUMAN / HBB_HORSE pair:
e Sequential: 8.5 seconds

e Rayon (thread pool): 2.5 seconds

A brief tour of Rust / 2025-01-16 37/40



“Live" coding
Web server with axum, with a JSON interface

#[derive(Deserialize)]

pub struct AlignData {
seql: String,
seq2: String,

}

pub async fn align_post(
axum::extract::State(aligner): axum::extract::State<align::Aligner>,
axum::Json(data): axum::Json<AlignData>,

) -> axum::Json<align::Alignment> {
let seql = Sequence::from(&data.seql);
let seq2 = Sequence::from(&data.seq2);
axum::Json(aligner.align([&seql, &seq2]))

let app = axum::Router::new()

.route("/align", axum::routing::post(web::align_post))

.with state(args.aligner);
let listener = tokio::net::TcpListener::bind(format!("0.0.0.0:{}", port)).await?;
axum: :serve(listener, app).await?;

A brief tour of Rust / 2025-01-16 38/40



“Live" coding

More things:

e Rustdoc

$ cargo doc --open

e Clippy

$ cargo clippy

A brief tour of Rust / 2025-01-16 39/40



Discussion

&self.current)

7 impl<'a> RecordIteratop<'a> {

A brief tour of Rust / 2025-01-16 40/40



	Goals of the presentation
	Caveat lector
	Using Rust
	Rust overview
	Leftover
	Negative aspects

	"Live" coding
	Discussion

